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Abstract— Many important missions for autonomous under-
water vehicles (AUVs), such as undersea inspection of ship hulls,
require integrated navigation, control, and motion planning
in complex, 3D environments. This paper describes a SLAM
implementation using forward-looking sonar (FLS) data from
a highly maneuverable, hovering AUV performing a ship hull
inspection mission. The Exactly Sparse Extended Information
Filter (ESEIF) algorithm is applied to perform SLAM based
upon features manually selected within FLS images. The results
demonstrate the ability to effectively map a ship hull in a
challenging marine environment. This provides a foundation for
future work in which real-time SLAM will be integrated with
motion planning and control to achieve autonomous coverage
of a complete ship hull.

I. INTRODUCTION

Frequent inspection of marine structures, including ships,

walls, and jetties is a pressing need for governments and

port authorities worldwide. There is a strong desire to re-

move humans from this task, instead developing autonomous

agents are able to ensure complete coverage and the accurate

localization and identification of anomalies on the structure.

One of the challenges faced in this endeavor is that the envi-

ronment characteristic of cluttered harbors provides little op-

portunity for traditional navigation: compasses are regularly

corrupted by proximity to metal structures; the use of line-of-

sight acoustic positioning systems are subject to limitations

due to multipath returns, engine and equipment noise, and

physical obstructions. Real-time, map-based navigation is

thus an attractive means for performing the inspection based

solely on sensors that interact with the local environment.

The requisite elements of an effective feature-based navi-

gation system for this task include: a physical platform with

low-level flight control that servos roll and pitch, such as

that based on an IMU and depth sensor; sensors that provide

information about the local environment, such as an imaging

sonar and a Doppler velocity log (DVL); real-time algorithms

that extract robust features from the sensor data streams;

and an estimation framework that reconciles these feature

observations with the other navigation information in order

to jointly build a map and localize the vehicle within the

map.

The present paper details full-scale experimental work that

demonstrates 6 DOF Simultaneous Localization and Map-

ping (SLAM) using data from an imaging sonar mounted on

a highly maneuverable AUV. This paper presents preliminary

results in which sonar image features were detected manually

and applied to a SLAM algorithm in post-processing in

order to demonstrate the potential for automated ship hull

inspection with forward-looking sonar, exploiting SLAM for

ship-relative navigation.

Today’s advanced sonar sensors produce acoustic images

that look more and more like those of optical cameras. While

the quality of optical images is superior in ideal conditions,

sonars are far less sensitive to the limitations that characterize

the underwater environment. In particular, optical cameras

typically require external lighting to accommodate for the

rapid attenuation of light with depth [1]. Additionally, the

turbidity of the water severely limits the imaged field of view

for standard cameras. The need for an external light source

further compounds the effects of turbidity as it yields an

increase in backscatter with larger fields of view [2]. Sonar

imaging devices, on the other hand, rely upon the acoustic

illumination of the scene and are not affected by the lack

of natural light or the presence of particulates in the water.

As harbors and coastal environments are particularly turbid,

imaging sonars are the sensor of choice for shallow water

operation.

One available imaging sonar is the Dual-Frequency Iden-

tification Sonar (DIDSON) [3], a high resolution sonar

whose small size and low power consumption make it well-

suited for operation on autonomous underwater vehicles.

The DIDSON is a high frequency, forward-looking sonar

that produces two-dimensional acoustic intensity images up

to ranges of 40 meters at near-video rates. The sonar has

a wide variety of applications that include monitoring fish

populations [4], the inspection of underwater structures,

explosive ordinance detection, and underwater mosaicing [5],

[6]. These applications demonstrate the ability to achieve

near optical quality imagery with an acoustic camera in

poorly lit, turbid environments that are not conducive to

optical cameras.

While the performance of acoustic cameras is impres-

sive, the images lack the detail and accuracy of optical

images taken under suitable conditions. Acoustic images

suffer from a comparatively low signal-to-noise ratio (SNR),

largely due to the effects of speckle noise in the sampled

echos. Additionally, the resolution of DIDSON imagery is

significantly lower than that of optical cameras. As a result

of the acoustic beam pattern as well as physical constraints,

the DIDSON is limited to a single linear receptor array of

96 transducers that each resolve intensity into 512 range

bins. Contrast this with digital optical cameras that sample

light with a two-dimensional array that contains millions of
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Fig. 1. The Hovering Autonomous Underwater Vehicle (HAUV) is roughly
90 cm (L) × 85 cm (W ) × 45 cm (H) and weighs approximately 90 kg.
The vehicle is equipped with an IMU, depth sensor, and compass that are
housed within the main electronics housing (MEH). Located at the front
of the vehicle, a DIDSON imaging sonar and DVL can be independently
pitched to accommodate the geometry of the hull under inspection.

pixels. The relatively small number of transducer elements

in the acoustic receiver array yields significantly reduced

resolution.

The majority of camera-based pose and structure estima-

tion algorithms rely upon low-level image interest points. For

example, Eustice et al. [7] describe an algorithm that esti-

mates the relative pose associated with overlapping images

based upon a combination of shared SIFT [8] and Harris cor-

ner [9] features. The algorithm has been successfully applied

for AUV navigation at depth where the visibility is sufficient

with an external light source. The reduced resolution and

lower SNR of acoustic imagery complicates the robust low-

level feature detection and description necessary for such a

delayed-state framework. Nonetheless, Kim et al. [5] utilize

multiscale Harris corner interest points to identify feature

correspondences between sets of DIDSON images. They then

use the image correspondence to build a mosaic of the scene.

Similarly, Negahdaripour et al. [6] describe an algorithm

that generates DIDSON image mosaics based upon Harris

corner features. Neither approach, though, estimates the three

dimensional structure of the environment as they assume that

the scene is planar. Additionally, the algorithms perform a

batch optimization for the mosaic and and are not directly

suitable for online localization and map building.

II. AUTONOMOUS UNDERWATER VEHICLE PLATFORM

This paper presents underwater inspection work with

the Hovering Autonomous Underwater Vehicle (HAUV).

The HAUV was initially designed and built by MIT Sea

Grant with the assistance of Bluefin Robotics as a plat-

form for close-range underwater inspection [10], [11]. Fig-

ure 1 presents the most recent of the two versions of the

HAUV [12].

The HAUV is equipped with navigation sensors as well

as a forward-looking sonar. The navigation suite includes

an IMU, which provides observations of the vehicle’s three-

axis angular rates as well as its pitch and roll angles.

Heading is measured with a magnetic compass but, due to

the interference induced by metal hulls, is unreliable during

surveys. The vehicle measures its velocity and range relative

to the ship’s hull with a Doppler velocity log (DVL) that is

steerable in pitch in order to face the hull. Over the course of

the survey, the HAUV integrates this motion data to estimate

its position with respect to the ship. These dead-reckoned

estimates tend to be highly accurate over short timescales

but give rise to errors in pose that grow over time.

Previous deployments of the HAUV have relied upon

dead-reckoning to execute ship surveys [10]. Imagery col-

lected by the vehicle is then reconstructed in the form of a

mosaic as part of a post-processing step in order to view the

entire area that was covered in the inspection. This process

typically works only for relatively flat parts of the hull and

yields only a partial model of the ship. A second limitation

of this offline analysis, any gaps in the survey coverage can

only be detected after post-processing, typically after the end

of the mission. The aim of the present project is to use

the acoustic imagery to perform localization and mapping

concurrently over the course of the mission. This capability

provides drift-free pose estimates, improves the accuracy of

the map of the hull, and enables tasks such as the online

assessment of coverage patterns.

III. ACOUSTIC IMAGING SONAR

The HAUV is equipped with a Dual-Frequency Identifica-

tion Sonar (DIDSON) that records acoustic images of close-

range underwater structures. The sonar provides near video

rate (5 Hz-20 Hz) imagery of targets within a narrow field of

view that extends to ranges upwards of 40 meters. Through

a unique type of beamforming, the DIDSON samples the

acoustic return intensity as a set of fixed-bearing tempo-

ral signals. By then sampling these profiles, the DIDSON

generates a two-dimensional range versus bearing projection

of the ensonification echo. Figure 2 shows the DIDSON

image of a rectangular target on a ship hull taken at a range

of roughly two meters. The range versus bearing image is

transformed into Cartesian space, which demonstrates the

DIDSON’s non-rectangular field of view.

The DIDSON images targets within a narrow field of

view that spans an angle of 28.8◦ in the azimuthal (bear-

ing) direction and 12◦ in the vertical (elevation) direction.

The range extent of the FOV depends upon the DIDSON

operating frequency, which trades off lower resolution for

increased range. At the lower 1.0 MHz frequency, the FOV

extends 40 meters in front of the lens with a range resolution

of 80 mm. Operating at 1.8 MHz, the maximum FOV range

is 12 meters at a resolution of 20 mm. The HAUV typically

conducts surveys with the DIDSON operating in the 1.8 MHz

mode with a range window in the vicinity of 2.5 meters.

The DIDSON acquires acoustic imagery with a pair of

lenses that focus a set of narrow ensonification beams at

specific angles within the 28.8◦ azimuthal field of view.

The beamwidth depends upon the operating mode of the
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Fig. 2. The acoustic image of a rectangular target attached to a ship hull.
The image represents the Cartesian projection of the range versus bearing
intensity profile.

DIDSON. In the lower frequency (1.0 MHz) extended range

mode, there are 48 distinct beams that are each 0.6◦ wide.

When operated at the higher frequency (1.8 MHz) identifica-

tion mode, the DIDSON uses 96 beams, each of which are

0.3◦ wide. The vertical (elevation) beamwidth is 12◦ degrees

in both cases. Using the same lenses, the DIDSON directs the

acoustic returns onto a set of transducers that form a linear

array. This “line-focused” beamforming yields an echo time

profile for each of the 96 (48) beams. These profiles are then

sampled to estimate range, resulting in 512 range bins along

each beam direction. The result is a 512 by 96 (48) acoustic

image that resolves return intensity into range and bearing.

We depict this imaging geometry in Figure 3 where we

define the location of imaged points in spherical coordinates,

(r, θ, β), relative to a DIDSON-fixed coordinate frame.

The DIDSON does not disambiguate the elevation of the

target and, as a result, echos may originate from anywhere

along a |β| ≤ 12◦ arc. An alternative to the constant-radius

projection is to approximate this mapping with a model that

projects pixels along lines that are perpendicular to the image

plane. Due to the narrow FOV in elevation (|β| ≤ 6◦), this

approximation results in relatively little error, approximately

0.5% of the range to the target. Kim et. al [5] show that

this projection approximation gives rise to an orthographic

camera model for the DIDSON. Considering two overlapping

images taken from different viewpoints, this model results

in an affine transformation that relates their corresponding

camera frames [13]. Kim et. al exploit the epipolar geometry

to estimate the affine transformation between pairs of images

and, in turn, generate mosaics.

The epipolar geometry provides constraints on the rela-
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Fig. 3. Geometric representation of the DIDSON imaging model. The
DIDSON produces a two-dimensional acoustic image that resolves intensity
as a function of bearing, θ, and range, r, but not elevation, β.

tive transformation between pairs of vehicle poses. These

constraints can be integrated as part of a SLAM filter. The

data is particularly amenable to a pose graph framework

that performs estimation over a state consisting of the robot

position history based upon pairwise constraints between

poses. For example, Eustice et al. [7] rely upon this data

to track a probability distribution over the history of vehicle

camera poses. The algorithm treats the epipolar constraints

between camera pairs as measurements of the corresponding

vehicle poses and incorporates the observations in an Ex-

tended Kalman Filter (EKF) step. This and other pose graph

techniques offer benefits related to performance, computation

time, and robustness [14]–[16].

The epipolar geometry that governs optical cameras gives

rise to five constraints on relative camera pose. In the case

of orthographic camera models, though, the affine epipolar

geometry is invariant to a greater degree of relative motion.

This invariance reduces the number of constraints that are re-

solvable from pairs of overlapping images to only three [13].

For that reason, we instead take an online, feature-based

approach to SLAM1 whereby we maintain an estimate of

the current robot pose along with a set of landmarks that

comprise the map. In the context of ship hull inspection,

these targets include both natural features as well as man-

made objects. We currently identify these targets by hand-

selecting features within the DIDSON imagery, though the

estimation framework is amenable to the automated detection

of interest regions (i.e. greater than pixel resolution). In

the next section, we describe a novel SLAM algorithm that

exploits these features to accurately localize the vehicle in a

consistent and efficient manner.

IV. FEATURE-BASED SLAM BASED UPON ACOUSTIC

IMAGERY

Underwater survey applications pose the problem of gen-

erating a model of the structure as one of map building.

1Here, “online” SLAM refers to the fact that we are only concerned with
the current robot pose and not its trajectory history.
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This framework requires accurate knowledge of vehicle pose,

typically estimated with the help of an acoustic long baseline

(LBL) beacon network, which provides triangulated time-of-

flight position data. Unfortunately, LBL and similar variants

are less than optimal for the in-situ inspection of ship

hulls as they typically rely upon the initial deployment and

calibration of the beacon infrastructure. Additionally, the

environment in which surveys generally take place compli-

cate time-of-flight localization as a result of the multipath

interference that results from the shallow water column and

the vehicle’s close proximity to the ship hull.

Rather than rely on external infrastructure for localization,

we view the ship hull inspection problem in the Simultaneous

Localization and Mapping (SLAM) framework [17]. SLAM

seeks to build a map of the environment based upon the

vehicle pose estimate and to concurrently localize the robot

within this map. This coupling is complicated by the fact

that both the vehicle motion as well as the observations

of the environment are prone to uncertainty. The majority

of SLAM algorithms address these issues by posing the

problem in a probabilistic framework whereby they track a

joint distribution over the vehicle pose and map.

A. Feature-based SLAM

We adopt a feature-based representation for SLAM and

model the 3D ship hull environment as a collection of ob-

ject primitives, M = {m1,m2, . . . ,mn}. The map, together

with the current robot pose comprise the state vector at

time t, ξt = [x⊤

t M⊤]⊤. We define the 6-DOF vehicle

state, xt, by a 12 element vector that includes the vehicle’s

position, its roll, pitch, and heading Euler angles, as well

as the vehicle’s linear and angular velocity in the body-fixed

frame. We wish to track the joint distribution over the vehicle

state and map, p (ξt|z
t,ut), based upon the entire history

of measurement and motion data, zt = {z1, z2, . . . , zt} and

ut = {u1, u2, . . . , ut}, respectively.

We model the uncertainty in the HAUV motion model

along with the DIDSON observations of the ship hull as

Gaussian white noise. Linearizing the process and measure-

ment models, we are then able to represent the posterior

likelihood by a Gaussian distribution,

p
(

ξt|z
t,ut

)

= N
(

ξt;µt,Σt

)

= N−1
(

ξt;ηt,Λt

)

(1)

The standard form of the Gaussian parametrizes the dis-

tribution in terms of the mean vector, µt, and covariance

matrix, Σt. Alternatively, the canonical form represents the

Gaussian by the information matrix, Λt, and information

vector, ηt. The two forms are duals of one another, related

by the relationship:

Λt = Σ−1
t ηt = Λtµt (2)

Beginning with the seminal work Smith, Self, and Cheese-

man [18], the Extended Kalman Filter has laid the ground-

work for numerous successful SLAM algorithms that track

the standard form of the posterior. One property of the

standard form that is both a benefit and a burden is that

it explicitly maintains the coupling between the robot and

map in the form of a dense covariance matrix. This leads

to the well-known computational and memory costs that are

quadratic in the size of the map, limiting the application of

the EKF to environments with hundreds of features [17].

The canonical parametrization of the Gaussian has been

proposed as a solution to the feature-based SLAM scalability

problem. Pivotal insights by Thrun et al. [19] and Frese et

al. [20] reveal that, unlike the covariance matrix, its inverse

information matrix is nearly sparse with a majority of the

elements near zero. In the case that the parametrization

can be approximated as being truly sparse, Thrun et al.

[19], Frese et al. [20], and Paskin [21] each present SLAM

algorithms with complexity that is near-constant time.2 Most

directly related to the work described here, the Sparse

Extended Information Filter (SEIF) [19] is a variation on

the Extended Information Filter (EIF) [23], the dual of

the EKF. The SEIF periodically sparsifies the information

matrix by ignoring the conditional dependence relationships

between the vehicle and a subset of the map. Once sparse, the

SEIF implements the EIF time projection and measurement

update steps in constant time given an estimate for the mean.

Eustice, Walter, and Leonard [24], though, demonstrate that

the SEIF sparsification strategy, which ignores conditional

dependencies, results in overconfident state estimates. The

consequences include a resulting distribution over the map

that is inconsistent along with the inability to correctly match

observations with mapped features (data association) [25].

B. Exactly Sparse Extended Information Filter

Walter et al. [26] present the Exactly Sparse Extended

Information Filter (ESEIF) as an alternative sparse infor-

mation filter that achieves the computational benefits of a

sparse parametrization while preserving consistency. As with

the SEIF, the ESEIF is a modified version of the EIF that

maintains a sparse information matrix. The key contribution

of the ESEIF algorithm is a sparsification strategy that

maintains an information matrix in which the majority of

elements are exactly zero. In turn, the ESEIF avoids the

need to approximate conditional independencies and thereby

preserves the consistency of the Gaussian distribution. The

ESEIF then maintains map and pose estimates that are nearly

identical to those of the EKF but exploits the sparse SLAM

parametrization to track the distribution in near-constant

time. The following provides a brief introduction to the

prediction and update steps as implemented in the ESEIF.

For a more detailed discussion, the reader is referred to the

description of Walter, Eustice, and Leonard [27].

1) Measurement Update Step: Throughout the survey of

the hull, the vehicle makes noisy observations of the state

vector. Most importantly, these include measurements of

the range and bearing to mapped targets on the ship hull

provided by the DIDSON imagery. We also treat proprio-

ceptive observations of depth, attitude, angular rates, and

hull-relative velocity as measurements of vehicle state. In

2The particular mean recovery process dictates the computational cost.
Partial mean recovery is typically constant-time but occasionally requires
full mean estimation, which is generally linear in the size of the map [22].
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the most general form, we model observations as nonlinear

functions of the state that are corrupted by white Gaussian

noise, vt ∼ N
(

0,R
)

. Equation (3b) is the linearization about

the current mean for the observed state elements and H the

corresponding sparse Jacobian.

zt = h
(

ξt

)

+ vt (3a)

≈ h
(

µ̄t

)

+ H
(

ξt − µ̄t

)

+ vt (3b)

The filter incorporates the measurement information in the

SLAM posterior via the measurement update step, which

involves the addition of a sparse matrix to the current

information matrix:

p
(

ξt | z
t,ut

)

= N−1
(

ηt,Λt

)

Λt = Λ̄t + H⊤R−1H (4a)

ηt = η̄t + H⊤R−1
(

zt − h (µ̄t) + Hµ̄t

)

(4b)

At any point in time, the HAUV will observe only a small

number of targets on the hull due to the DIDSON’s limited

FOV. Including these measurements along with those of

the vehicle’s attitude and body velocities, the Jacobian, H,

is sparse with a bounded number of non-zero elements.

The computational cost of the matrix product, H⊤R−1H,

within (4a) is constant-time and the addition only modifies

entries of the information matrix that exclusively correspond

to observed states. Assuming that we have an estimate of

the mean for the vehicle pose and the imaged landmarks,

the canonical update in (4) is quadratic in the number of

measurements, irrespective of the sparsity of the information

matrix.
2) Time Prediction Step: The vehicle state vector evolves

over time according to a constant velocity model of the kine-

matics (5a) that is nonlinear in the state and control input.

An additive, white Gaussian noise term, wt ∼ N
(

0,Q
)

,

captures uncertainty in the dynamics model that we assume

to be first-order Markov. The linearization of the process

model follows in (5b) where F denotes the Jacobian matrix.

xt+1 = f
(

xt,ut+1

)

+ wt (5a)

≈ f
(

µxt
,ut+1

)

+ F
(

xt − µxt

)

+ wt (5b)

We update the distribution to reflect the robot motion

by first augmenting the state with the new vehicle pose

and subsequently marginalize over the previous pose. The

combined effect yields the time prediction step for the

ESEIF:

p
(

ξt+1 | zt,ut+1
)

= N−1
(

η̄t+1, Λ̄t+1

)

η̄t+1 =

[

Q−1∆
η̄M

]

−

[

−Q−1F
ΛMxt

]

Ω−1
(

ηxt
− F⊤Q−1∆

)

=

[

Q−1FΩ−1ηxt
+ Ψ∆

ηM − ΛMxt
Ω−1

(

ηxt
− F⊤Q−1∆

)

]

(6a)

Λ̄t+1 =

[

Q−1 0
0 ΛMM

]

−

[

Q−1F
ΛMxt

]

Ω−1
[

−F⊤Q−1 ΛxtM

]

=

[

Ψ Q−1FΩ−1ΛxtM

ΛMxt
Ω−1F⊤Q−1 ΛMM − ΛMxt

Ω−1ΛxtM

]

(6b)

where

∆ = f (xt,ut+1) − Fµxt

Ψ = Q−1 − Q−1F
(

Λxtxt
+ F⊤Q−1F

)−1
F⊤Q−1

=
(

Q + FΛ−1
xtxt

F⊤
)−1

Ω = Λxtxt
+ F⊤Q−1F

Note that the time prediction step induces the fill-in of the

information matrix. This is evident in the map sub-block of

the new information matrix (6b), ΛMM − ΛMxt
Ω−1ΛxtM ,

in which the matrix ΛMxt
= Λ⊤

xtM
is non-zero for any

active map element that shares information with the robot

pose. The matrix outer product, ΛMxt
Ω−1ΛxtM , then creates

shared information between the set of active landmarks.

Since features are forever active once they are added to the

map, the information matrix becomes fully dense.

Furthermore, this matrix product in (6b) is the most

computationally expensive aspect of the prediction step. The

number of multiplication operations necessary to compute

this outer product is quadratic in the number of active

features. Since each landmark will inherently be active,

this implies that, in its natural, non-sparse form, the EIF

prediction step is quadratic in the size of the map.

3) ESEIF Sparsification: A limit on the active map size

plays a critical role in improving the computational and

memory performance of feature-based SLAM information

filters. For one, a bound on the number of off-diagonal entries

in the information matrix that link the robot pose and map

limits the number of non-zero elements that are added as

a consequence of time prediction. Secondly, an active map

bound allows us to control the computational cost of the

prediction step, irrespective of the size of the map.

The ESEIF takes a proactive approach to sparsifying the

information matrix whereby it controls the initial formation

of elements in the matrix. The filter essentially performs

periodic preventative maintenance to regulate the fill-in of the

information matrix. The general idea behind sparsification

is relatively straightforward. Rather than allow the matrix

to grow dense and occasionally prune weak elements to

preserve sparsity, the ESEIF manages the initial formation

of shared information between the robot and map. The spar-

sification strategy does this in a novel way, by periodically

“kidnapping” (marginalizing) the robot from the map and

subsequently relocalizing it based upon a limited number of

measurements. The only links that result between the map

and the vehicle state correspond to the features used for

relocalization. The filter then continues as before, repeating

the same marginalization and relocalization process when

necessary.

The actual sparsification procedure takes the form of a

modified measurement update step. The ESEIF partitions

the current set of observations into two subsets, zα and

zβ . In the first step of sparsification, the filter updates the

SLAM distribution, p
(

ξt | z
t−1,ut

)

= N−1
(

ηt,Λt

)

, as in

(4) based upon the observations in zα:

p1

(

ξt |
{

zt−1, zα

}

,ut
)

= N−1
(

η̄t, Λ̄t

)

.
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The ESEIF subsequently marginalizes out the robot pose

from the posterior to achieve a distribution over only the

map,

p2

(

M |
{

zt−1, zα

}

,ut
)

=

∫

xt

p1

(

ξt |
{

zt−1, zα

}

,ut
)

dxt

= N−1
(

M; η̌t, Λ̌t

)

. (7)

The corresponding information matrix and information vec-

tor for the map distribution follow as,

p2

(

Mt |
{

zt−1, zα

}

,ut
)

= N−1
(

Mt; η̌t, Λ̌t

)

Λ̌t = Λ̄MM − Λ̄Mxt

(

Λ̄xtxt

)−1
Λ̄xtM (8a)

η̌t = η̄M − Λ̄Mxt

(

Λ̄xtxt

)−1
η̄xt

. (8b)

The matrix outer product in (8a) dictates the computational

complexity of this step, which is quadratic in the number

of non-zero terms between the robot state and map in the

information matrix. Since we are bounding this number, this

marginalization is constant-time.

The final component of ESEIF sparsification utilizes the

remaining zβ measurements to relocalize the robot within

the map. We typically appropriate the zβ set by reserving as

many DIDSON observations as possible for relocalization

along with the direct measurements of the HAUV attitude,

depth, and body velocities. In general, the relocalized vehicle

state is a nonlinear function (9a) of zβ and the corresponding

map elements, mβ . We represent error in this model with

Gaussian noise, wt ∼ N
(

0,R
)

. The linearization about the

mean follows in (9b) where the Jacobian, G, is non-zero only

at positions that correspond with mβ .

xt = g
(

mβ , zβ

)

+ wt (9a)

≈ g
(

µ̌mβ
, zβ

)

+ G
(

m − µ̌t

)

+ wt (9b)

The implementation of the relocalization component of

sparsification is essentially no different from the process of

adding new features to the map. It is then straightforward to

show that the canonical form of the SLAM posterior follows

as

pESEIF

(

ξt | z
t,ut

)

= N−1
(

ξt; η̆t, Λ̆t

)

Λ̆t =

[

R−1 −R−1G
−G⊤R−1 Λ̌t + G⊤R−1G

]

(10a)

η̆t =





R−1

(

g
(

µ̌mβ
, zβ

)

− Gµ̌t

)

η̌t − G⊤R−1

(

g
(

µ̌mβ
, zβ

)

− Gµ̌t

)



 (10b)

As a consequence of the sparsity of G, the modification

to the map sub-block of the information matrix in (10a),

Λ̌t + G⊤R−1G is constant-time and affects only the mβ

elements. Furthermore, the off-diagonal term, R−1G, is

zero everywhere except for entries associated with the mβ

features. By periodically “kidnapping” the robot from the

map and relocalizing it, the ESEIF sparsification strategy

preserves an exactly sparse information matrix at a slight

cost of lost temporal information between poses [26], [27].

Fig. 4. A photograph of the first version of the HAUV being lowered into
the water to survey the barge during AUVFest. The barge is 13.4 m from
port (side nearest to the pier) to starboard and 36.2 m from bow to stern.

V. RESULTS

We apply the ESEIF localization and mapping architecture

to survey a series of man-made and natural targets located

on a ship hull. The deployment that we consider was part

of the 2007 AUVFest at the Naval Surface Warfare Center

in Panama City, FL. The focus of the ship hull inspection

experiments was a barge of length 36.2 meters and width

13.4 meters, shown in Figure 4, that was moored to a pier

on its port side. Approximately 30 targets were distributed

over the underside of the hull and their position measured

by a team of divers. Among these objects were box targets

of the form imaged in Figure 2, cylindrical “cake” targets

roughly 20 cm in diameter, and over a dozen small brick-

shaped objects. In addition to these features, the hull was

littered with both man-made as well as natural targets, most

of which are clearly visible in the DIDSON imagery.

The two HAUV vehicles spent more than thirteen hours

over the course of the experiments collecting high resolution

imagery of the barge. We consider a 45 minute survey of

most of the barge that consists of four overlapping surveys

of the bow, stern, port, and starboard sections of the hull.

The vehicle starts the mission near the aft-starboard corner

of the barge and first surveys most of the stern with the

exception of the corners. The vehicle then proceeds to image

the port and starboard sides, followed by the bow. The HAUV

moves laterally along tracklines that span the width (for the

stern and bow surveys) and length (for the starboard and port

surveys) of the barge at a velocity of 25 cm/s. Throughout

the survey, the DVL is positioned vertically upwards at the

hull and the DIDSON is oriented at just over 20◦ from

horizontal to achieve a suitable grazing angle with the hull.

Over the duration of the nearly 45 minute mission, the HAUV

collected about 4200 DIDSON images of the bottom of the

barge.

In order to analyze the performance of the ESEIF algo-

rithm, we hand-select features within the DIDSON imagery,

in lieu of an automated detection process. Each detection

provides a measure of the relative range and bearing to

a target on the hull that is subject to the DIDSON’s 12◦
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Fig. 5. Overhead view of the ESEIF map of the barge based upon
hand-picked image features. The plot includes the EKF estimates for the
feature locations as well as a measure of ground truth. Targets shown in
black comprise the ESEIF map while the EKF map is shown in red and
the ground truth in green. The ellipses denote the three-sigma uncertainty
bounds maintained by the ESEIF.

elevation ambiguity. We resolve the ambiguity in elevation

by independently tracking the local geometry of the hull

based upon the range data from the DVL. We do not rely on

any a priori information regarding the shape of the hull and

only assume that it can be approximated as locally planar.

The resulting measurement data serve as observations of the

environment for the ESEIF algorithm.

We implement the ESEIF feature-based SLAM frame-

work, utilizing the sparsification strategy to maintain a bound

of five active landmarks. When sparsification is necessary,

we partition the measurement data, zt = {zα, zβ}, such

that relocalization utilizes all available measurements, i.e.

zβ = zt and zα = {}. As a basis for comparison, we

concurrently apply the localization and mapping algorithm

with the standard feature-based EKF estimator in place of

the ESEIF.

Figure 5 presents a bird’s eye view of the final SLAM

maps. The plot compares the map built with the ESEIF with

that of the “gold standard” EKF as well as the ground truth

−50510152025

0
1
2

Y (m)

Z

Fig. 6. A side view of the ESEIF map from the barge’s port side. Note that
the plot renders features with two colors to help discern between targets that
overlap under this view. While there is no ground truth data regarding the
depth of the targets, the DVL ranges to the hull suggest a uniform hull draft
of 1.5 m. The mean feature depth as estimated by the filter is 1.63 m with
a variance of 8.7 cm. The variation from our DVL-based estimate of the
barge’s draft is largely due to the three-dimensional structure of the targets,
which we model as point features.

target locations as measured by the divers. Both the ESEIF

and EKF maps are aligned with the barge thru-hulls based

upon a least squares estimate for the transformation. The

uncertainty ellipses correspond to the three-sigma confidence

bounds associated with the ESEIF map estimates. Note that

these intervals capture each of the EKF target positions, but

not the ground truth location of every feature. We find the

same to be true of EKF-based map estimates and believe

that the disagreement is largely due to the divers’ difficulty

in accurately measuring the true position of the targets on

the hull. Additionally, the ground truth data indicates that

there are several targets that neither the EKF nor the ESEIF-

based algorithms incorporate into their respective maps. An

inspection of the images that are associated with these

regions of the hull according to the ESEIF pose estimates

suggests that these features broke free from hull. While this

does not offer conclusive proof, it is an agreement with

divers’ claims that targets had broken free.

Meanwhile, we assess the 3D quality of the map based

upon the depth of the features. Figure 6 presents a side view

of the ESEIF map from the barge’s port side. Ground truth

data regarding the draft profile of the barge is unavailable.

Based upon the vehicle’s depth measurements and the DVL

ranges to the hull, we estimate the draft to be 1.5 m. In

comparison, the mapped features exhibit a mean depth of

1.63 m and a standard deviation of 8.7 cm. The synthetic

targets are not flush with the hull and their vertical extent

largely accounts for this offset.

In order to confirm that the ESEIF sparsification strategy

does not induce overconfidence in the state estimates, we

compare resulting uncertainty with that of the EKF. Specifi-

cally, we compute the ratio between the determinant of each

feature’s sub-block of the covariance (inverse information)

matrix as maintained by the ESEIF with that of the EKF. On

a log scale, a ratio greater than zero implies a conservative

estimate for the uncertainty with respect to the EKF while

negative ratios suggest overconfidence. We plot a histogram

over these ratios in Figure 7. As we have found both in

simulation as well as with experimental data [26], the plot

confirms that the ESEIF preserves consistency relative to the

EKF.

VI. CONCLUSION

This paper describes the application of the ESEIF algo-

rithm to ship hull inspection using an AUV equipped with a
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Fig. 7. A histogram plot comparing the ratio of feature uncertainty as
estimated by the ESEIF with that of the EKF. Ratios greater than zero are
indicative of conservative confidence intervals while negative values indicate
overconfidence.

forward-looking sonar. The ESEIF provides a computation-

ally efficient filtering framework that is amenable to large-

scale joint estimation of the vehicle pose (coverage) history

and the map of the hull. The results demonstrate the ability to

produce maps that accurately identify the position of targets

on the ship hull. The work that we have presented relies

upon the manual selection of features within the acoustic

imagery. We have similarly applied our framework with

features detected automatically within FLS imagery, though

the current detector suffers from low repeatability which

degrades the performance of the filter. We are currently

working on improving the performance of the automated

detection process. Meanwhile, the goal of future work is to

integrate the SLAM capability demonstrated here with real-

time trajectory planning and control of the HAUV in order

to achieve 100% coverage of an unknown ship.
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