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Abstract— This paper describes a method for learning the
terrain classification of long-range appearance data from short-
range, stereo-based geometry, along with a map representa-
tion for utilizing this data to improve autonomous off-road
navigation. The continuous, online learning method allows the
system to constantly adapt to changing terrain and environmen-
tal conditions, while the polar-perspective map representation
allows the system to effectively plan with stereo data at long
ranges. Various evaluations of the long-range classification and
improvements in system performance are described, including
results from an independent third-party testing team.

I. INTRODUCTION

The ability to evaluate and exploit long-range perception
data is critical for autonomous unmanned ground vehicles
(UGVs) to avoid myopic behavior and increase driving
speed. The viewing angle and sensor characteristics of both
active and passive range sensors typically used by UGVs
limit the range at which the terrain can be classified based
on geometry. At long ranges, range data becomes too sparse
or noisy to evaluate terrain traversability from geometry.
For a typical UGV, this range is generally 30-50m; for the
vehicle used in this paper, this range is around 10m due
to the sensor’s lower height and shorter baseline. When
autonomously navigating off-road outdoor terrain with only
short-range sensors and without a global map, UGVs exhibit
problems such as driving into long cul-de-sacs or waiting to
avoid large, distant obstacles. Furthermore, because a vehicle
must be able to safely stop before hitting an obstacle, the
vehicle’s speed is limited by the maximum safe distance that
can be detected.

Utilizing the long range data available from cameras that
can see the horizon enables planning distances to be extended
beyond where geometry can be used to classify the terrain,
and can consequently be used to both avoid myopic behavior
and safely increase the vehicle speed over the terrain. How-
ever, long-range perception data presents challenges in both
classifying the terrain traversability and then planning on
the classified data. Image-based classification of long-range
data is difficult because the color and texture of traversable
terrain is dependent on the locale (including the time of day
and viewing angle) and is not easily generalized. Planning
is difficult because range information obtained from stereo
has an error that grows quadratically with range.

To address these problems, we combine self-supervised,
online learning of long-range terrain traversability with a
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polar-perspective map representation for long-range plan-
ning. Continuous on-line learning of long-range terrain
classification using color and texture from geometry-based,
short-range terrain classification allows the system to con-
stantly adapt to its local terrain and avoids the need to learn
a universal long-range terrain classifier. Then projecting the
classified terrain into a polar-perspective map whose cell
sizes are a function of the range enables a standard graph
planner to make effective use of data out to the limit of
stereo matching (zero disparity). A visualization of a polar-
perspective map with classified long-range terrain is shown
in Figure 1.

The terrain classification and path planning algorithms
developed run in real-time as part of a larger navigation
system, which includes visual pose estimation and path
following. Various feature sets and classification methods
have been studied off-line and the final system has been
tested extensively onboard an autonomous vehicle in outdoor
terrain. The system has been fielded and evaluated by a third-
party test team as part of the DARPA Learning Applied to
Ground Robots (LAGR) program and has demonstrated the
ability to detect and avoid obstacles at long range.

Fig. 1. A 3D view of a polar-perspective map showing traversable (blue),
long-range non-traversable (yellow), and unknown (green) terrain, with
the best path (white) and stereo point cloud superimposed; along with a
corresponding image and its long-range classification (traversable in blue
and non-traversable in red)

A. Related Work

The LAGR program’s goals include addressing both the
need for an adaptable terrain classifier to avoid hand-tuned
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systems, as well as long-range perception to avoid myopic
behavior [6]. In order to avoid using hand-labeled data, as
done in [9] among others, researchers in the program are
making use of the concept of generalizing the near-field
traversability to the far-field in a self-supervised approach
introduced in [10] (extended in [5]). Among others, [12]
automatically selects from a set of several binary classifiers,
and [3] uses distance normalized images and a convolutional
network. The DARPA Grand Challenge has motivated the
need for faster driving and the similar approach of extending
the appearance of the road out to long ranges has been
instrumental in achieving good results [2], [8]. Furthermore,
learning traversability of overhead imagery from local data
is another method of extending the range of perception and
has been effective on terrain where the overhead imagery is
available [14]. Overhead imagery makes planning on long-
range data easier; however, we consider the case when it is
not available. An alternative to projecting long-range data
into a map is to use image-based planning, where the plan
is generated directly in the image [11].

II. LEARNING LONG RANGE TERRAIN
CLASSIFICATION

Our basic approach to long-range perception is to use a
self-supervised learning method to generalize short-range ter-
rain classification from stereo-based geometry to long-range
terrain classification from imagery. This includes classifying
terrain locally with stereo data, selecting features from this
terrain, learning a two-class classifier of traversable and non-
traversable terrain, and then applying this classifier to an
image to classify long-range data. We have found that color-
based features and a linear support vector machine (SVM)
are an effective and practical combination to achieve good
performance in real-time.

A. Local Terrain Classification

The traversability of terrain in the near field is classified
using the stereo range data produced by stereo camera
images. Each pixel with valid stereo data is projected into
a cell of an instantaneous 2D Cartesian map and geometry
statistics are accumulated for each map cell. Then, each cell
is classified as traversable or non-traversable based on a
previously learned classifier. Finally, the original image is
labeled by back-projecting the map into the image.

The Cartesian map uses a 16cm x 16cm grid size and
accumulates the zero, first, and second order statistics (num-
ber of points, mean, and variance) of points from a fitted
ground plane, as well as a maximum step height, which is
the difference between the mean height of adjacent cells. The
classifier is a simple histogram-based naive-Bayes classifier.
The classifier is learned by adding traversable (terrain the
vehicle drives over) and non-traversable (terrain in front of
the vehicle when an operator triggers an E-stop) examples to
each of the 1D feature histograms. Terrain is then classified
by computing the combined probability of traversability for
each cell in the map. Although simple and limited to low

dimensionality, this terrain classification approach is fast and
robust.

Once the local terrain map has been classified, the map
is back-projected into the image using the stereo informa-
tion for that image. Fixed thresholds on the probability of
traversability are used to produce an image labeled with
traversable, non-traversable, and unknown terrain types. This
image then serves as the training signal for long-range
learning. An example of locally classified terrain is shown
in Figure 2.

Fig. 2. The original image (top left), false-color (green to blue indicating
decreasing disparity) stereo disparity image (top right), a back projection
of the local terrain classification (where color represents the probability of
traversability, from blue (traversable) to red (non-traversable) (bottom left),
and the traversable (blue) and non-traversable (magenta) feature windows
selected for the locally classified terrain (bottom right)

B. Feature Selection

To learn a long-range classifier, features are selectively
chosen from the back-projected image and accumulated with
a sliding window over many frames. Because at long-range,
image pixel colors are the vehicle’s only sensory input, the
problem of long-range learning thus becomes a problem
of encoding the robot traversability in appearance. After
evaluating several intensity and color features (various color
spaces, Gabor filters, and color histograms), a combination
of pixel color and normalized color histograms was fielded.
Although computationally efficient and simple, the use of
a single pixel or window average of raw color, normalized
color, or other color space value (such as HSV) is limited
in its distinguishing power because it does not account
for texture. On the other hand, Gabor filters can capture
texture well, but are computationally expensive to use. We
reduced the set of filters to a fixed number by using cross-
validation to find the set of scales and orientations that
maximized classification, but found that color histograms
could achieve similar classification rates with significantly
lower computation. We use a 2D normalized color histogram,
computed using r = ﬁ and g = ﬁ, with 16x16
bins, and generated from a 33x33 pixel patch. The use of
the r-g color space over the raw RGB color space offers
more lighting independence and a smaller feature length,
while the histogram captures a basic notion of texture. A
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further improvement to the 2D normalized color histogram
was made by using a grid of adaptive, uneven bins. Because
the histogram distribution in the 2D r-g color space is very
uneven, a constant sampling does not capture the color signal
effectively (the resulting histogram will have a zero value in
many of the bins all the time). So, for each of the normalized
colors r and g, a grid of 16 1D bins are designed so that each
bin contains the same number of pixels. Then, these two grids
of 1D bins form a grid of 2D bins and are used to compute
the histograms during the training and classification phases.

During the training phase, many training samples can be
collected from each image with near-field back-projected
labels. However, if all the training data is collected within
a single frame, the resulting model may not respond well
to the vehicle’s changing environment and will lead to
an unbalanced data set. Consequently, we collect training
data from multiple frames and limit the number of train-
ing samples from each frame. Furthermore, because there
is generally little frame-to-frame change for small vehicle
motions, a frame is only used after the vehicle has moved
a specific distance from the previously used one. For our
experiments, we limited each frame to have 100 training
samples (50 traversable and 50 non-traversable, sampled
from all available features in the image), taken every one
meter of motion. The training samples are accumulated into
a FIFO (first in, first out) queue consisting of 4000 samples;
when new training samples are collected, the oldest samples
are removed to maintain a constant number of training
samples. Figure 2 shows an example of features selected
from a single frame.

C. Learning

Using the training samples selected from the near-field
labeled images, a linear support vector machine (SVM) with
soft margins [13] is learned and used to classify pixels in
the far field of the current and future images. The model
regularization parameter (C'), which penalizes large errors,
is chosen to balance computation time and data separation.
Using cross-validation experiments, we have fixed C to
500 for our experiments. Furthermore, during evaluation,
we leave any samples that are within the SVM margins as
unclassified. In practice, we find that these samples account
for about 10% to 50% of the data, and in the reported
results, we allow 40% of the data to remain unclassified.
The results described in this paper require that the training
set be balanced, and so the system must be trained with both
traversable and non-traversable classes. However, the system
has since been extended to learn based on both near and
far field data, and so can learn even without non-traversable
terrain in the near field.

The linear SVM chosen was initially evaluated alongside
a linear discriminant method and non-linear SVM with a
radial basis function, and proved to be the best compromise
between accuracy and computation speed. For instance, on
a typical dataset, the use of a non-linear SVM achieved a
correct classification rate of 92%, as compared to 88% for
a linear SVM (on near-field data), but required 2-3 times

the computation time. For the linear SVM, we have also
considered using a power transform (using (histogram)® as
the input) which is reported to boost accuracy [1], and
experimented with several values of a, but only report
a = 0.5. As a baseline, we also train SVM classifiers with
RGB colors and their squares, i.e., the input features being
(R,G, B, R?,G?, B?), instead of the color histogram.

ITII. PLANNING WITH LONG RANGE DATA

Once the terrain in the far field has been classified, it
must be effectively utilized by a planner to contribute to
improved system performance. Our approach uses a polar-
perspective map representation, which implicitly accounts for
stereo range error, to make use of data with small stereo
disparities. This allows long-range data to be projected into
a cost map on which standard graph search techniques can
be used to find a best path. Once found, the path is followed
by a path following vehicle controller.

A. Map Representation

To incorporate long-range stereo data into a map that can
be searched for a path, the semi-persistent, configuration-
space grown local Cartesian map and long-range data are
fused into a short-term polar-perspective map. The polar-
perspective map is a polar map with an origin fixed to the
vehicle frame and consists of cells with a fixed angular
resolution, but variable range resolution. The range resolution
corresponds to stereo disparity, proportional to inverse range,
and consequently accounts for stereo range error by accu-
mulating all points that lie within the expected stereo range
error. For practical reasons of accumulating enough points
in cells close to the origin, the map actually uses a constant
range resolution out to a fixed distance, at which point it uses
a variable range resolution. For these experiments, the map
used consisted of 180 angular cells, covering 180 degrees,
and 80 radial cells, covering out to 8m with a constant 20cm
cell depth, and out to 64m with a cell size proportional to
inverse range.

Because the local pose and near-field stereo-based terrain
information is reasonably accurate compared to the local map
cell sizes, a local Cartesian map can be maintained over time.
However, due to accumulated error in the vehicle pose, this
map cannot be kept forever. As a result, a sliding local map is
maintained and used to generate a polar-perspective map on
each planning cycle. On the other hand, because long-range
data has a high uncertainty in range and low uncertainty
in angle, it can only be kept for a very short time period.
Consequently, only the long-range data from several previous
frames is used to populate the polar-perspective map.

B. Path Planning

The polar-perspective map represents a graph, like a Carte-
sian map, and can similarly be searched for a shortest path
with standard methods. However, the non-constant distance
between cells must be accounted for by the search algorithm.
Furthermore, because of the non-penetrating nature of visible
imaging and the low range resolution of cells at long range,
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the relative cost of lateral and longitudinal motions must be
addressed. For instance, if lateral and longitudinal motions
were equally weighted, the optimal plan to a waypoint behind
a wall in the far-field would travel beyond the wall, which,
even though it only occupies the length of one cell, would
be well past the waypoint due to the cell size at that range.
However, if the cost of lateral motions are kept small, then
the optimal plan will initially travel to the side of the wall, but
can then travel into the cells being occupied by it. To improve
search performance, a look-up-table of costs between four-
way connected cells is maintained. For cells beyond 10m,
the lateral cost is reduced by a constant factor of 0.5. The
standard Dijkstra shortest-path algorithm is used to obtain
the best path, and can be computed in approximately 20ms
on the onboard 2GHz Intel Core 2 Duo CPU. Once a path
has been found, it is followed with a model-based controller,
which controls the vehicle’s left and right wheel velocities.

IV. EXPERIMENTAL TESTING AND RESULTS
A. System Evaluation Methodology

Quantitatively measuring long-range terrain classification
rates and improved system performance based on continuous
learning is a challenging task. Ground truth data is difficult
and tedious to create, particularly in natural unstructured
terrain, and running the entire system enough times over
enough courses to statistically show improved performance is
extremely time consuming and plagued with the problem of
a useful performance metric (the time to achieve the goal is
generally not sufficient; one must account for the risk taken
by the vehicle).

So, to address these issues, we approach the problem of
evaluating the system in several ways. First, we evaluate
the long-range terrain classifier both on near-field stereo-
classified terrain, as well as split the near field into a near
and mid-field, and train the classifier only on the near
data, and evaluate it on the mid-field. While this does not
strongly show the generalization of the near-field to the far-
field, it shows the effectiveness of the learning mechanisms
used. Second, we qualitatively evaluate the stability of the
classification in the far-field during an approach to obstacles.
If the classification is stable during the approach, to the point
when it enters the near field, and the obstacles are then
classified correctly according to the near-field classification,
this indicates that the classifier generalizes reasonably well.
Third, we evaluate the distance at which the classifier can
correctly label known obstacles. And lastly, we compare the
plans generated and executed when populating a map with
learned long-range obstacles with both a map with no long-
range data and a map populated with fixed heuristic on long-
range stereo data. The heuristic considers any tall objects in
the distance as an obstacle; a threshold that is a function
of range is applied to the variance of height data beyond a
specific range to label long-range obstacles.

B. Sub-System Evaluation

To verify the learning machinery implemented, we start
by evaluating it only on data where we already have terrain

TABLE I
CLASSIFICATION RATE OF CORRECTLY CLASSIFIED PIXELS WHEN USING
THE NEAR SET TO TRAIN AND THE MID SET TO PREDICT (DATA FROM
ARROYO SECO PARK SHOWN IN FIGURE 2

Run 1 Run 2
Near | Mid | Near | Mid
SVM (RGBR?G?B?) 0.74 | 0.73 | 0.83 | 091
SVM (histogram) 0.81 | 0.86 | 0.88 | 0.93
SVM (histogram, @ = 0.5) | 0.85 | 0.75 | 0.90 | 0.93

TABLE II
CLASSIFICATION RATE OF CORRECTLY CLASSIFIED PIXELS FOR THE 4
RUNS IN LAGR TEST 21 (TERRAIN SHOWN IN FIGURE 4), WITH COLOR
HISTOGRAM FEATURES

Run 1 Run2 | Run 3 | Run 4
Trained with Run 1 0.95 0.92 0.90 0.91
Trained with Run 2 0.93 0.95 0.85 0.90
Trained with Run 3 0.91 0.88 0.96 0.82
Trained with Run 4 0.88 0.90 0.89 0.96

classification from the near-field classifier. The classified data
is split into a set of pixels with a range of less than 5 meters
(near-field), and another set with ranges of greater than 5
meters (mid-field). The long-range classifier is then trained
only on the near set and evaluated on both the near and mid
set separately. The near-field classification rate indicates how
well the SVM model fits the training data, while the mid-field
classification provides an indication of the range-extension
performance. The evaluation results for a run in the Arroyo
Seco park (seen in Figure 2) are shown in Table 1. This data
set covers a distance of 120 meters in 140 seconds. It is split
into two sets: Run 1 from 0-50 meters and Run 2 from 50-
120 meters. The color histograms are compared to the pixel
color and squared color as a reference. For the Run 2 data,
all three SVMs perform the range extension well, with rates
even better than rates with training data. This may indicate
that the mid-range pixels are easier to classify than the near-
range pixels because the colors and textures in that region
are more homogeneous, but the exact reason is still under
investigation.

Another approach to evaluate the classifier is to train
it in batch mode on one of several runs on the same
course. An example of this on data from the LAGR Test
21 course (shown in Figure 4) is given in Tables II and
III. Here, we collect 4000 data samples at all ranges for
four runs. Table II shows the performance of the classifier
with color histogram features, while Table III shows it for
color features. On average, the histogram SVMs have slightly
better performance than the color feature SVMs. This is
expected because the color histograms accumulate colors
over a window and capture local color variation, and are
consequently more discriminatory than the single pixel-based
color values. There is little variation of performance between
runs, indicating that the environments of the four runs are
similar.
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TABLE III
CLASSIFICATION RATES OF CORRECTLY CLASSIFIED PIXELS FOR THE 4
RUNS IN LAGR TEST 21 (TERRAIN SHOWN IN FIGURE 4), WITH COLOR
FEATURES

Runl | Run2 | Run3 | Run 4
Trained with Run 1 0.91 0.89 0.92 0.90
Trained with Run 2 0.91 0.89 0.92 0.91
Trained with Run 3 0.90 0.88 0.92 0.90
Trained with Run 4 0.90 0.88 0.92 0.91

To evaluate the range at which obstacle can be detected
by the learned classifier, a course with an easy to identify
artificial obstacle of known size was used. The obstacle was
made of three 4x8 foot plywood sheets covered in blue
material. The vehicle was driven up to the obstacle such
that it was in the near-field, and could learn its appearance.
Then, the distance at which the obstacle was detected was
measured. The obstacle could be detected at all distances
closer than 100 meters. Figure 3 shows the obstacle classified
at approximately 100 meters and 25 meters. However, the
obstacle can only be put into the map when it has some
stereo disparity, which was measured during the run at
approximately 30 meters.

Fig. 3. The long-range classified image (left column) showing traversable
(blue) and non-traversable (red) terrain, a zoomed in view of the classifica-
tion (center column) and original image (right column) at 100m (top row)
and 30m (bottom row)

A similar range of detection can be seen in the results
from a real test (LAGR Test 21) through a meadow and
approaching a grove of trees. Figure 4 shows the detection
of the grove at various distances. More importantly however,
these and other tests indicate the stability of classification
over distances ranging from 100 meters to 5 meters.

To evaluate the effect of planning with long-range data,
we compared the maps and plans generated from learned
long-range perception, a fixed height heuristic, and no long-
range perception. Figure 5 shows the difference in the map
and plan between using a fixed heuristic on height data
in the far-field compared to learned terrain classification.
The figure is illustrative of several problems with the height
heuristic. Because it uses a fixed threshold, not all long-range
obstacles are picked up (such as the bushes on the right side
of the trees), and because no color information is used, stereo
matches on the sky line can cause false obstacles (seen on
the left side of the map).

Fig. 4. The original image (left column) and its long-range classification
(right column), showing traversable (blue) and non-traversable (red) clas-
sification of the grove of trees on Test 21 from varying distances (~30m,
~15m, ~7m)

C. System Evaluation

The long-range learning system developed has been fielded
on the standard, government provided LAGR vehicle [6].
We have tested it extensively in outdoor terrain consisting
mainly of dirt paths and grass fields with traversable and
non-traversable brush and grass, along with bushes, trees,
logs, and other obstacles. As shown in Figures 1 and 5, the
system is capable of learning long-range terrain types and is
clearly planning to avoid obstacles in the far field. Figures 6
and 7 show the paths taken by the system with and without
long-range learning in the Arroyo Seco and Balboa parks
in the Los Angeles, CA area. The terrain in the two parks
is very different in appearance (brush with dirt versus trees
with grass), but the trained system is able to avoid the distant
obstacles.

More telling, however, is the fact that the system was
evaluated by an independent test team as part of the LAGR
program’s monthly field tests. The system was fielded and
tested on the LAGR Test 21 course in Maryland during
the summer. The course consisted of a start point in the
middle of a large meadow and a goal point in an open area
beyond a large grove of trees around a ditch. If the system
was able to perceive the trees as an obstacle, it would veer
right around the trees; if not, it would drive into the trees
and need to find a path to the right around the ditch and
through tall grass and trees. Images of the approach to the
trees can be seen in Figure 4. The path of our system when
no long range perception was used is compared to the path
when online learning was used in Figure 8. In the learning
run, online learning was used and an operator drove the
vehicle around a first set of trees so that it could learn their

4022



Fig. 5. The left and right stereo camera views (top row) and a 3D
view of the map generated by the height heuristic (middle row) and
long-range learning (bottom row); terrain is labeled as traversable (blue),
non-traversable long-range (yellow), short-range non-traversable (red), and
unknown (green), and the best path is shown in white. With height alone,
the bushes to the right of the trees are not detected and incorrect stereo
matches cause false obstacles on the left.

appearance, and then to the start point of the previous run.
Here it was switched into autonomous mode and drove to
the right, circumnavigating the tress. The run with no long-
range perception drove up to the trees and was trapped in
high grass in the process of finding a route to the goal.

V. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We have implemented and fielded a system capable of
learning and using long-range traversability to improve au-
tonomous navigation performance. Comparing various fea-
tures and classifiers, we have settled on using color-based
features and a linear SVM, which has proved to be effective
in learning from near-field terrain and practical for a real-
time implementation. Using a sliding window of features,
learning continuously adapts to the current terrain and en-

With

fange leamning "
Red — without
long+ange

Fig. 6.  An overhead map view of the paths taken (~50m long) in the
Arroyo Seco park with no long-range perception (red) and with long-range
learning (green)

vironmental conditions. To effectively utilize the long-range
data, we use its stereo disparity to project it into a polar-
perspective map, which can then be used to bias plans around
obstacles in the far-field. The map representation enables
long-range stereo data to be used by implicitly accounting
for its stereo error. The system implemented has been tested
extensively in outdoor, unstructured terrain, and evaluated in
several ways by an independent test team. The system with
learning shows the ability to avoid obstacles at long ranges,
which results in a significant improvement in the time and a
reduction of the risk taken to achieve goals.

B. Future Work

Despite some success with the fielded system, our experi-
ence with long-range learning has revealed several problems
that are yet to be addressed. One problem with using a
polar-perspective map is that long-range data cannot be
accumulated for a very long time, and consequently the
vehicle can “forget” about long-range obstacles out of its
field of view. This leads the robot to potentially oscillate
around two paths if there is one large obstacle in the distance.
Furthermore, because the features used do not explicitly take
into account variation due to range or intensity, if an obstacle
looks very different when viewed from near and far, it can
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Fig. 7. An overhead map view of the paths taken (~100m long) in Balboa
park with no long-range perception (red) and with long-range learning
(green)

Fig. 8. An overhead map view of the paths taken on Test 21 with no long-
range perception (yellow) and with long-range learning (blue); the path in
the bottom half of the image shows where the system was trained, the
starting point of the runs, and the goal (which is not achieved by the first
run); the training to goal distance is ~50m.

make learning very difficult. This is typical of more complex
scenes, particularly in urban settings. This can be addressed
by either using features that account for range or by main-
taining registered features over many ranges. Investigating
other features may also be beneficial to capitalize on scene
texture beyond what is used by the current implementation.
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