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Abstract— This paper describes a landmark position mea-
surement system using an integrated laser-camera sensor. Laser
range finder can be used to detect landmarks that are direction
invariant in the laser data such as protruding edges in walls,
edges of tables, chairs. When such features are unavailable the
processes that depend on landmarks such as navigation and
simultaneous localization and mapping (SLAM) algorithms will
fail. However, in many instances, larger number of landmarks
can be detected using computer vision. In the proposed method
camera is used to detect landmarks while the location of the
landmark is measured by the laser range finder using laser-
camera calibration information. Thus, the proposed method
exploits the beneficial aspects of each sensor to overcome the
disadvantages of the other sensor. Experimental results of an
application in SLAM is presented to verify the results.

I. INTRODUCTION

Among various sensors used in detection and localizing
landmarks in robotics, laser range scanners received much
of attention, mainly due to its response behaviour and ability
to accurately scan a wider field of view. Laser range find-
ers can precisely locate landmarks in environments having
directional variant features, such as protruding edges in
walls, edges of objects located in the field of view such
as chairs, tables, and also moving objects such as humans
[1]. However, in environments such as, corridors of having
flat walls, long empty rooms and halls, the laser data will
contain minimum number of features that can be detected as
landmarks.

Recently, computer vision received much of attention for
landmark localization, specially in simultaneous localization
and mapping (SLAM) [2], [3], [4] as visually salient features
can be easily extracted from camera images. However, there
are many drawbacks in vision based sensors. Monocular
SLAM implementations require the features to be present in
the field of view for a longer duration to facilitate the proper
convergence of the feature position estimate. However, stereo
vision has the ability to overcome some of issues in single
camera systems, but require a heavy computational overhead,
particularly for calibration and 3D estimates. Thus, it is
possible to use the features of each sensor to overcome
drawbacks of the other one. Hence this work demonstrates a
novel application of a single laser-vision model. Early work
of laser-vision model in SLAM uses two sensor readings
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separately and fuse the data two different maps. The maps
are then fused at a post processing stage. In contrast this
paper proposes feature extraction at the sensor level while
using laser-vision model as a single sensor for detection
and locating landmarks. Therefore this paper constitutes
following key contributions. First, the work demonstrates
effective integration of laser and camera as a single sensor.
Secondly, the effective use of an integrated laser-camera
model to solve the SLAM problem is demonstrated.

A. Related Work

The research in computer vision–based SLAM can be
broadly categorized into two areas. They are: appearance
based methods and feature or landmark based methods. In
appearance based localization and mapping image features
are collectively used to describe a scene. These feature
based descriptions are used to compare and contrast the
images that robot acquires along the way. Hence when a
robot revisits an environment, the localization algorithm will
be able to measure the similarity between the images of
the current scene and the images that are registered in a
database. In most cases this type of qualitative localization
and mapping can only generate topological representations
of the environment. Although it provides a viable and a more
natural mapping and localization procedure, the qualitative
algorithms does not provide detailed information about the
environment. Details in such a map may be inadequate,
specially when robots require accurate information about the
structure of the environment for tasks such as path planning.
Although appearance based methods has been used in SLAM
[5], [6], [7], they are mostly used in the re-localization of
the robots [8], [9], [10].

In contrast to the appearance based methods, landmark
based methods uniquely identifies visually salient landmarks
in the environment and calculate their position with respect to
robot. Such measurements can be used in estimators to build
the map of the visual landmarks while localizing the robot.
The primary advantage of the landmark based methods over
the appearance based methods is the higher fidelity of the
map. In landmark based methods the range and bearing to
the features can be calculated using different methods. The
most common method is the use of stereo cameras [11], [12],
[13], [14], [15]. Other methods include: single camera based
feature position estimation [16], [17] and optical flow based
calculation [18]. Although computer vision based SLAM
methods shows significant advances, they exhibit one or more
of the following drawbacks with respect to general SLAM
applications.
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1) The methods were only demonstrated to work in small
scale environments [11], [16], [17].

2) Employs a large number of landmarks in the environ-
ment [13], [18].

These issues can be primarily attributed to the the large
uncertainties associated with the vision based feature position
calculation. Further, in stereo and other vision based fea-
ture position calculation methods, uncertainty of the feature
position increases as the distance to the feature increases.
Additionally, regular camera lens provide only a limited field
of view. This severely limits the amount of time that a feature
is actively observed in the SLAM process, specially if the
robot is moving at relatively higher speeds.

On the contrary laser range finder provides excellent range
measuring capabilities and has been widely used in SLAM
implementations. Landmarks that are generally invariant to
the direction of scanning (such as chair and table legs,
corners, tree trunks, poles, etc.) can be identified in laser
range data. However, typical indoor environments with cor-
ridors, walls and other structured shapes, either does not
have any corner features or have only very few features.
During the estimation process when landmarks are absent in
the environment uncertainty of the estimator rapidly grows.
The landmarks that will be encountered with a higher robot
uncertainty will have a higher uncertainty bound (Theorem
3 in [19]). This will lead to possible inconsistent data
associations when the robot revisits the same area. Hence
frequent featurelessness in the environment will lead to a
highly unstable SLAM process. On the other hand computer
vision can be used to detect visually salient features on walls
and other places where laser range finder fails to detect
landmarks and the laser range finder can be used to measure
the range to those visually salient landmarks. On multi
sensor SLAM, Castellanos et. al. [20] have presented a laser-
camera based method that fuses landmark information from
laser range finder data as well as image data. The method
presented in [20] detects landmarks using data from each
sensor and calculates the individual and joint compatibility
between them. From the laser range finder it locates the
line segments, corners and semiplanes. Using camera data
it obtain redundant information about the landmarks that
were observed by the laser range finder. Thus this method
only facilitates the laser based landmarks with additional
redundant information about the corners and semiplanes from
vision data. In contrast, the proposed method uses vision as
the primary sensor to obtain vertical edge features and then
use data from the laser range finder to measure the range to
those landmarks. Therefore, there is no dependency between
the geometrical structure of the landmarks between the laser
and vision data.

B. Objective

The main objective of this paper is to develop a reliable
landmark detection and localization method that uses an
integrated laser-camera sensor for SLAM applications. This
papers presents a novel method for landmark detection and
location calculation based on multisensor data in the context

of SLAM. In contrast to the other notable works in multisen-
sor SLAM [20] the proposed method fuses the information
in sensor domain rather than fusing map information that
is being built using each sensor, as shown in Fig. 1. In
the proposed work a camera is mounted on a laser range
finder and the coordinate transformations have been obtained
through a experimental calibration process [21]. The vertical
lines in environment are detected using the image data
(bearing information) and the range to the vertical lines
can be then interpolated using the laser readings and the
coordinate transformation between the laser and the camera.
These located features are then used in the extended Kalman
filter based SLAM formulation.
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Fig. 1. Block diagram of the proposed SLAM process

C. Outline

The rest of the paper is organized as follows. The proposed
method for landmark detection and localization with respect
to the robot is presented in the Section II. Section III provides
the experiments conducted to verify the algorithm and the
results of an application of the extracted landmark data
in SLAM. In section IV we provide a discussion on the
proposed method and draw our conclusions.

II. CALIBRATED LASER-VISION SENSOR

A camera is mounted on the laser range finder using a
custom made bracket as shown in Fig. 2. The camera is
mounted at the center of the laser range finder to maintain
the coordinate transformation between laser scanning plane
and camera coordinate system as simple as possible. The
coordinate frames are defined as shown in the Fig. 2.

A. Visual Landmark Detection

Landmarks in the camera images can take several forms.
The most common landmarks are the visually distinct corner
features. Other visually salient landmarks include, lines,
arcs, and user defined objects. In this paper the visually
salient vertical line features were detected in the captured
images. Consistent lines features are the most robust in terms
of detection accuracy and repeatability. In this work two
algorithms has been evaluated for the detection of vertical
lines in the images.
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Fig. 2. Coordinate frames of calibrated laser-vision sensor

Fig. 3. The camera and the laser range sensor used in the experiments.

1) Hough transform based method.
2) Corner feature based method.
Line detection algorithms based on the Hough transfor-

mation is most popular in computer vision and pattern
recognition. Hough transformation typically accumulates the
votes for line configurations based on their support in the
binary image. Since it is of interest to detect only the
vertical (or close to vertical) lines, the search space can
be restricted to compute the angle values in the vicinity
of zero, thus reducing the computational cost. In addition
to the hough transform based method, a simpler and com-
putationally efficient corner based method was tested for
vertical line detection. Initially, a set of horizontal lines were
superimposed on the original image as shown in Fig 4. Then,
all the resulting corner features are detected using Harris
corner detector [22] and are indicated by the white circles in
Fig. 4.

Fig. 4. Line feature detection using artificially generated corner features.

This list of corner features are then searched for sets of
features that are vertically aligned. If the number of features
in a set is greater than a threshold value then the average of

the horizontal position is identified as a consistent vertical
line. Identified lines are marked with white line stubs at the
bottom of the image frame shown in the Fig. 4. The corner
based method is approximately equivalent to the Hough
transform based method. Instead of accumulating the pixel
count at finer resolution for the full image, the corner based
method samples the image at vertical line positions and
accumulate the points where there is strong evidence for
vertical lines.

A comparison of the two methods are shown in the Fig.
5 for three typical images that is taken during a robot run.
The lines in the top part of the image are the ones detected
using Hough transformation and the lines in the bottom part
detected using corner based method. It is evident from the
images that on average Hough transform returns more line
images than the corner based method. This can be attributed
to the fact that it accumulate the evidence for lines in the
whole region than some sampled points in the image as in the
case with corner based method. From the Fig. 5 it is evident
that in addition to the ability to recover large number of
landmarks the Hough transformation based method is more
accurate as well. Therefore in the work described in this
paper Hough transformation is selected.

Fig. 5. Detected line features using Hough transformation and the corner
based method.

B. Sensor calibration

In order to measure the distances to the visual landmarks
using the laser range finder, the coordinate transformations
of the two sensors have to be accurately calibrated. There are
two possible sources for errors in the calibration information:
the errors in the alignment of the frames of the sensors
(parameters a and b in Fig. 2) and the errors in camera
calibration. Although the camera is calibrated using standard
camera calibration techniques1, the distortions specially the
edge of the images contribute significantly to the accurate
alignment of the sensors.

The main objective of the sensor calibration method used
in this paper is to accurately map the field of view of the

1MATLAB toolbox for camera calibration,
http://www.vision.caltech.edu/bouguetj/calibdoc/
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camera to that of the laser range finder. In order to achieve
that objective, a ’v’ shaped target with black and white faces
is placed in front of the robot. In a series of image and laser
data with the ’v’ shaped object placed to span the field of
view of the camera (since the field of view of the camera
is less than that of the laser range finder), the angle to the
tip of ’v’ is measured from the center of each sensor. In the
camera images it is measured in degrees from the optical
axis (θc) and in the laser range finder it is measured from
the central laser scan (θl). Thus, the error in the calibration
can be calculated from e = θl − θc. As shown in Fig. 6
the error e is approximated using a higher order polynomial
f(θc) with respect to θc. Thus, for any new measurement in
the image, θc the corresponding mapping angle in the laser
range finder can be calculated from θc + f(θc).
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Fig. 6. Calibration curve for the mapping between field of view of the
camera and the field of the view of the laser range finder.

C. Measurement Model

Laser ranger provides a set of scanned reading that pro-
vides the range to the objects in the laser scan plane. The
scanner is able to operate in a field of view of 180◦ with
a half a degree resolution. The bearing angle (θl) of the
detected line features can be calculated using the camera
model. Then using the coordinate transformation between
the camera and the laser range finder and the calibration
information the range to the line features can be interpolated
using laser range scan. This process of range interpolation
is shown in the Fig. 7.

With a resolution of the laser range scanner at 0.5◦ the
range to the line feature can be calculated using following
interpolation.

rθ =
ri+1 cos(θ − α) + ri cos(0.5◦ − α + θ)

2 cos(θ)
(1)

Since the bearing to the feature is measured using camera
model and the range is measured using the interpolated
range data, the uncertainty of the measurements also have
to be calculated using the characteristics of each sensor. In
the camera model, the incident angle for the same image
area changes with the distance from the optical axis. Hence
the bearing uncertainty increases when the distance to the
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Fig. 7. Interpolation of the range to the line feature.

line feature from the optical axis increases. But, since the
used camera lens has only a narrow field of view, bearing
uncertainty can be assumed to be a constant. For the range,
usual constant uncertainty of the laser range finder is used.
Thus, the covariance matrix of the measurements can be
expressed as,

R = diag[ σ2
r σ2

θ ]. (2)

Where σr and σθ are the standard deviation of the range
and bearing measurement errors, respectively.

III. EXPERIMENTS AND RESULTS

In this section two groups of experiments are carried out,
the first for the verification of the method and the second is
an application of the method to SLAM. In the verification
experiments the vision data is superimposed on known laser
data to test the accuracy of the method. In addition to that
the vision based landmark detection is compared with a laser
only method for the number of retrieved landmarks.

A. Verification of the Method

The laser data and the camera image is superimposed for
the verification of the method. Fig. 8 shows the results of
the feature detection and locating using integrated sensor for
a typical set of image and laser scan data. Fig. 8 shows that
vertical line features on the wall can be accurately localized
using the proposed method.

As discussed previously, the protruding features in the
laser data can be detected as landmarks in the laser data.
These features can be detected using strong corner points in
the plot of laser data. Fig. 9 shows a comparison between
number of landmarks that can be detected in laser data
and in image data during a robot run. It is clearly evident
that there are significant periods where image features out
number the laser based landmarks. Further, the number of
image features remain much more steady compared to the
large variations in the number of laser based landmarks.
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Fig. 8. The landmarks detected by the camera and their bearing angle
superimposed on laser readings.

Additionally, it should be noted that where there is low num-
ber of visual features there is a significantly higher number
of laser based landmarks. Therefore, landmark localization
method that uses both methods of detection can benefit from
the higher number of landmarks throughout the run of the
robot. Although the results are purely specific to a given
environment, the total number of landmarks can be improved
using the proposed method in addition to the laser only
methods.
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Fig. 9. Number of landmark features detected by vision and laser system.

B. Application in EKF based SLAM

An experiment was conducted using the Pioneer 3AT
robot in a typical indoor environment in order to illustrate
the viability of the landmarks located using the laser-vision
based in a typical SLAM scenario. The robot was driven
approximately 67.5m forming two loops. During this ex-
periment the laser range data, images from the camera and

odometry data were logged at regular spatial intervals. After
the landmarks are detected and located using laser data and
images, the data is processed off-line using the EKF method
[19]. The Joint Compatibility Branch and Bound (JCBB)[23]
algorithm was used for the data association. A from the
data gathered during the robot run map consisting of 71
landmarks that has been built (Fig. 10(b)). The Fig. 10(a)
shows the robot path using pure odometry data, where there
are significant errors. The 95% confidence bounds of the
errors in robot pose estimate are shown in Fig. 11. In Fig.
11 it is possible observe the effects loop closing in the robot
position estimation around the midway point of the robot
run.
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IV. CONCLUSION

In this paper it is shown that computer vision and laser
range scanner can be used to accurately detect and measure
the visually salient landmarks in the environment. Further,
such measurements can be readily integrated into EKF based
SLAM method to build maps of typical indoor environments.
One possible pitfall of this method arises when the line
features in the real 3D world does not intersect with the
laser scan plane. However, this condition can be ensured
by mapping the laser points to the image plane using the
sensor calibration data and focusing on the vertical lines that
intersect mapped laser data curve. In the current method this
cannot be directly achieved as the Hough transform based
method return generic vertical lines but not localized vertical
lines. Although not directly comparable to the multisensor
SLAM presented in [20], it is possible to observe that
the proposed method can be used localize strong (visually
salient) landmarks using both camera and the laser than
using data camera images as a redundant support role. Future
extensions of this work include the use of more accurate
sensor uncertainty modeling specially, in the case of bearing
angle to the landmark and experimentation in large looping
environments with possible sub-mapping.
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