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Abstract— In this paper, we introduce an alternative solution
to the Bearing-only Mapping problem in which a mobile robot
builds a map of features (landmarks) using only relative
bearing measurements to them and odometry information.
Our approach named BOM-STMDS (Bearing-Only Mapping
by Sequential Triangulation and Multi-Dimensional Scaling)
first tries to estimate relative distances among the features,
then finds two-dimensional coordinates of all features by using
multi-dimensional scaling (MDS) and its enhancements. BOM-
STMDS is different from the conventional BOSLAM methods
based on Bayesian filtering in that robot self-localization is not
mandatory. Another remarkable property is that BOM-STMDS
is able to utilize prior information about relative distances
among features efficiently. In the experiment, the performance
of BOM-STMDS is shown to be competitive with a conventional
EKF-based BOSLAM method.

I. INTRODUCTION

In recent years, a number of studies(e.g.[5], [4], [2]) have
been made on Bearing-only SLAM (BOSLAM), which is a
problem of estimating both positions of features (landmarks)
and robot itself simultaneously, using only relative bearing
measurements to the features and odometry information of
the robot’s motion. A conventional approach to BOSLAM
can be described as follows. First, prepare motion and
measurement models which contain robot’s pose and po-
sitions of all features as the state variables, and relative
bearing measurements to the features as the observation
variables. Then, apply some Bayesian filtering method such
as Extended Kalman Filter (EKF) to update sequentially the
estimates of the state variables.

On the other hand, in this paper, we propose an alternative
solution to the bearing-only mapping (and also BOSLAM),
which is named Bearing-Only Mapping by Sequential Tri-
angulation and Multi-Dimensional Scaling (BOM-STMDS).
In BOM-STMDS, the robot first attempts to estimate the
relative distances among the features sequentially using the
bearing measurements and odometry information at each
time step, then reconstructs the coordinates of the features
by applying enhanced versions of multi-dimensional scaling
(MDS) to the matrix of inter-feature distances. This two-
step estimation procedure is significantly different from
the ordinary SLAM methods which estimate the feature
locations and robot pose directly from the measurements.
The most remarkable feature of BOM-STMDS is that robot
self-localization is not mandatory (but optional), whereas
mapping and localization are inseparable in the conventional
SLAM methods.
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The motivation for considering yet another bearing-only
mapping method other than the traditional SLAM techniques
mainly comes from our observation about the robot map
building in practice that some relative distances among
features are often known in advance and desire to make the
best use of such prior information. For example, imagine
a situation where a robot is about to build a map of a
room containing several pieces of furniture whose sizes and
shapes are known but their locations and orientations are
not. If we applied the conventional SLAM method based on
Bayesian filtering, we would have to prepare special motion
and measurement models containing not only the center
locations but also the orientations of furniture pieces as the
state variables, or otherwise would have to impose geometric
constraints on the locations of features (such as corners of a
desk) and solve the constrained optimal estimation problem.
Either of them requires a very complicated modification
to the basic SLAM procedure. In contrast, BOM-STMDS
can utilize such prior knowledge easily and consistently by
transforming it into the information about relative distances
among specific features.

The rest of this paper is organized as follows. In section II,
we will briefly review the related work on mobile robot map
building including BOSLAM. In section III, we will describe
the principles of the proposed method, such as sequential
triangulation, updates of inter-feature distance matrix, and
reconstruction of feature coordinates by multi-dimensional
scaling. In section IV, we will demonstrate how the proposed
method actually works by a simulation study. Finally, in
section V, we will conclude with a summary and future work.

II. RELATED WORK

A. SLAM

In the last decade, SLAM (simultaneous localization and
mapping) based on the probabilistic modeling (or state space
models) and Bayesian filtering has been the mainstream
of mobile robot map building research[12]. In the general
framework of SLAM, motion and measurement models
containing robot’s pose and features’ positions as state vari-
ables are prepared beforehand. Then, those state variables
are sequentially estimated from obtained measurements by
applying Bayesian inference techniques to the models. As
is widely known, several approaches have been developed
for solving this SLAM problem, including EKF[8], alternate
estimation by EM algorithm [13], and Rao-Blackwellized
particle filter[10].

Recently, Bearing-only SLAM (BOSLAM) has drawn
much attention in this field, mainly due to the requirement
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of performing SLAM only with inexpensive sensors such
as monocular cameras(e.g.[5], [4], [2]). Although BOSLAM
poses several challenges such as landmark (feature) initializa-
tion problem because of the insufficient information of single
bearing measurement, it is still based on the ordinary SLAM
framework above. Actually, Bekris et.al.[2] have compared
a variety of existing SLAM techniques in BOSLAM setting,
and reported that Rao-Blackwelized particle filters are faster
and more robust than others.

B. Embedding Approach

The SLAM framework, as seen above, inherently focuses
on the spatial relationships between the robot’s poses and
features’ locations. In contrast, there are other approaches
to the map building problem focusing on the spatial re-
lationships among the features themselves, rather than the
robot-features relationships. In other words, they attempt to
construct a global map by merging and embedding pieces
of information of local spatial relationships among features
which are obtained by observations. Intuitively, this process
is similar to putting puzzle pieces together into a picture.
For example, local map alignment by Lu and Millios[9]
and relaxation by Duckett et.al.[7] are representative map
building techniques based on this idea.

On the other hand, the authors have proposed methods of
building feature-based maps by applying multi-dimensional
scaling (MDS) and related techniques to the inter-feature
distance matrices which are estimated from covisibility[16]
and similarity of observation history[15]. While these meth-
ods also focus on the relationships among features rather
than robot-features relationships, they are more distinct from
SLAM in that they do not require robot localization.

The proposed method in this paper can be regarded as a
special case of the authors’ previous studies in which the
inter-feature distance matrix is estimated from bearing mea-
surements to the features and robot’s odometry information.

III. PROPOSED METHOD - BOM-STMDS

In this section, we describe the proposed method named
Bearing-only mapping by sequential triangulation and multi-
dimensional scaling (BOM-STMDS).

A. Problem Definition and Outline

We hereafter use the following notation.

• Fi, xFi : i-th feature (landmark), and its 2-dimensional
coordinates

• Rt, xRt : Robot’s position at time t, and its 2-
dimensional coordinates

• dFi,Fj : Distance between Fi and Fj

• θi,t : Relative bearing measurement to Fi at time t
• lt : Measurement of distance the robot moves from time

t − 1 to t
• φt : Measurement of change in heading direction from

time t − 1 to t
• yt ≡ [lt, φt, θ1,t, . . . , θN,t]T : Measurement vector at t.

Figure 1 illustrates an “ideal” relationship among them,
assuming there are no measurement errors in lt, φt, θi,t−1,

Fig. 1. Ideal relationships among measurements and positions of features
and robot

θj,t−1, θi,t, and θj,t. Note that these measurements are sub-
ject to errors and sometimes missing in the real environment.

Bearing-only mapping (BOM) is defined as a problem
of finding 2-D coordinates of all features {xFi}i=1,...,N ,
for given measurements {yt}t=1,...,T up to time T . In
BOSLAM, not only features’ positions, but also robot’s
position at each time step {xRt}t=1,...,T is required to be
estimated.

The process of map building by BOM-STMDS is summa-
rized as follows:

1) First, in Sequential Triangulation step (III-B), for each
pair of features Fi, Fj , an instantaneous estimate of
squared distance d̂2

Fi,Fj |t with its variances σ̂2
Fi,Fj |t is

computed from two successive bearing measurements
to the features {θi,t−1, θi,t, θj,t−1, θj,t}, and odometry
readings {lt, φt}.

2) Next, in Distance Update step (III-C), for each pair of
features, d̂2

Fi,Fj |t is merged with d̂2
Fi,Fj|1:t−1 (filtered

estimate up to the previous time step), and a new
estimate d̂2

Fi,Fj |1:t is obtained.
3) Finally, in Coordinates Reconstruction step (III-D),

estimates of feature positions {x̂Fi|1:t}i=1,...,N are
found by applying multi-dimensional scaling (MDS)
to the set of estimated inter-feature squared distances
{d̂2

Fi,Fj |1:t}i,j=1,...,N .
Figure 2 and Table 1 illustrate the outline of BOM-

STMDS. In the rest of this section, we will explain these
processes in detail.

B. Sequential Triangulation

In Figure 1, consider a local coordinate system whose
origin is located at Rt−1 and x-axis is aligned with the vector
from Rt−1 to Rt. When we assume there are no measurement
errors, the location of a feature Fi in this local coordinate
system can be represented in terms of two successive bearing
measurements θi,t−1, θi,t and odometry readings lt, φt as,

xRt

Fi
=

sin(φt + θi,t) · lt
sin(φt + θi,t − θi,t−1)

[cos θi,t−1, sin θi,t−1]
T (1)

This is the well-known principle of triangulation. In this
paper, we call it sequential triangulation because it is per-
formed every time the robot moves to a new position. Using
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Fig. 2. Sketch of BOM-STMDS

Algorithm 1 Outline of BOM-STMDS
Initialize map and distance matrix
for t = 1 to T do

Move to next position and obtain odometry information
and bearing measurements
for i, j = every pair of visible features do

Perform sequential triangulation (III-B)
Update estimates of inter-feature distances (III-C)

end for
Estimate robot-features distances (opt., III-E)
Approximate missing distances if necessary (III-D.1)
Perform classical scaling (III-D ) or SMACOF (III-D.2)
to estimate the map (and trajectory)

end for

this equation, distance between two arbitrary features dFi,Fj

can be easily computed. As actual bearing measurements and
odometry readings are subject to measurement errors, we
denote the instantaneous estimate of the squared distance at
time t by d̂2

Fi,Fj|t.
Next we consider the estimated variance of d̂2

Fi,Fj|t which
is denoted by σ̂2

Fi,Fj |t. If the covariance matrix of the partial
measurement vector [lt, φt, θi,t−1, θi,t, θj,t−1, θj,t] is given as
Σi,j,t, σ̂2

Fi,Fj |t can be approximated to the first order using

the Jacobian Ji,j,t ≡ [
∂(d̂2

Fi,Fj |t)
∂lt

,
∂(d̂2

Fi,Fj |t)
∂φt

, . . .] as,

σ̂2
Fi,Fj|t = Ji,j,tΣi,j,tJ

T
i,j,t (2)

Intuitively, the variance σ̂2
Fi,Fj|t implies the magnitude of

estimation error in d̂2
Fi,Fj |t.

It should be noted that an estimated (squared) distance
between features is independent of the local coordinate
system or trajectory of the robot. Thanks to this property, the
update process of the distances becomes easy as explained
later.

C. Update of Distance Estimates

We assume that the estimation error of a squared distance
between features at each time step ei,j|t = d̂2

Fi,Fj |t−d2
Fi,Fj

(t = 1, . . . , T ) is independent of each other. We denote the
estimates of squared distance of a pair of features and its
variance estimated taking all measurements up to time t by
d̂2

Fi,Fj|1:t and σ̂2
Fi,Fj |1:t, respectively.

Now consider an instantaneous distance estimate
d̂2

Fi,Fj |t+1 and its variance σ̂2
Fi,Fj |t+1 are obtained at

the next time step t + 1 by the sequential triangulation
technique described above. Then a reasonable update rule
of d̂2

Fi,Fj |1:t+1 and σ̂2
Fi,Fj |1:t+1 are given as below:

σ̂2
Fi,Fj |1:t+1 = (σ̂−2

Fi,Fj |1:t + σ̂−2
Fi,Fj |t+1)

−1 (3)

d̂2
Fi,Fj |1:t+1 = σ̂2

Fi,Fj|1:t+1 · (σ̂−2
Fi,Fj |1:t · d̂2

Fi,Fj |1:t

+ σ̂−2
Fi,Fj|t+1 · d̂2

Fi,Fj |t+1) (4)

This update rule is optimal in the sense that it minimizes the
estimated variance σ̂2

Fi,Fj |1:t+1.

These equations mean that d̂2
Fi,Fj|1:t+1 is the weighted

average of d̂2
Fi,Fj |1:t and d̂2

Fi,Fj|t+1, where the weights are
inverses of corresponding variances. Interestingly, this update
rule can be viewed as a reduced form of Kalman filtering for
the estimation of the squared distance between two features.

Moreover, when prior information on the relative distances
between a specific pair of features is given, it can be utilized
directly by setting the initial estimates d̂2

Fi,Fj |0 and σ̂2
Fi,Fj |0

properly. In a later experiment, it is shown that use of such
prior knowledge contributes to a significant improvement in
the estimation accuracy.

Now we define the estimated squared distance matrix
(ESDM) ∆F |1:t whose (i, j) element is given by d̂2

Fi,Fj|1:t.
That is to say,

∆F |1:t ≡




0 d̂2
F1,F2|1:t · · · d̂2

F1,FN |1:t
d̂2

F1,F2|1:t 0 · · · d̂2
F2,FN |1:t

...
...

. . .
...

d̂2
F1,FN |1:t d̂2

F2,FN |1:t . . . 0



(5)

D. Coordinates Reconstruction by Multi-dimensional Scal-
ing

The problem of finding coordinates of “items” in a low
dimensional space given a matrix of dissimilarities between
them is known as multi-dimensional scaling (MDS), and
a variety of techniques to solve this problem have been
developed[3]. In our case, if the squared distances between
all pairs of features are given, in other words, if ∆F |1:t has
neither missing elements nor outliers, classical scaling which
is the most famous and fundamental MDS technique can be
used. Given a dissimilarity matrix (squared distance matrix)
D, classical scaling finds a coordinate matrix of items X
by performing an eigendecomposition of the inner product
matrix B, which is computed by double centering D[3].
An advantage of using classical scaling is that its solution is
guaranteed to globally minimize a loss function called Strain.

A drawback of classical scaling, on the other hand, is
that it is not able to deal with missing elements in the
dissimilarity matrix directly. Obviously, this is a serious
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problem for us, because in the real environment it is very
likely that some part of the relative distances between the
features {d̂2

Fi,Fj |t} are not obtained directly by the sequential
triangulation due to various constraints. For example, the
distance between two features which are very far from each
other or occluded by an obstacle is likely to be missing or
too inaccurate.

To overcome this limitation of classical scaling, we pro-
pose two approaches – (1) completion of missing or inaccu-
rate elements in the distance matrix by shortest path lengths,
and (2) use of another MDS technique called SMACOF. We
will explain them in detail.

1) Distance Matrix Correction by Shortest Path Lengths:
The idea of the first approach is to apply the ordinary
classical scaling to a “repaired” distance matrix ∆′

F |1:t
whose missing and deteriorated elements are completed by
approximated values using available inter-feature distance
information.

More specifically, the approximation of missing distances
is performed as follows. First, we consider an undirected
graph whose vertices represent the features. In this graph, an
edge between two features Fi and Fj is present if the squared
distance between them d2

Fi,Fj
is properly estimated. Then,

we approximate the missing distance between each pair of
features by the shortest path length from one to the other on
that graph. The shortest paths among features on the graph
can be found efficiently by Floyd-Warshall algorithm. We
call this technique Distance Matrix Correction by Shortest
Path Length (DMC-SPL) in this paper.

DMC-SPL is basically the same technique introduced in
ISOMAP[11] which is a non-linear dimensionality reduction
method, while the purpose of the latter is not to estimate
missing distances, but to approximate geodesic distances on
a non-linear manifold in a high-dimensional data space.

Using DMC-SPL with BOM-STMDS has an advantage
that the ordinary classical scaling is applicable without
modification, once the estimated squared distance matrix
is corrected, which means the global optimum solution is
always guaranteed. A major drawback of DMC-SPL is that it
is an off-line algorithm. Basically, all shortest paths and their
lengths need to be recomputed every time a new estimate
of distance between a pair of features is obtained by the
sequential triangulation.

2) SMACOF with Weighted Distance Matrix: Another
reasonable way to deal with the missing elements in the
estimated squared distance matrix is to ignore the miss-
ing distances and try to find a set of feature coordinates
that satisfy only available inter-feature distances well. This
idea can be implemented straightforwardly by defining an
appropriate loss function with weight coefficients {wi,j}
where wi,j is set to 1 if the distance between Fi and Fj

is known and reliable or 0 otherwise. The loss function will
be minimized in terms of the feature coordinates by means
of some optimization techniques such as gradient methods.

In this study, we chose SMACOF algorithm[6] among a
number of MDS methods using loss functions of this type,
because of its performance and efficiency. In SMACOF, the

loss function named raw stress as below is locally minimized
by iterative majorization technique.

Lsma(X) =
∑
i<j

wi,j(d̂Fi,Fj |1:t − ‖x̂Fi − x̂Fj‖)2 (6)

Compared with DMC-SPL (together with classical scaling),
it is easy to modify SMACOF into an on-line algorithm
as it is inherently an iterative process. A critical issue for
SMACOF, however, is whether a “good” initial solution is
given or not, because the optimization process is guaranteed
to find only a local minimum.

In the later experiment, we applied SMACOF to the
estimated distance matrix with an initial solution which is
computed by the classical scaling together with DMC-SPL.

E. Robot Localization

As we have seen so far, BOM-STMDS does not necessar-
ily require the self-localization of the robot. While this is the
most remarkable characteristic of BOM-STMDS compared
with the conventional BOSLAM methods based on Bayesian
filtering, it is possible to enhance our method to estimate the
robot positions as well in a natural way.

This modification is achieved by expanding the estimated
squared distance matrix of Equation 5 so that it contains
the distances among the features and the robot positions in
the last p-steps. Specifically, the extended estimated squared
distance matrix ∆E|1:t is defined as,

∆E|1:t ≡
[

∆F |1:t ∆FR|1:t
∆FR|1:t

T ∆R|1:t

]
(7)

where, ∆R|1:t denotes the squared distance matrix among the
last p positions the robot have visited which is estimated from
the odometry readings, and ∆FR|1:t denotes the squared
distance matrix between the last p robot positions and N
features.

Although ∆FR|1:t is likely to have a number of missing
elements, the two techniques mentioned previously are ap-
plicable without modification.

IV. EXPERIMENT

We conducted several experiments to evaluate the pro-
posed method - BOM-STMDS in a simulated environment.

A. Experimental Setup and Evaluation Procedure

The simulated environment is a square region whose side
length is 2.5[m] containing N = 50 randomly placed fea-
tures. At each time step, the robot moves to the next position
according to the randomly chosen lt and φt, then obtains a
set of relative bearing measurements to recognizable features
{θi,t}.

In this experiment, we simulated the observation uncer-
tainty by adding Gaussian noises to the ideal measurements
of lt,φt,θi,t. The standard deviations of the noises are σl =
0.03[m], σφ = 3[deg], and σθ = 3[deg], respectively.
In addition, we assumed that the sensor range is limited
and each feature is recognizable only if it is within the
distance of 1[m] from the robot position. This means that
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(a) An example of ground
truth map of features
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(b) An example of robot’s
trajectory (50 steps)

Fig. 3. An example of environment and trajectory

the estimated squared distance matrix ∆F,1:t necessarily
contains a number of missing elements.

Figure 3 shows examples of ground truth map of features
(left) and robot trajectory (right). We conducted 25 runs
by randomly setting the initial robot position 5 times for
5 different layout patterns. Each run consists of 300 steps.
Note that the map was update every 10 steps, whereas the
distance matrix was updated every step.

Evaluation of an estimated map and trajectory is a little
awkward, because the coordinate systems for the ground
truth map and estimated map are not necessarily the same.
Therefore, we evaluated the accuracy of estimated posi-
tions of the features and robots after applying a coordinate
transformation of translation, rotation and reflection to the
initially obtained map so that it minimizes the sum of squared
positional errors of all features.

B. Experiment 1 : Mapping without Localization

The purpose of the first experiment is to examine the
performance of BOM-STMDS in its basic form without self-
localization. In this experiment, we compared two methods
of reconstructing the feature coordinates from the estimated
squared distance matrix with missing elements :

[Method 1] : Classical scaling with DMC-SPL (III-D.1)
from the beginning to the end.

[Method 2] : Same as [Method 1] before 40 steps, then
SMACOF with weights (III-D.2) after 50 steps.

t = 50 was chosen for the timing for switching in [Method
2] because all features were observed at least once by that
time in all 25 runs.

Figure 4 shows how mean position errors (MPEs) change
along with the time. MPEs at t = 300 in the two cases are
4.78[cm] (Method 1) and 2.87[cm] (Method 2), respectively.
It is considered that this difference in accuracy is caused
mainly by the difference in the loss functions of classical
scaling and SMACOF (See [14] for detail).

C. Experiment 2 : Simultaneous Localization and Mapping

Next, we examined the case of estimating not only feature
positions but also robot positions by the proposed methods
with the enhancement described in III-E. Specifically, robot
positions in the last 6 steps are included in the extended
distance matrix ∆E,1:t. Figure 5 illustrates an example
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DMC−SPL+Classical Scaling (Method 1)
Weighted SMACOF (Method 2)

Fig. 4. (Exp.1) Mean errors of estimated feature positions

of estimated map and trajectory by the proposed method
(Method 2, t = 100). We can see both are estimated very
accurately.

Moreover, we compared the proposed methods with a
conventional BOSLAM method based on Extended Kalman
Filter (BOSLAM-EKF). As mentioned earlier, the landmark
initialization is a critical issue for BOSLAM-EKF. In this
experiment, we employed an initialization method known as
constrained initialization[1].

Figure 6 shows the estimation errors of feature positions in
the three cases (i.e., [Method 1], [Method 2], and BOSLAM-
EKF). We can see that the BOM-STMDS (especially Method
2) is competitive with BOSLAM-EKF, although the latter
outperforms the former in an early stage (t < 100).

Figure 7, on the other hand, shows the estimation errors
of self-localization in the cases. Though BOSLAM-EKF
outperforms the proposed methods, we argue that they are
achieving reasonable accuracy because the mean estimation
errors are bound within 10[cm] (Method 1) and 6[cm]
(Method 2), respectively. We consider a main reason why
BOM-STMDS was inferior to BOSLAM-EKF in the self-
localization accuracy is that BOM-STMDS lacks in a trade-
off mechanism between two sources of information – bearing
measurements and odometry readings, whereas EKF has
that mechanism. For example, BOM-STMDS tends to fail
in estimating the robot positions accurately when only a
small number of features are observable and the bearing
measurements to them contain relatively large errors by
chance.

D. Experiment 3 : Utilization of Prior Information

Finally, we examined how the prior information on the
relative distances between some pairs of features contributes
to the estimation accuracy in BOM-STMDS.

In this experiment, 10% of all the feature pairs (that is
0.1× (50×49

2 ) = 123 pairs) were randomly chosen and their
distances were given with the accuracy of σ = 3[cm] in both
x and y axes as prior information in advance. This prior
information was used to determine initial distance matrix
∆F,0.

Figure 8 compares the case where this prior information
was incorporated with the case where it was not. The result
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Fig. 5. (Exp.2) Example of estimated map and trajectory (t = 100, p = 6),
Solid and broken lines represent estimated and true trajectories. Also, the
differences between estimated and true feature positions are emphasized
with thin lines.

0 50 100 150 200 250 300
0

0.05

0.1

0.15

0.2

Number of Steps

M
ea

n 
Er

ro
r i

n 
Fe

at
ur

e 
Po

si
tio

ns
 (m

)

 

 

DMC−SPL+Classical Scaling (Method 1)
Weighted SMACOF (Method 2)
BOSLAM−EKF

Fig. 6. (Exp.2) Estimation errors in feature positions
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Fig. 7. (Exp.2) Estimation errors in robot positions

demonstrated that using this kind of prior knowledge leads
to a significant improvement in the estimation accuracy.
Especially, we can see it has the effect of accelerating the
mapping in the early stage.

V. CONCLUSION

In this paper, we proposed an alternative approach to
the bearing-only mapping problem. The key ideas are to
estimate the inter-feature distance matrix using the principle
of sequential triangulation, and to use multi-dimensional
scaling for reconstructing the coordinates of the features
from the distance matrix. While it does not outperform the
conventional BOSLAM methods, it has unique properties
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Fig. 8. (Exp.3) Mean errors in estimated feature positions with or without
prior information

that prior information of inter-feature distances is efficiently
utilized and that the robot self-localization is not necessary.

There are still many interesting issues related to this
method, such as data association problem, extension to 3D
mapping, and hybridization with the conventional BOSLAM
methods.
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