
Dealing with Laser Scanner Failure: Mirrors and Windows

Shao-Wen Yang and Chieh-Chih Wang

Abstract— This paper addresses the problem of laser scanner
failure on mirrors and windows. Mirrors and glasses are quite
common objects that appear in our daily lives. However, while
laser scanners play an important role nowadays in the field
of robotics, there are very few literatures that address the
related issues such as mirror reflection and glass transparency.
We introduce a sensor fusion technique to detect the potential
obstacles not seen by laser scanners. A laser-based mirror
tracker is also proposed to figure out the mirror locations in
the environment. The mirror tracking method is seamlessly
integrated with the occupancy grid map representation and the
mobile robot localization framework. The proposed approaches
have been demonstrated using data from sonar sensors and a
laser scanner equipped on the NTU-PAL5 robot. Mirrors and
windows, as potential obstacles, are successfully detected and
tracked.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is the

process by which a mobile robot can build a map of the

environment and, at the same time, use this map to compute

its location. As the SLAM problem has attracted immense

attention in the mobile robotics literature, there has been a

large variety of sensors available for performing SLAM, such

as sonar, laser scanner, infrared sensor, monocular vision and

stereo vision. The past decade has seen rapid progress in

solving the SLAM problem, and the laser scanners are at the

core of most state-of-the-art successful robot systems, such

as Sandstorm and H1ghlander [1], the autonomous vehicles

in the DARPA Grand Challenge. Due to high speed of light

and narrow beam angle, the laser scanners are appropriate

for high precision applications in the field of robotics.

The laser scanner finds the distance of a surface by timing

the round-trip time of a pulse of light. Laser scanners can

send light photons toward an object and only receive a small

percentage of those photons back via the optics that they use.

The reflectivity of an object is based upon the objects color

or terrestrial albedo. A white surface will reflect lots of light

and a black surface will reflect only a small amount of light.

Transparent objects such as glasses will only refract the

light and give the range information of an object behind

the transparent object. Mirrors, particularly, are flat surfaces

and reflect off almost all the light so that the angles of

incidence and reflection are equal. Most notably, in geometry,

the mirror image of an object is the virtual image formed

Shao-Wen Yang is with the Department of Computer Science and
Information Engineering, National Taiwan University, Taipei, Taiwan
any@robotics.csie.ntu.edu.tw

Chieh-Chih Wang is with Faculty of the Department of Computer
Science and Information Engineering, and the Graduate Institute of Net-
working and Multimedia, National Taiwan University, Taipei, Taiwan
bobwang@ntu.edu.tw

Fig. 1. NTU-PAL5 robot

by reflection in a plane mirror. The mirror image will be

formed that seems to be behind the mirror is of the same

size of the object from where the rays come from. Figure

2 shows laser range scans that illustrate the circumstances

of glasses and mirror reflection. Laser scanners can miss

obstacles which are with light-reflected or light-absorbed

materials. As addressed in [2], the detection of mirrors and

glass objects can be problematic.

Service robots will be required to run autonomously in

a variety of real environments, as illustrated in Figure 2(b),

2(d) and 2(f). As laser scanners have become the major per-

ceptual sensors, nowadays, equipped by the mobile robots,

objects such as mirrors and windows can pose a real danger

to robots with limited sensing capability, such as a robot

equipped with only laser scanners.

To make robots fully autonomous in environments with

mirrors and windows, detection and modeling of these ob-

jects are critical. Jörg [3] proposed to use laser scanner

measurements to filter out spurious sonar measurements. The

spatial information is counted and stored in an accumulated

grid map. Dudek et al. [4] introduced an approach to extract

line segments in laser scans and sonar readings.

In this paper, problems of both mirrors and windows

are addressed and integrated into the localization, mapping,

and navigation framework. We introduce a sensor fusion

technique to detect potential obstacles using sonar sensors

and a laser scanner. The spatio-temporal occupancy infor-

mation is accumulated and used to provide reliable scene

understanding. A laser-based approach is proposed to detect

and track mirrors in the environment where the geometric

property of laser light is employed. With the fusion of the

laser scanner and the sonar sensors, the mirrors and windows

can be identified and properly modeled. The solution to

the robot navigation problem in environments with mirrors

and windows is also proposed. A unified framework is
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introduced to the mapping and localization process so that

the mirror images can be eliminated. The NTU-PAL5 robot,

as depicted in Figure 1, is used as the experimental platform

which is equipped with a SICK LMS 291 laser scanner

and sixteen SensComp 600 Series Environmental Transducer

sonar sensors.

II. SENSOR FUSION

As the light can be reflected off the mirrors and penetrate

the windows, mobile robots equipped with only laser scan-

ners might not be capable to deal with the real environments.

The sonar, oppositely, is capable of detecting those objects

that the laser scanner fails. The main drawbacks in sonar

sensing are specularity, wide beam width, and frequent

misreadings due to either external ultrasound sources or

crosstalk [3]. The sonar aids the laser scanner by detecting

mirrors and windows not seen by the laser scanner, while

the laser scanner aids the sonar by retrieving more detailed

environment information.

In this paper, we propose to perform sensor fusion by

maintaining two individual occupancy grid maps [5]. Instead

of making hard decisions at every time step, the occupancy

grid maps are utilized to accumulate the temporal infor-

mation of the sensor readings. The grid maps shown in

Figure 3 are built using the data collected in the environment

with mirrors and windows. It is observed that mirrors and

windows are objects which are probable to be seen by the

sonar sensor, but less likely by the laser scanner. Let Ml

and Ms be the occupancy grid maps built using data from

a laser scanner and sonar sensors, respectively, as illustrated

in Figure 3(a) and 3(b). Each grid cell (x,y) is determined

as a potential obstacle if the following inequalities hold,

Ml
x,y < κl (1)

Ms
x,y > κs (2)

where κl and κs are pre-defined probabilities. The values of

κl and κs can be obtained according to a priori probabilities

used in the occupancy grid map representation. In our

experiments, κl is 0.05 and κs is 0.95. At every time step, the

sensor fusion map is calculated accordingly. The probability

Mx,y of the grid cell (x,y) in the sensor fusion map M is

Ms
x,y if Equation 1 and 2 hold; otherwise, Ml

x,y.

Figure 3(c) illustrates the sensor fusion map. It is clear

that most of the mirror and window locations are successfully

identified in comparison with the laser scanner map. With the

use of the sensor fusion map, the navigation of the mobile

robot can be collision-free.

However, in the sensor fusion map, mirrors and windows

make no difference. As illustrated in Figure 3(c), it is less

likely for the robot to distinguish whether the area behind

a potential obstacle is real objects or a mirror image. In

the next section, we propose an approach to accumulate the

positive information from the laser scanner and eliminate the

fake counterpart.

III. MIRROR DETECTION

In this section, we describe the method to identify the

locations that mirrors might appear using one single laser

range scan. Here we assumed that mirrors are planar. A

distance-based criterion is used to determine the gaps in a

laser scan. Once a couple of gap locations are determined,

the geometric property of mirror symmetry is used to restore

the spatial information of the reflected scan points. The

likelihood field sensor model [6] is applied to calculate the

possibility that a gap is indeed a mirror. The iterative closest

points (ICP) algorithm [7] is then utilized in representing

the mirror prediction. For those verified potential mirror

locations, an ICP-based matching technique [8] is then

applied to measure the uncertainties of the locations that the

mirrors might appear.

A. Prediction

The mirror prediction method employs the fact that the

mirrors are usually framed. In other word, the boundaries of

a mirror are visible to the laser scanner. Firstly, we define that

the gaps are discontinuities of range measurements within

a laser range scan. Let z be the measurement of the laser

range finder. A gap Gi, j is consisted of two measurement

{zi,z j|i < j} such that

zi+1 − zi > d (3)

z j−1 − z j > d (4)

|zk − zk+1| ≤ d for i < k < j−1 (5)

where zi is the i-th range measurement of the laser range

finder and d is a pre-determined constant. In our experiments,

d is 1.5 meter. The line with endpoints {pi, p j} is thus

considered to be a potential mirror where pi and p j are

Cartesian coordinates of range measurements zi and z j,

respectively, in the robot frame.

However, the proposed method can miss a mirror without

any frame. In this case, the mirror is invisible to laser

scanners. The direct solution might just explicitly enumerate

all of the possible mirrors within the environment. Since

enumeration in the continuous space is computationally

intractable, the naı̈ve implementation is to discretize the

continuous space. However, most of the enumerations are

obviously impractical and, clearly, the method is still com-

putationally intractable.

B. Verification

For each of the gap Gi, j with endpoints {pi, p j}, the set of

measurements {zi+1,zi+2, . . . ,z j−1} is restored in accordance

with the geometric property of mirror symmetry.

Let ei, j be the line with endpoints pi and p j, e0,k be the line

with endpoints pk and the origin, and pi, j,k be the intersection

point between the two lines ei, j and e0,k. The reflected point

p̃k with respect to the k-th range measurement zk is calculated

such that

ρ (0, pk) = ρ
(

0, pi, j,k

)

+ρ
(

pi, j,k, p̃k

)

(6)

∠
(

0, pi, j,k, pi

)

= ∠
(

p j, pi, j,k, p̃k

)

(7)
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(a) Laser range scan

(b) Visual image of the scene
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(c) Laser range scan

(d) Visual image of the scene
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(e) Laser range scan

(f) Visual image of the scene

Fig. 2. Environments with mirrors and windows. (a), (c) and (e) show laser range scans in the environments with mirrors or glasses which are marked
with rectangles. (b), (d) and (f) are the camera images of (a), (c) and (e), respectively, for visual reference. In (a), there is a mirror placed on the right
side of the corridor. In (c), there is a long glass on the right side of the corridor. In (e), there is a mirror pillar on the right side of the room.
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(a) Laser Scanner Map

−5 0 5 10 15 20
−20

−15

−10

−5

0

5

x−axis (m)

y
−

a
x
is

 (
m

)

(b) Sonar Map
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(c) Sensor Fusion Map

Fig. 3. Occupancy grid maps. (a) and (b) show the map obtained by using the data from the laser scanner and the sonar sensors, respectively. (c) depicts
the map obtained by fusion of the laser scanner and the sonar sensors. Rectangles show the potential obstacles not seen by using only the laser scanner.
The potential obstacles are successfully identified with the use of the sensor fusion map. However, the robot still can not distinguish the differences in the
sensor fusion map between mirrors and windows.

where ρ(·, ·) is the Euclidean distance function, ∠(p1, p2, p3)
is the angle function calculating the angle between vectors
−−→p1 p2 and −−→p3 p2 and 0 is the origin.

The likelihood ℓi, j of the reflected scan points

{ p̃i+1, p̃i+2, . . . , p̃ j−1} is then calculated. A gap Gi, j

with likelihood ℓi, j greater than or equal to ℓ is considered

probable to be a mirror Mi, j where ℓ is a pre-defined

constant probability. In our experiments, ℓ is 0.5, meaning

that a gap with at least 50% confidence is considered as

a possible mirror location. The mean and the covariance

matrix of the predicted mirror is then calculated.

C. Representation

There are several ways to represent the mirror prediction.

Intuitively, the mirror is a line segment and can be described

with the two endpoints of the mirror. The filtering algorithm

can update the endpoints with the associated mirror mea-

surement separately. However, according to the basic light

properties, whether the laser beam reflects back or reflects

off is highly relevant to the smoothness of the mirror surface
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and the angle of incidence. Therefore, the distance between

the endpoints of the mirror prediction is never longer than

the true distance. Accompanying the basic light property, the

observed endpoints are, almost surely, not the true endpoints

of the mirror. The instability of the measurements around

mirrors are illustrated in Figure 4. Therefore, instead of

storing the endpoints of the mirror measurement directly in

the state vector, we propose to represent the mirror with the

line model and store the corresponding endpoints separately.

We propose to represent mirrors as line segments. In the

state vector, line segments are represented by an angle and

the distance of the closest point on the line to the origin

of the robot frame. The endpoints of a line segment are not

placed within the state vector but stored separately. The mean

of the line segment of Mi, j with respect to the robot frame

is given as

µR
Mi, j

=

(

αR
Mi, j

λ R
Mi, j

)

=







arctan

(

ȳi, j,k

x̄i, j,k

)

√

x̄2
i, j,k + ȳ2

i, j,k






(8)

where x̄i, j,k and ȳi, j,k are x-y coordinate of the closest point

on the line to the origin.

To measure the uncertainty of a mirror prediction, we

propose to utilize the image registration technique. With the

use of the ICP-based matching technique, the covariance

matrix of the mirror measurement can be given as

Σ
R
Mi, j

=

(

σ2
α +∆θ 2 0

0 σ2
ρ +∆x2 +∆y2

)

(9)

where σα and σρ are pre-determined values of the measure-

ment noise for the covariance matrix, and ∆x, ∆y, and ∆θ

is the registration result using the ICP algorithm in which

{ p̃i+1, p̃i+2, . . . , p̃ j−1} and the whole range scan are aligned.

The values of σα and σρ can be obtained by taking into

account the modeled uncertainty sources. In our experiments,

σα is 3 degree and σρ is 0.2 meter.

Figure 5 illustrates the detection results that gaps in

the range scans are identified. With the restoration of the

reflected points, the mirrors can be discriminated.

IV. MIRROR TRACKING

In this section, we describe the method to update the

mirror locations. The mirror predictions at different time

steps are integrated using the extended Kalman filter (EKF).

As the endpoints are not stored in the state vector, the update

stage is separated into two stages: the line update stage and

the endpoints update stage.

A. Line Update

The mean and the covariance matrix of the line model is

firstly transformed into the global coordinate, which is given

as

µMi, j
=

(

αR
Mi, j

+θt

xt cos
(

αR
Mi, j

+θt

)

+ yt sin
(

αR
Mi, j

+θt

)

)

(10)

ΣMi, j
= Jxt PtJ

T
xt

+ JMi, j
Σ

R
Mi, j

JT
Mi, j

(11)

where Jxt and JMi, j
are Jacobian matrices of the line model

with respect to the robot pose xt = ( xt yt θt )T and

the line measurement, respectively, and Pt is the covariance

matrix of the robot pose. The data association is implemented

using a validation gate defined by the Mahalanobis distance.

The standard EKF process is then applied to update the mean

and the covariance matrix of the mirror estimate.

B. Endpoints Update

After the line model of a mirror estimate is updated, the

endpoints of the mirror should be updated as well. Let Mt
i, j

and Mt+1
u,v be the associated mirror measurements at time t

and t +1, {pt
i, pt

j} and {pt+1
u , pt+1

v } be the endpoints of Mt
i, j

and Mt+1
u,v , respectively, M̂t+1 be the updated mirror estimate

at time t + 1, and êt+1 be the corresponding line model of

the updated mirror estimate. We can compute the point set

P̂ = { p̂t
i, p̂t

j, p̂t+1
u , p̂t+1

v } which are the closest points from P =

{pt
i, pt

j, pt+1
u , pt+1

v } to the line êt+1.

As described in section III-C and illustrated in Figure

4, according to the basic light properties, reflection of the

laser beam at the mirror location is unstable. The observed

endpoints of a mirror are usually not the true counterparts

and thus the distance between the endpoints of the mir-

ror prediction is never longer than the true distance. We

take advantage of aforementioned a priori knowledge to

accommodate this phenomenon. The endpoints of the mirror

estimate M̂t+1 can be obtained by finding a pair of points in P̂

such that the distance between these two points is maximum,

which can be expressed as

{

p̂t+1
1 , p̂t+1

2

}

= argmaxp1,p2∈Pρ (p1, p2) (12)

where p̂t+1
1 and p̂t+1

2 are the resulting endpoints of the mirror

estimate M̂t+1.

Figure 6 illustrates the mirror tracking result that a mirror

is correctly detected and tracked.

V. MAPPING, LOCALIZATION, AND NAVIGATION

In this section, we describe the mapping, localization and

navigation problems in environments with mirrors. Without

the mirror tracking process, as the mirror images are treated

as parts of real environments, the map building and the

robot localization tasks can still be performed well. However,

the inconsistency between the real environment and the

map containing mirror images makes the robot navigation

problematic. The robots should be able to figure out mirror

images and avoid colliding with mirrors. To deal with the

phenomenon of mirror reflection, the mirror images within a

grid map should be detected and corrected accordingly. As

the occupancy grid map represents the configuration space

(C -space) of the robot, without the correction process, the

inconsistency between the map and the environment can be

problematic for robot navigation. Therefore, grid cells at the

mirror locations should be updated as occupied such that

the reliability and the safety of the robot can be ensured.

By introducing the mirror tracking technique, mirrors in the

environment are successfully detected and tracked and, at the
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(a) Scan 17
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(b) Scan 20
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(c) Scan 44

Fig. 4. In this figure, the laser scans at different time steps are shown. The scene is the same as that shown in Figure 2(b) where a mirror is placed on
the right side of the corridor. The rectangles indicate the true mirror locations. In (a), almost all of the emitting laser beams reflect back directly from the
mirror. In (b), the laser beams are missing due to the long travel distance of the light. In (c), however, the laser beams reflect off from the mirror surface.
The measurements around the mirror location are not stable due to the angle of incidence and the smoothness of the mirror surface.
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(a) Mirror detection result
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(b) Mirror detection result
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(c) Mirror detection result

Fig. 5. Mirrors are detected using the property of mirror symmetry. The robot is at the origin of the coordinate and heads towards the positive x-axis.
Dots are the raw range measurements, where the heavy dots (in red) are measurements not identified as a mirror image, and the light dots (in cyan) are
measurements with false range information due to mirror reflection. Lines indicate the predicted line models of the mirrors where the thick lines (in black)
are the verified mirror locations and the thin lines (in magenta) are those less likely to be mirror locations. Circles and crosses are the restored reflected
points with respect to the verified mirrors and predicted mirrors, respectively.

same time, the mirror estimates are used to build the map

consistent with the real environment.

A. Mapping

In the online phase, the mirrors are detected and tracked

while the SLAM process is performed. The map can be

further refined with the offline SLAM technique such as

[9]. Accompanying the post-processing process, the range

scan data can be revised such that the mirror images are

eliminated. In the offline phase, each of the measurements

with laser beam penetrates through a mirror estimate is

updated as the distance to the mirror surface.

Figure 7 and 8 illustrates the process of the offline phase.

In Figure 7(a) and 8(a), the maps of the online phase are

represented. In Figure 7(b) and 8(b), the resulting maps

after the offline phase is performed are shown where the

grid cells located behind a mirror are corrected. The false

estimates are also successfully eliminated. The less certain

mirror estimates are discarded in the offline phase and the

post-processing process only take into account the confident

mirror estimates.

B. Localization

For mobile robot localization such as Markov localiza-

tion and Monte Carlo localization, in comparison with the

above post-processing process, the pre-processing process is

required to take the mirror information into account. The

pre-processing process eliminate the mirror image within a

laser scan by applying the mirror symmetry, as described in

section III-B. The updated laser scanner measurements are

then used to perform the localization task.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

In this paper, we address the problem of mirrors and win-

dows that usually exist in our daily lives. The sensor fusion
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(a) Map before post-processing
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(b) Map after post-processing

Fig. 7. Map is refined with the use of the mirror tracking result. The scene is the same as that shown in figure 2(b). The false mirror estimates are
eliminated according to the divergence of the false estimates. (a) shows the occupancy grid map before the offline phase, where (b) depicts the occupancy
grid map after the offline phase.
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(a) Map before post-processing
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(b) Map after post-processing

Fig. 8. Map is refined with the use of the mirror tracking result. The sensor data is collected at the demo room of Taiwan Shin Kong Security, as depicted
in Figure 2(f). (a) shows the occupancy grid map before the offline phase, where (b) depicts the occupancy grid map after the offline phase.
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Fig. 6. A mirror is tracked with EKF using line feature. The occupancy
grid map of the environment is shown, where the rectangle (filled with blue)
indicates the robot pose, the lines (in red) are the line models of the mirrors,
the ellipses (in green) show the 2σ covariances of the line models, and the
thick lines (in red) indicate the mirror locations.

SLAM is presented that utilizes the information from sonar

sensors and a laser scanner concurrently. The occupancy grid

map representation is used to explore the potential obstacles

not seen by the laser scanner. The property of sonar sensors is

exploited to aid the detection of mirrors and windows. Only

with the use of sensor fusion SLAM, can the safety and

the reliability of the mobile robot be ensure. The successful

fusion is also demonstrated in section II.

Acting autonomously for the mobile robot in a wide

variety of environments is difficult, especially in environ-

ments with transparent objects, light-reflected objects or

light-absorbed objects. To the authors’ best knowledge, the

solution to the problem of mirrors and windows has not

yet been addressed before. Based on the state-of-the-art

SLAM technique, the primary contribution of this paper

is to introduce the mirror tracking framework. The mirror

detection method utilizes the property of mirror symmetry

to evaluate the possibility of a mirror prediction. The mirror

representation models the location of a mirror prediction

with the line model and stores the endpoints separately.

Localization, mapping and navigation with mirror tracking is

also presented in section V. The ample experimental results

using data from sonar sensors and a laser scanner collected

by the NTU-PAL5 robot have demonstrated the feasibility

and effectiveness of the proposed approaches.

B. Future Work

Future work will include an approach to guess the pos-

sible mirror locations based on the proposed sensor fusion

approach. Due to less precision of the sonar sensor, extracting

and reconstructing of disjointed line segments are required to

generate the mirror prediction. Also, it would be of interest

to study the special cases: multiple reflections of mirrors,

curved mirrors, and scenes with symmetric structure.

Multiple reflections and non-flat mirrors are difficult to

understand and visualize. Aside from the geometric prob-

lems, scenes with symmetric structure can be a problem as

well. The mirror behaves just as a glass placed in the proper

location within an environment with symmetric structure.

It is indistinguishable if nothing within the eyesight of the

sensors, or even our eyes, is different. It is tricky and can be

discriminated when the robot itself enters the area within its

eyesight.
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