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Abstract— An algorithm and data management scheme 
is presented to utilize the data output of the SR-3000, a 
3D LIDAR sensor. The SR-3000 generates a 4D point 
cloud at video frame rates where each point is described 
by its 3D coordinates and its optical intensity. The 
implementation of each major component of the 
algorithm is described, including a projective ICP 
algorithm, reverse calibration equations for the SR-3000 
sensor, the processing of the intensity data, and a point 
selection algorithm which includes the use of a 3D 
volume feature extraction algorithm.  This ICP based 
alignment algorithm is used in the context of a data 
management scheme that stores and retrieves scan data 
and intermediate data products to realize pseudo-global 
scan alignment, data compression, and real time data 
display. 

I. INTRODUCTION 
here have been a number of research efforts focused on 
the utilization of sensed 3D range data for the creation 

of 3D models and for other applications such as robotic 
localization and mapping [2][3][8][9].  Commonly, the 
sensors used have been based on structured light, stereo 
vision, or laser scanning technology.  These technologies 
suffer from either a slow frame rate in the case of scanning 
sensors, or limited depth accuracy in the case of the stereo 
vision sensors.  Recently, several companies have 
introduced new sensors that are commonly referred to as 
flash LIDAR (though actual measurements are often 
integrated over a finite period).  These new sensors offer an 
interesting compromise between accuracy and frame rate.  
The SR-3000, manufactured by CSEM offers a sensor that 
can output a 176 x 144 array of four dimensional data (each 
point is comprised of an x, y, and z location and intensity 
value) at video frame rates.  This paper examines the 
development of an algorithm to utilize the data captured by 
this new family of sensors.  This algorithm addresses the 
conditioning, alignment and management of the 4D data.  

While the proposed algorithm has been developed and tested 
with output from the SR-3000, the approach is directly 
applicable to the output of other sensors as long as 3D point 
cloud data is available with the corresponding intensity data 
per point. 
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 The proposed approach utilizes some common image 
processing techniques, a customized variant of the iterative 
closest point (ICP) algorithm, and a custom data 
management scheme to allow efficient storage and recall of 
previously acquired and processed data. Since it is possible 
to acquire the 4D scan data at up to 30 frames per second, it 
is desirable for the algorithm to be as efficient and 
computationally inexpensive as possible while still retaining 
overall robustness.  Additionally, at such high frame rates, 
managing the sheer volume of data is a difficult challenge 
itself.  As a result, the data management system must 
compress the acquired data by identifying and retaining only 
those points and scans that contain the most unique 
information about the scene.  This sparse collection of data 
improves the algorithm speed and reduces the computational 
load required to render the acquired 3D graphical data.   
 In the next section, the implementation of each major 
component of the algorithm is described, starting with an 
overview of the core ICP algorithm and its derivation from 
other published approaches[1][10][11].  The unique and 
important aspects of the algorithm will be described in 
further detail including the derivation of the reverse 
calibration equations for the SR-3000 sensor and the pre-
processing of the intensity data necessary to provide a more 
stable algorithm.  The point selection algorithm, used to 
down sample to a sparse data set is described.  This 
algorithm uses the processed image data and a volume 
feature extraction algorithm to select those scan points that 
are most unique.  Finally, an overview of the data 
management scheme is described with specific attention to 
its utility in realization of pseudo-global scan alignment and 
data display. 

II. IMPLEMENTATION 

A. ICP Algorithm 
The ICP algorithm has commonly been used for the 

alignment of 3D point cloud data, and numerous variations 
of the algorithm have been presented.  Rusinkiewicz [10] 
summarized those variants of the ICP algorithm that were 
most computationally efficient.  He described the ICP 
algorithm as a series of six stages:  selection of points in one 
scan, matching those points to the second scan, weighting of 
the corresponding point pairs, rejecting certain pairs based 
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on distance, assigning an error metric and minimization of 
the error metric.  Our algorithm focuses on developing the 
logic necessary to select and match points between scans 
generated by the 3D camera sensor.   

In order to improve the speed of the scan alignment 
algorithm, it becomes desirable to select the fewest number 
of points for matching that will still provide for a good 
alignment of scans from the ICP algorithm. For this reason, 
selection of points is an important aspect of the ICP 
algorithm and approaches have included the use of all 
available points [1], uniform sampling[2][3][4][8], normal 
space sampling[10] and sampling based on image gradient 
or color[6][11].  Our approach is similar to that proposed by 
Weik [11] in which the image gradient is used to select 
points.  Since we have intensity information available, it is 
desirable to use this data to enable a more robust and reliable 
convergence of the ICP algorithm. In addition to using data 
derived from the intensity of the scene, we calculate a 
simplified volume feature inspired by the work of 
Gelfand[5] for use in both selection and matching of point 
pairs.  In the next sections, the image processing and volume 
feature extraction algorithms are described in more detail, 
and their use for the selection of points is described. 

Once points have been selected from one scan, 
corresponding points in the scan with which the first is to be 
aligned must be identified.  Many ICP algorithms perform 
an exhaustive search of this second scan to find the closest 
point, often using a k-d tree to accelerate the search.  Even 
with this acceleration, this method is far too slow for our 
application.  The efficient variants of the ICP algorithm 
described by Rusinkiewicz [10] use a projective method to 
either identify a corresponding point directly, or to locate the 
neighborhood in which to perform a local search for a 
compatible point.  It is this latter approach that forms the 
basis for our technique.  A projection from one scan to the 
other is performed and a local search using a simple hill 
climbing strategy is used to identify the point that is most 
compatible.  In other approaches, point compatibility has 
been determined based on image gradient[11], color and 
normals[7].  Our approach uses the value of the scene image 
after having been processed to extract edges as well and the 
compatibility of our volume feature metric.   

 In order to accomplish the projective ICP algorithm, a 
reverse calibration of the system sensor is necessary.  
Reverse calibration is the process by which the pixel 
location (i.e. pixel row and column) may be determined by 
using the x, y and z coordinates of a point in the scan point 
cloud.  This information is needed to perform the geometric 
calculations that allow projection of one acquired scan onto 
another for the purpose of point correlation between the 
scans.  The details of how reverse calibration was 
accomplished for the SR-3000 are presented in the next 
section. 

B. Reverse Calibration 
In order for the projective version of the ICP algorithm to 

function properly, reverse calibration of the sensor is 
necessary.  The sensor used in this research was the Swiss 
Ranger 3000 (SR-3000) by CSEM, shown in Fig. 1.  This 
sensor is 50 x 67 x 42 mm in size and has a nom-ambiguity 
range of 7.5m.  It has a pixel array resolution of 176 x 144 
pixels which covers a field of view of about 47.5 by 39.6 
degrees.  In our testing the field of view was found to be a 
few degrees wider on each axis.   

 

Fig. 1. Photo of the SR-3000 3D Camera 

This sensor’s configurable parameters allow access to the 
integration period, sensor modulation frequency, amplitude 
threshold and saturation thresholds.  For our tests we used 
the following settings: 

 
 Modulation Frequency:    20MHz 
 Signal Amplitude Threshold:  128 
 Integration Period:      64 
 Saturation Threshold:     2700 
 
These settings result in a frame rate of about 15 fps while 

rejecting both signals that are too weak or too strong that 
would result in distortion of the sensed geometry. In order to 
perform the reverse calibration of this sensor, the following 
procedure was executed: 

 
1) Configure the sensor for the desired mode of 
operation using the settings previously listed. 
2) Capture 100 frames of data from the sensor while 
mounted approximately 2 meters from a flat, off-white 
surface. 
3) Average the captured data at each pixel to average 
out the depth noise of the sensor. 
4) Perform a 2D regression of the data to determine 
both the row and column pixel of the image given the 
ratios x/z and y/z of the Cartesian coordinates for each 
point. 

 
The form of the equation used for the 2D regression was a 

simple linear fit of the form: 
 

P = a + bx + cy                                  (1) 
 

In this equation P is the x or y pixel location x is the x/z 
coordinate ratio and y is the y/z coordinate ratio.  The 
reverse calibration results for our sensor were: 
 

Px = 90.9 + 200(x/z) + 1.06E-7*(y/z)             (2) 
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Py = 70.0 – 2.80E-7(x/z) + 200*(y/z)             (3) 
 
The coefficients associated with the (y/z) variable in 
equation 2 and the (x/z) variables in equation 3 are 
sufficiently small to be omitted for the reverse calibration 
calculations.  Fig. 2 shows the results of the regression for 
the Pixels in the x axis of the image, Px.  Note that all pixel 
locations are well resolved, with the errors being on the 
order of 10-4 pixels. 
 

 
Fig. 2. Reverse Calibration Equation Error 

C. Image Processing 
The SR-3000 operates by flooding the scene with 

modulated infrared light.  The scene illumination is not 
uniform and the resulting intensity image is typically 
brighter in the center and darker toward the edges as shown 
in Fig. 3  This variation in image intensity along with natural 
intensity variations in the scene due to light and shadow 
make the use of intensity values for frame to frame 
correlations subject to significant errors.  To combat these 
intensity variations, some image processing is performed.   

 

 
Fig. 3. Intensity Output of the SR-3000 3D Camera 

The first derivative of the image in the x and y direction 
are taken and combined to yield an intermediate image that 
highlights those areas with higher image gradient as shown 
in   Fig. 4. Then a dynamic threshold is applied to convert 
the image to a binary image that extracts the most prominent 
edges in the scene as shown in Fig. 5.   

 

 
Fig. 4. First Derivative of Image Intensity 

 
Fig. 5. Edges Extracted from the Processed Intensity Image 

A series of Gaussian filters, decreasing in kernel width are 
applied to the binary images to yield a pyramid of images 
that are used in successive iterations of the ICP algorithm to 
guide alignment of the scene based on the locations of the 
extracted edges.  The x and y gradients of each image in the 
Gaussian pyramid are calculated and used in the local search 
for compatible points for the projective portion of the ICP 
algorithm. 

The intensity thresholds of the SR-3000 causes regions of 
the image to have zero range and intensity values if the 
intensity values are less than or greater than the two 
configurable intensity thresholds.  This causes false edges to 
be extracted by the image processing algorithm near regions 
with zero intensity.  To prevent this, a mask is applied to 
ignore those points that border regions with zero range and 
intensity.   

D. Volume Feature Extraction 
Analogous to edge detection in the 2D intensity domain, 

volume feature extraction identifies those edges, corners and 
areas of interest in the 3D geometric domain.  Gelfand[5] 
suggests the use of a spherical volume feature in which 
spheres of varying diameters are applied at each point in the 
3D data set.  A 3D occupancy grid is created to estimate the 
intersection of the 3D point set with the sphere. This 
approach is used to estimate the portion of the sphere 
volume occupied by the local region of the 3D point set.  
This simple volume feature is able to differentiate scan 
geometries including inside and outside corners, edges and 
planar surfaces.  Unfortunately the process of calculating the 
feature with differing sphere sizes and building a 3D 
occupancy grid for each calculation is computationally 

2990



  

expensive.   
Our approach simplifies this process at the expense of 

fidelity since we intend only comparison of points, not exact 
matching of the volume feature among data sets. The 
volume feature calculation is simplified by using a cube 
shaped volume and method of calculation that does not 
require occupancy grids.  Additionally, our volume feature 
is only evaluated for every second or third point in the data 
set since the filtering effect of the feature calculations yields 
a metric that changes rather slowly from pixel to pixel.  The 
calculation estimates the portion of the cube filled by the 3D 
data when the cube is located with its center at the given 
data point. This estimated volume of the cube occupied by 
the 3D data points is the resultant volume metric.  Equation 
4 is evaluated at each point pxy in the image where x and y 
are the indexes into the pixel array at the current point.  
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In this equation i and j are indexes into the pixel array, dij is 
the distance to each point pij within the cube and dxy is the 
range to the current point pxy.  The interval n is determined 
by equation 5. 

θsin2 xyd
ln =          (5) 

In this equation θ is the angle between pixels from the range 
sensor and l is the size of the desired volume cube.  For the 
SR-3000 this value is 0.297 radians.  Fig. 6 shows a 
graphical depiction of the volume feature for one scan. 
 

 
Fig. 6. Image Showing Output of Volume Feature Calculations 

This image depicting the volume feature is then processed 
to extract the gradients in the x and y directions so that it 
may be used for the local point compatibility search in the 
ICP algorithm along with the processed intensity data. 

E. Point Selection 
In addition to being useful for the correlation of points 

from one scan to the next, the processed intensity and 
volume feature data may be used to select an initial subset 
points from the larger scene.  This is accomplished through 

a probabilistic sampling process in which those points most 
unique in the scene have a higher probability of being 
sampled.  In our algorithm, a fixed number of subsampled 
points are specified (i.e. 2500 which is approximately 10% 
of the number of points in a scan).   

The points are then selected partially from the volume 
feature data and partially from the processed intensity data.  
The ratio of points selected using the volume feature and the 
intensity data is configurable, but is currently fixed 
throughout a data run.  For future implementations, we aim 
to make this ratio an adaptive parameter that changes based 
on the scene geometry, selecting more points using the 
volume feature data when the scene is rich in geometric 
features, and favoring the intensity based sampling when 
geometric features are sparse.  

Points are randomly selected without replacement from 
the set of points that represent the extracted edges in the 
binary image previously generated in the image processing 
step of the algorithm.  These edges correlate to higher 
intensity gradients within the scene.  These edges are 
landmarks within the scene that provide a reference for 
alignment of the two scans.  

Once the required number of points have been selected 
using this method, the remaining points are acquired by 
probabilistically sampling the volume feature data.  The 
volume features are formed into a histogram and points are 
pulled from the bins in inverse proportion to the number of 
samples within each bin.  This results in points with feature 
values that are most rare in the scene being selected with a 
higher probability than those features that are more 
common.  Invariably these rare features tend to come from 
regions of the image rich in geometric features that are 
beneficial to the alignment process of the ICP algorithm.  
Fig. 7 shows a two correlated scans with 2500 sampled 
points. 

  

Fig. 7. An image showing two scans, the points selected for the ICP 
algorithm and lines drawn between the scans showing point correlations 
between the two images. 
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Fig. 8 The two scans of Fig. 7 shown after alignment 

F. Pseudo-Global Alignment 
In the discussion of scan alignment thus far, the general 

assumption has been that two scans, each acquired by the 
SR-3000 at different points in space and time, are being 
aligned to one another.  In any alignment algorithm, some 
finite alignment error exits.  This error may accumulate as 
one scan is aligned to the next in a daisy chain fashion.  
Since the SR-3000 acquires many frames of data per second, 
this cumulative error may build up over a relatively short 
period of time.  To remedy this situation, a strategy to 
perform pseudo-global alignment of the acquired scans has 
been implemented.   

Acquired scans are stored to a local scan repository.  The 
repository stores the location of the scan and the regions of 
space that the scan intersects.  New scans are only added to 
the repository if they contribute a specified amount of new 
information to the scene.  For example, the repository can be 
configured to only store new scans based on how much they 
overlap the last scan stored in the repository, as well has 
how many points have been acquired in the area for all 
previously stored scans.  In addition to archiving the 
complete scan data, intermediate data products such as the 
volume features, sampled points, and 4x4 rotation matrix 
that specifies the position and orientation of the scan in 
world coordinates, are also stored in the repository.   

When a new scan is acquired, the previous scan may be 
used as an input to the alignment algorithm, or sampled 
points from all previously acquired scans that overlap the 
new scan may be used.  Since the previously sampled points 
are stored for each scan in the repository, points may be 
randomly sampled from each overlapping scan in proportion 
to the amount of overlap that exists with the current scan. 
This sampling results in a composite scan that is assembled 
from all the previously acquired overlapping scans.  The 4x4 
translation and rotation matrix may then be used with the 
current scan’s matrix to project the location of the points 
sampled from each previously acquired scan into the new 
scan.   

With these correlations, the ICP algorithm may then 

proceed to align the current scan to the global population of 
collected scans.  The data management scheme that makes 
this possible is rather complex. An overview of the data 
management approach is presented in the next section. 

G. Data Management 
The data management system stores acquired scans to disk 

and RAM when specified criteria are met, indexes them 
spatially, and provides access to the logged data upon 
request.  This functionality is summarized below: 

1) Logging Scans: The process of logging a newly 
registered scan involves two steps. First, the repository must 
decide whether this new scan contains new information. If, 
for example, scans are repeatedly being taken over a 
confined area, logging the redundant scans is unnecessary. 
Once a scan has been determined to have new, non-
redundant information, it then must be logged to local 
memory as well as to disk. 

2) Retrieving Samples of Interest: In order to globally 
register a new scan to all previously logged scans, it 
becomes desirable to query the repository for previous scans 
and sampled points within a given bounding box. This 
allows the algorithm to align the newest scan using points 
from several previous scans, thereby helping to reduce 
alignment error. 

When the Scan repository is provided a bounding box 
and a number of points to collect, it divides the work among 
a hierarchical collection of spatial divisions, called scan 
cubes, which overlap the given bounding box. Each scan 
cube is queried to provide a percentage of the total number 
of samples, based on that scan cube’s current number of 
samples. 

H. Data Presentation 
The scan repository also makes retrieval of the scans for 

display straightforward.  Since the scans stored in the 
repository are a small subset of the total number of scans 
acquired, the rendering task is simplified.  We take this step 
of data reduction step further in the graphics display itself, 
decimating and converting the point clouds stored in the 
repository to polygon meshes and stitching the scans 
together at a boundary to reduce redundant data. As a first 
step, those points with low intensity values are removed 
from each scan since these values are usually less accurate 
and contain more measurement noise. 

 Once this has been done, the pixel data can be meshed 
into a grid, allowing smooth surfaces to recreate the model.  
To do the scan meshing, triangles are constructed from the 
point cloud data to form a mesh.  Choosing the first two 
pixels of a possible triangle involves traversing  the scan 
from left to right along a single row, finding the first two 
valid points (non zero range). 

The algorithm will attempt to find a third point for the 
triangle in the row below the first two valid points.  The row 
is scanned for a valid pixel and the resulting triangle is 
created.  After performing some sanity checks on the normal 
vector, the proximity of the triangles vertices, and that the 
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triangle has not been previously formed, the triangle is 
added to the mesh.  This process is repeated until all points 
have been converted to polygons. An additional pass merges 
compatible adjacent triangles and removes the redundant 
vertices, thus reducing the size of the data.  Fig. 9 shows the 
decimated vertices of  a single scan point cloud  and Fig. 10 
shows the rendered polygons associated with these vertices. 

 

 
Fig. 9 A single scan with points decimated for polygon mesh formation 

 

 
Fig. 10 The polygon mesh formed from the decimated points of Figure 8 is 

indistinguishable from the polygon mesh that uses all scan points 

Since multiple overlapping scans must be rendered in a 
coherent fashion, it is necessary to stitch the scans together. 
The first scan received from the scan repository for 
rendering is used as a base scan to which the next scans will 
be appended. A scan to be added to the base scan must first 
undergo a harsh trim process that eliminates all data that 
overlaps data from the base scan.  By traversing the new 
scan from all directions, a hole is cut out of the new scan 
mirrors the geometry of the base scan.  Then, the triangle 
forming process is executed on the new scan.   

At this point in the process the two scans still have a thin 
gap between them.  This gap is filled by a stitching 
algorithm.  During the process of trimming the new scan, its 
resultant borders and the locations where it intersects the 
valid edges of the previous scan are saved.  Each border 
point of the new scan has at least one corresponding border 
point on the previous scan.  These points are used as the 
basis to create a chain of polygons that close the gap 
between the two scans. The end result is shown in Fig. 11, 
where eleven scans have been stitched together to form a 
three-dimensional scene. 

The end result of the scan meshing and stitching process 
is an accurate model of the real-life scene, providing details 
at any viewing position.  In addition, memory storage is 

optimized.  In the final product, the total number of stored 
pixels is reduced from a possible 278,784 (11 x 25344) to an 
efficient 34,950 – a reduction of 87%.  The triangles that are 
used to represent the already efficient scene were then 
reduced by an additional 30% by the stitching algorithm. 

 

 
Fig. 11 Multiple scans merged together into a single scene.  The banded 

appearance shows the boundaries between scans that have been stitched 
together 

III. CONCLUSION 
This paper has presented the initial results of an effort to 

develop a robust real time scan alignment algorithm for use 
with the 4D high speed flash LIDAR sensors currently 
available.  Future work in this area will focus on 
improvement of the algorithm speed, efficiency, robustness 
and adaptability for improved robotic navigation and 
mapping.  
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