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Abstract— Range-Only SLAM (RO-SLAM) represents a dif-
ficult problem due to the inherent ambiguity of localizing
either the robot or the beacons from distance measurements
only. Most previous approaches to this problem employ non-
probabilistic batch optimizations or delay the initialization of
new beacons within a probabilistic filter until a good estimate
is available. The contribution of this work is the formulation of
RO-SLAM as an online Bayesian estimation process based on a
Rao-Blackwellized Particle Filter. The conditional distribution
for each beacon is initialized using an additional particle filter
which, eventually, is transformed into an extended Kalman filter
when the uncertainty becomes sufficiently small. This approach
allows the introduction of new beacons without either delay
or any special non-probabilistic processing. We validate our
proposal with experiments for both simulated and real datasets.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) is one

of the central issues required for truly autonomous mobile

robots, hence the intense research effort that has been

devoted to this field in the last years. One of the most

widespread approach consists of using probabilistic tech-

niques (Bayesian inference) to estimate the robot position

and the map given the sequence of imperfect actions and

noisy observations of the robot. Specific methods have been

proposed to cope with the differences caused by using certain

map representations, e.g. landmarks or occupancy grids, or

robotic sensors, e.g. cameras or laser scanners. For a review

of many of these methods the reader can refer to [1], [15].

This paper addresses the problem of SLAM when using

range-only sensors. These devices can measure the distance

to each one of a set of artificial beacons distributed through-

out the environment, identifying them individually. There

are two important differences between range-only SLAM

(RO-SLAM) and the more common range-bearing SLAM

[2]. Firstly, in RO-SLAM we can avoid the problem of

data association since most practical devices used for range

measurement are able of distinguishing which beacon is

being detected, e.g. Ultra-Wide-Band (UWB) devices [5].

Secondly, the information provided by the measures is highly

ambiguous: in general, each measurement defines a probabil-

ity density for the potential positions of the sensed beacon,

but for a range sensor the non-negligible part of this density

has an annular shape, since the beacon is within a “ring”

with radius equal to the range measurement. To illustrate how

ambiguous this information can be, consider the motivating
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example depicted in Fig. 1, where several of these “rings”

are shown for different positions of the robot. It can be

observed how all the circles pass through the real position of

the beacon, although they do not coincide precisely due to

sensor noise. A difficult issue in RO-SLAM is the existence

of multiple, apparently consistent locations for the beacon,

as can be seen in the figure. Recall that, in SLAM, the

estimation of the position of the beacons must be carried

out simultaneously to the robot localization itself, rendering

RO-SLAM even more challenging.

Several works dealing with RO-SLAM have been reported

in the last years. In [14] the authors propose a geometric

method for adding new beacons to a map using delayed

initialization, but a partially known map is required at the

beginning. Range-only localization is addressed in [6] and

[7] under the classic EKF-based implementation of SLAM,

where the authors propose an approximation of the sensor

model inspired by the circular-shaped distributions obtained

for range sensors. They also address SLAM but assuming a

prior knowledge about the beacon locations. Sub-sea RO-

SLAM is demonstrated in [10] with good results even

with the lack of a reliable ego-motion estimation (such as

odometry for ground vehicles). The main difference with the

present work is the usage of a least-square error minimization

procedure instead of a probabilistic filter. The work in [11]

achieves RO-SLAM through a different strategy: firstly, an

initial estimation of the position of each beacon is computed

using a voting scheme over a 2D grid. An interesting

contribution of that work is a preliminary robust filtering

of outliers using a graph cut approach. Once the initial

estimation converges, a standard EKF deals with the SLAM

problem. A similar scheme is adopted in [3], where the

authors also explore the possibility of inter-beacon range
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Fig. 1. Example of how ambiguous can become the localization of a
beacon from range measurements only. For a valid position hypothesis it is
necessary a relatively large distance between the different observations.
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measurements to improve map building.

The contribution of the present work is thus a formulation

of probabilistic RO-SLAM under a pure Bayesian viewpoint

and without any additional non-probabilistic step. The usage

of a probabilistic framework is motivated by its well-known

suitability for effectively fusing information from different

sources. In contrast to many previous works, we apply a

Bayesian filter from the beginning, taking advantage of a

Rao-Blackwellized particle filter (RBPF) [4] to decouple

the estimation of the robot poses and the map. By doing

so, we can freely choose the most convenient distribution

for the beacons at each time step. We derive the equations

for adding and updating a beacon to the map as a set of

weighted samples, and then converting it into a Gaussian

only when the distribution converges to a single location.

This leads to a consistent probabilistic framework for RO-

SLAM where beacons are inserted the first time they are

observed, independently of whether the map already contains

well-localized beacons. This follows from the property of

conditional independence of the mapped beacons under the

RBPF approach ([4], [9]).

Another advantage of this approach is that we maintain

the best estimation of each beacon at each time step, and

this information is always available to improve the robot

localization. In most previous works this information cannot

be exploited until the knowledge about the beacon location

becomes sufficiently precise.

II. RBPF-BASED SOLUTION TO RO-SLAM

The purpose of a probabilistic approach to RO-SLAM is

to obtain the joint probability distribution of the robot pose

(or path) and the map, given all the available data at some

instant of time. This distribution represents our knowledge

about the robot path, the map, and all their correlations.

Motivated by the strong non-Gaussianity of the distribu-

tions found in RO-SLAM, i.e. a circular-shaped observation

likelihood, we propose to take advantage of the factorization:

p
(
xt,m|zt, ut

)
= p

(
xt|zt, ut

)

︸ ︷︷ ︸

Robot path

p
(
m|xt, zt, ut

)

︸ ︷︷ ︸

The map

(1)

to separate the representations of the robot path xt and the

map m. Robot actions and observations are denoted as ut

and zt, respectively. Note the usage of the superscript t to

designate sequences of variables from time step 1 to t.

Since we adopt a sample-based representation for the robot

path, the result is a Rao-Blackwellized particle filter (RBPF)

where a conditioned distribution of the map is stored for

each path hypothesis [4]. An important consequence of this

approach for our purposes is that, assuming independence

between the errors in the measurements, the map density

can be further factorized as:

p
(
m|xt, zt, ut

)
=

∏

l

p
(
ml|x

t, zt
l

)
(2)

with the ml being the different individual beacon positions in

the map m, and zt
l being the observations (i.e. ranges) of the

corresponding beacons. Note that the actions ut have been

dropped since they do not provide additional information.

The factorization in (2) implies the conditional independence

between the individual beacons, thus their densities are stored

separately and we can employ the kind of representation that

is most convenient at each time step without affecting either

the robot path or other beacons.

Concretely, for each beacon that is observed for the first

time, we add a new auxiliary1 particle filter (PF) to each

one of the RBPF samples in order to perform the Bayesian

estimation of the new beacon. As described in the next

section, this auxiliary PF will eventually converge from the

initial circular shape towards a small Gaussian-like shape,

and at this moment it will be replaced (without loss of the

estimated uncertainty) by a standard EKF which performs

reliably for reduced uncertainties. The switch into an EKF is

justified by the particle depletion problem that any standard

implementation of a PF eventually suffers [13].

Next we describe the general procedure to iterate the

RBPF with each new action and observation from the robot,

while the details on how to compute some important terms

are derived in the following section.

Let the set of M samples of the path be referenced as x[i],t

for i = 1...M , where each pose xt comprises a 2D location

plus a heading. These samples have associated importance

weights ω
[i]
t and are approximately distributed according to

the path posterior, i.e. the left part of the product in (1).

As it is common in SLAM, we initialize the filter without

any prior knowledge, thus the robot starting location can be

arbitrarily taken as the coordinate origin, that is, x0 = 0.

For each time step, new particles are drawn using the robot

motion model, which in our case is derived from odometry

readings, that is, x
[i]
t ∼ p(xt|x

[i]
t−1, ut). Next, importance

weights are updated as:

ω
[i]
t ∝ ω

[i]
t−1p

(

zt|x
t,[i], zt−1

)

(3)

for which we need a probabilistic observation model, derived

in the next section. If necessary, the particles may be resam-

pled to preserve the diversity of the representation. This is

typically performed whenever the effective sample size falls

below a given threshold [8]. After updating the estimate of

the robot path, the corresponding conditional distributions of

the map must be also updated to account for the new range

readings, as discussed later on.

Although it is not strictly necessary, in order to simplify

the exposition we will assume coplanarity between all the

beacons and also that the robot moves over a 2D surface

from which all the beacons are at a fixed height. Any of

these restrictions can be straightforwardly removed from

our method at the cost of an increase in the computational

burden.

III. IMPLEMENTATION OF THE RBPF

This section describes the two probabilistic representations

of beacons in the map (PF and EKF), and how to compute

1We denote these filters as auxiliary to avoid confusion with the main
RBPF. Note that this term is not related at all to the auxiliary particle filters

introduced in [12].
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Fig. 2. A comparison of the observation model as computed using
the Monte Carlo (MC) (central column) and the EKF (right column)
approximations. These two columns represent the observation likelihood as
an intensity image over the 2D plane of robot positions, where brighter gray
levels correspond to higher values of the likelihood. Each row illustrates a
situation with a different level of uncertainty in the beacon localization,
represented in the left column. The probability density of the beacon
position is depicted in the two forms considered in the text: as a set of
samples, and as a Gaussian, in this case computed to fit the samples.
Taking the MC approximation as the reference, it can be observed how the
EKF approximation performs poorly when the uncertainty in the beacon
position becomes excessively large, assigning low likelihood values to the
real location of the robot (the origin).

the observation model and update the map for each of those

two forms.

A. Observation Model for the Path Estimate

We assume that the range sensor provides measurements

zt corrupted with additive zero-mean Gaussian noise vt with

a variance σ2
r , that is:

zt = b (|xt − m|) + vt (4)

where the function b(·) can be used to emulate transfor-

mations to the real distance between the sensor and the

beacon, given by |xt − m|. For example, it could be used

to compensate the systematic error or bias of the device. In

this work we assume for simplicity that b(d) = d. Note that

we omit the beacon index l for clarity in the notation, thus

the symbol m will represent a single beacon, not the whole

map.

Also notice how the observation model in (4) requires a

concrete value for the beacon position m, whereas we only

have a distribution of its potential values (recall that at this

level there is no uncertainty about the robot path, since the

distributions are conditioned a given path hypothesis). In

other words, the uncertainty in the location of the beacon

becomes uncertainty in the expected range, and thus its

density is given by:

p(zt|x
t,[i], zt−1) =

∫

p(zt|x
[i]
t ,m)p(m|xt−1,[i], zt−1)dm

(5)

Observe that the second term within the integral corre-

sponds to the map hypothesis for each RBPF particle. At

this point we can find three different situations depending

on the state of the beacon within the i’th particle:

(a) The beacon is not present in the map. This will happen

whenever a beacon is observed for the first time. In this

case the observation likelihood can be set to any arbitrary

constant p(zt|x
t,[i], ·) = η, since it will have no effects on

the estimation of the path: there are no previous references

of that beacon that could improve the knowledge about the

robot location.

(b) The beacon is represented by an auxiliary particle filter.

Then the location of the beacon is approximated by a set of

N samples m[i,k] with weights β[i,k] for k = 1...N . In this

case the integral in (5) becomes a sum:

p(zt|x
t,[i], zt−1) =

=

∫

p(zt|x
[i]
t ,m)

N∑

k=1

β[i,k]δ(m − m[i,k])dm

=

N∑

k=1

β[i,k]p(zt|x
[i]
t ,m[i,k]) (6)

=

N∑

k=1

β[i,k]N (zt;
∣
∣
∣xi

t − m[i,k]
∣
∣
∣ , σ2

r)

where the last step (replacing the observation model by

a Gaussian) follows from the definition in (4) since the

observation, conditioned to some known hypotheses of the

robot pose and the beacon, only conserves the randomness

owed to the Gaussian noise with variance σ2
r .

(c) The beacon is already represented by a Gaussian, that

is, p(m|xt−1,[i], zt−1) = N (m; m̂t, Pt), with m̂t and Pt

standing for the mean and the covariance matrix, respec-

tively. Since the Gaussian representation will be used only for

reduced uncertainties in the beacon position, it is acceptable

here to employ a first-order propagation of the uncertainty

from the beacon to the observation zt:

p(zt|x
t,[i], zt−1) = N (zt|ẑt, σ

2
t )

ẑt =
∣
∣xi

t − m̂t

∣
∣ (7)

σ2
t = HPtH

T + σ2
r
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where the matrix H is the Jacobian of the function in (4)

with respect to the beacon coordinates.

Up to this point, we have defined how to compute the

observation likelihood term for the two possible representa-

tions of a beacon in the map: a set of Monte Carlo samples,

and a Gaussian. To clarify and motivate this distinction, we

show in Fig. 2 some examples for the computation of the

observation likelihood in three different scenarios, each one

corresponding to a row in the figure. The left charts depict the

real position of the robot and the current knowledge about the

beacon in the two forms: a set of samples, and the Gaussian

computed to fit the samples. A remarkable observation

is how both representations lead to a similar observation

likelihood when the uncertainty is small (first row), while

the output of the Gaussian approximation degenerates as the

the uncertainty becomes larger. For example, in the third row

we have beacon samples distributed along a 180◦ arc, giving

a clearly defined peak of the likelihood at the true robot

position. In contrast, the Gaussian approximation assigns

higher values to a wide area of the state space but a null

value to the actual robot pose. This is a clear consequence

of the mismatch between the actual distribution of the beacon

and the fitted Gaussian, as observed in the left-bottom chart.

B. Map Update

In this section we address how to initialize and update the

densities for each beacon in the map, which correspond to

the map part of the factorization in (1).

By applying the Bayes rule and the definition of condi-

tional probability, it can be shown that our estimation of the

map m given the new data available at each time step (xt

and zt) is described by:

p(m|xt, zt)
︸ ︷︷ ︸

Posterior

∝ p(m|xt−1, zt−1)
︸ ︷︷ ︸

Prior

p(zt|m,xt, zt−1)
︸ ︷︷ ︸

Sensor model

(8)

To follow the evolution of the probabilistic representation

of the beacon, assume that a new beacon is detected at some

instant of time t (not necessarily at the first time step).

Then, according to (8) we must multiply the prior belief

with the observation likelihood, but due to the absence of

any previous knowledge about the beacon it is reasonable to

assume an uniform distribution over the whole state space

of m. Thus, the first time a beacon is observed (8) reduces

to computing p(m|xt,[i], zt) = p(zt|m,x
[i]
t ) (note how m is

the only free variable). Here we initialize the Monte Carlo

representation of the beacon density by drawing samples

m[i,k] along the circle centered at x
[i]
t at any direction in the

whole 360◦ range and at a distance of zt plus the additive

random noise – refer to Fig. 4(a) for an example. Since

these samples are distributed following exactly the target

distribution, we assign them equal initial weights β[i,k]. The

number N of particles to generate at this point is a crucial

parameter of our approach: too few particles may lead to

a wrong estimation, while an excessive number increases

the computational burden. We have obtained good results in

different scenarios using the heuristic rule N = α ·zt, where

α can vary between 400 and 2000. We must remark that, if

the first observation of a beacon is an outlier, our approach

will fail in correcting its position, thus we assume in this

work that outliers have been already discarded.

In subsequent observations of the beacon, these samples

are modified to implement the recursion in (8). It can be

easily shown that the Bayesian update becomes a change in

the weights of these samples as:

β
[i,k]
t ∝ β

[i,k]
t−1 p(zt|x

[i]
t ,m[i,k]) (9)

Note that the rightmost term was already computed in (6),

thus it does not need to be computed again. Moreover, we

have observed that, if the robot is moving, a large part of the

particles are quickly assigned negligible weights after a few

iterations, thus they can be removed from the set to reduce

the computational cost. In our implementation we drop

particles with weights below 10−5 times the highest weight.

This simple strategy reduces the computational burden of

our method and leads to a practical implementation, as

demonstrated in the experimental results.

As new observations are fused into the map, the beacon

estimates will eventually converge towards small areas of the

space where most likely the beacons should be found. The

test we have applied to check whether a given distribution

should be transformed into a Gaussian is to obtain the

covariance matrix computed from all the samples m[i,k] and

then check whether the major axis of the corresponding

ellipsoid is below a given limit. This is implemented as a

threshold for the largest eigenvalue of that covariance matrix.

The threshold value should be selected to be a few times

smaller than the sensor standard deviation (σr) in order to

assure the quality of the linearized approximations assumed

for the Gaussian.

Finally, the update of the beacon distribution in Gaussian

form is performed through a standard EKF, linearizing over

the range observations zt.

IV. EXPERIMENTAL RESULTS AND SIMULATIONS

In this section we will firstly validate our proposal with

experimental results from a real robot equipped with range-

only sensors. Next we discuss the results from simulated data

to demonstrate the possibility of adding new beacons at any

instant of time. They are also described the typical evolution

of the RBPF and the differences in the computation burden

between time steps. We encourage to also view the online

video2 for these experiments.

A. Real robot dataset

We have applied the method proposed in this work to a

dataset gathered by a real robot while it moves, controlled by

a human, throughout a room traversing an overall path of 30

meters. For this experiment we have installed three “PulsON”

Ultra-Wide-Band (UWB) devices from TimeDomain as static

beacons in the walls at a fixed height, in order to enable the

coplanarity assumption. The mobile robot is equipped with

a fourth device which actively requests the distance to the

2Available in http://www.youtube.com/watch?v=CcW2D4kN3E4.
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Fig. 3. Experimental results for the real dataset. (a) A snapshot of the environment where the data have been gathered, highlighting the location of the
three UWB beacons. (c)–(e) The state of the filter at different time steps, with the beacons being labeled as #1, #2, and #3. Observe how all the beacons
have been well-localized before the robot moves one meter from the beginning.

TABLE I

Distance Ground truth Estimation Error (%)

B1↔ B2 9.913 m 10.282 m 3.6%
B1↔ B3 4.350 m 4.676 m 7.0%
B2↔ B3 6.346 m 6.520 m 2.7%

others in a timely fashion. Refer to Fig. 3(d) for a snapshot

of the experimental setup. The range information from the

UWB devices is synchronized to the robot odometry, which

will be used as input to the probabilistic motion model in

the RBPF.

In the first iteration of our method, the three beacons

are initialized as samples distributed in a ring-like shape,

as plotted in Fig. 3(e). It can be seen how these distributions

quickly converge to the most likely positions of the beacons:

after 45 iterations the uncertainty in the three beacons has

been drastically reduced, as can be observed in Fig. 3(h).

The evolution of the mean value of the 2D coordinates

of each beacon and the associated uncertainties are also

plotted in Fig. 3(a)–(c), respectively. Note that the maps

represented in this section are always those ones associated

to the particle with the highest weight in the RBPF, which

in this experiment comprises of 100 samples.

These results show that the RBPF obtains an estimate of

the beacon locations with the uncertainty decreasing as new

measures are considered, but it should be also verified that

the different distributions converge to the actual locations

of the beacons. However, in practice it is difficult to obtain

reliable measurements of the absolute beacon coordinates.

Alternatively, we have measured the relative distances be-

tween the beacons, which are compared in Table I to the

corresponding values for the final estimate of our method.

B. Simulated Data

We also present the results of our method for a simulated

dataset with the purpose of demonstrating the ability of

incorporating new beacons at arbitrary instants of time,

and to show how the computational burden varies as the

probabilistic representations of the beacons change within

the filter.

For this experiment we have simulated range readings for

15 static beacons as the robot describes a circular path. A

maximum detection range of 5 meters has been forced into

the simulated sensor to allow the robot to discover new

beacons as it moves. Measurements are also corrupted by

a Gaussian noise with σr = 0.03m. The evolution of the

filter is summarized in Fig. 4(a)–(d) at different time steps.

In this case we can compute the absolute errors in the beacon

localization, which are plotted in Fig. 4(e). All the beacons

converge to a final error smaller than 0.1 meters.

We should remark how the beacon labeled as #10 takes

a long time to converge since it comes out of the detection

range of the robot, but it quickly converges after the robot

approaches again (observe the abrupt decrease in the beacon

error in Fig. 4(e) at step 60). As an example of a beacon

added to the map some time after the beginning, consider

the beacon #12, added at time step 26. This beacon still

presents a clear ring-shaped distribution in Fig. 4(c) while

most of the others have already converged.

The computation time required by each iteration of our

method depends on how many beacons are observed and

their representation in the RBPF particles: for the sample-

based representation the time consumed is proportional to the

number of samples, while for the Gaussian representation a

fixed time is required to update the EKF. In the typical case

of several samples in the auxiliary particle filters (e.g. more

than 100), their update requires more time than in the case of

the Gaussian representation. However, since the number of

samples in the distribution of the beacons can decrease with

new observations (recall section III-B), the time consumption

smoothly decreases from a maximum (after inserting new

beacons in the map) to the point when the auxiliary particle

filter is replaced by an EKF. This pattern can be clearly

observed in the graphs Fig. 4(e)–(f).

V. CONCLUSIONS

In this work we have analyzed the specific hurdles found

in SLAM based solely on range measurements, as opposed

to the more common case of range and bearing SLAM. We

have maintained that a pure probabilistic, Bayesian solution

is more desirable than other batch processing techniques

due to its capability of consistently fusing information from

different observations taking into account the associated

uncertainty. A solution based on a RBPF has been proposed

due to its ability for keeping the conditional distributions
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Fig. 4. Experimental results for the simulated dataset. (a)–(d) Four snapshots of the state of the RBPF at different time steps, where the beacons are
labeled as #0,...#14. It can be appreciated the “ring” shape of the distribution for all the beacons initialized at the first iteration, which quickly converge
towards the true beacon positions. (e) The errors from the mean estimate of each beacon and the ground truth. (f) The computation time at each time step.

separately, which is a great advantage in RO-SLAM since we

can then initialize the distribution of the beacons as auxiliary

PFs and convert them into EKFs when this becomes a

better choice. As demonstrated with experimental results, our

method has a high computational burden in the first iterations

after the addition of new beacons, but it quickly becomes

more efficient as the auxiliary particles are removed. As

a result, we have an average execution time below 0.1s

per iteration in some cases, rendering our method capable

of online execution. Future research will address further

improvements in efficiency and a more realistic management

of outliers.
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