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Abstract— In this paper, we propose a framework for utilizing
fixed, ultra-wideband ranging radio nodes to track a moving
target node through walls in a cluttered environment. We
examine both the case where the locations of the fixed nodes
are known as well as the case where they are unknown. For
the case when the fixed node locations are known, we derive
a Bayesian room-level tracking method that takes advantage
of the structural characteristics of the environment to ensure
robustness to noise. We also develop a method using mixtures
of Gaussians to model the noise characteristics of the radios.
For the case of unknown fixed node locations, we present a
two-step approach that first reconstructs the target node’s path
and then uses that path to determine the locations of the fixed
nodes. We reconstruct the path by projecting down from a
higher-dimensional measurement space to the 2D environment
space using non-linear dimensionality reduction with Gaussian
Process Latent Variable Models (GPLVMs). We then utilize the
reconstructed path to map the locations of the fixed nodes using
a Bayesian occupancy grid. We present experimental results
verifying our methods in an office environment. Our methods
are successful at tracking a moving target node and mapping
the locations of fixed nodes using radio ranging data that are
both noisy and intermittent.

I. INTRODUCTION

Our goal is to track a target moving in an environment like

an office building without the requirement of pre-installed

infrastructure or accurate odometry. As a sub-goal, we seek

to map the unknown locations of sensors in the environment

so they can be utilized for future tracking. The problem

of tracking a moving target in a cluttered environment is

one that is prevalent in many robotics applications. In the

dynamic world of mobile robotics, rarely do targets remain

stationary, but often we can rely on some motion model or

odometry information from the target to assist in tracking.

The specific application of tracking a human in an in-

door environment is particularly challenging because human

targets often do not have reliable odometry. Furthermore,

human motion is often erratic and difficult to predict using a

simple motion model. Wearable inertial measurement units

(IMUs) are either inaccurate, expensive, or bulky. Even in-

dustrial grade IMUs inevitably drift after extended operation.

Alternatively, if the human carries a ranging radio, fixed

radio nodes can provide sensor measurements for tracking as

well as anchors into the environment that prevent drift. The

locations of these beacons can either be surveyed as part of

a pre-installed infrastructure, or they can be determined as
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part of a tracking algorithm. The techniques that we discuss

in this paper examine both of these possibilities.

In this paper, we present a framework for tracking a

moving target in a cluttered environment using range mea-

surements from ultra-wideband radios. We examine two

variations of the tracking problem:

1) The locations of the radio nodes are known a priori

2) The locations of the radio nodes are unknown

For the first scenario, we discuss a room-level tracking

approach that uses a discretized version of the floor plan

to take advantage of structural characteristics of an indoor

environment. We use a Bayesian filter on the discretized

floor plan to track the target between rooms. We present

two methods for modeling noise in the range measurements

using either Gaussian Processes or mixtures of Gaussians.

For the scenario where the node locations are unknown,

we derive a two-step method that first reconstructs the path

of the target using non-linear dimensionality reduction with

Gaussian Process Latent Variable Models (GPLVMs) and

then uses the reconstructed path to determine the locations of

the nodes on a Bayesian occupancy grid. For both scenarios,

we assume that a floor plan of the environment is known.

The novelties of this paper include the application of

Bayesian room-level tracking techniques to ranging radio

data, the use of GPLVMs with ranging radios, and the

development of a two-step tracking and mapping method

using dimensionality reduction and Bayesian occupancy grid

mapping. This paper is organized as follows. Section II

discusses related work in the areas of tracking, simultane-

ous localization and mapping (SLAM), and dimensionality

reduction. Sections III and IV present our framework for

utilizing range-only measurements with known and unknown

radio node locations. Section V discusses results from exper-

iments with ranging radios in an office environment. Finally,

Section VI draws conclusions and discusses directions for

future work.

An extended version of this paper is available as a Techni-

cal Report [1]. The extended version contains more explana-

tory detail and further results verifying the performance of

our algorithm.

II. RELATED WORK

The framework that we develop in this paper for lo-

calization and mapping using ranging radios is closely

related to literature in tracking, simultaneous localization

and mapping, and dimensionality reduction. Kumar, Singh,

and Rus discussed the problem of tracking a human first

responder in an urban search and rescue scenario with robots
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and sensor networks [2]. They outline some open questions

and provide the motivation for using range-only devices for

human tracking.

When the locations of the nodes are unknown, the tracking

problem is closely related to simultaneous localization and

mapping (SLAM). Djugash et al. proposed a range-only

SLAM method using Extended Kalman Filters (EKFs) [3].

This EKF approach projects range measurements into polar

space and uses a multi-modal representation to avoid errors

from poor initialization, ambiguities, and noise. Despite these

innovations, EKFs do not handle outliers as well as tech-

niques using dimensionality reduction because they require

linearization, and they are prone to error when odometry

is poor or nonexistent. In Section V, we run this EKF-

SLAM algorithm on our data and compare the results to

those obtained by our proposed algorithm.

Researchers in the sensor network community have also

worked on localizing networks containing both moving and

stationary nodes. Priyantha et al. proposed a method for

coordinating a mobile node to best localize a range-only

network [4]. Their method does not use a probabilistic

formulation, which makes it poorly suited for sensors with

nonstandard noise models. Hu and Evans also discussed

localizing sensor networks that contain moving nodes [5].

Their work is innovative in that it shows that moving nodes

can help localize a sensor network, but they do not directly

apply their method to range-only data.

Recent research has explored the use of Gaussian Pro-

cesses for modeling the noise characteristics of non-linear

sensors. Ferris et al. looked at tracking humans in of-

fice environments using measurements from wireless signal

strength [6]. Schwaighofer et al. also applied Gaussian

Processes with the Matern kernel function for localization

using cellular phone signal strength [7]. We present results

for modeling ranging radios with Gaussian Processes. We

also derive a mixture of Gaussians modeling technique that

approximates the Gaussian Process solution and allows for

outlier removal.

Without reliable odometry, recreating a path from range

measurements becomes a non-linear dimensionality reduc-

tion problem. Gaussian Process Latent Variable Models

(GPLVMs) were introduced by Lawrence as a probabilis-

tic framework for non-linear dimensionality reduction [8].

GPLVMs were later extended by Wang et al. to incorporate

dynamics [9]. Modeling dynamics allows for the incorpora-

tion of simple motion models into the GPLVM framework.

Ferris et al. applied GPLVMs for use in solving the problem

of localization with wireless signal strength when training

data is unavailable [10]. Their algorithm takes advantage of

the above tools in a target tracking scenario. Our work goes

one step further by using the reconstructed path to map the

locations of ranging radio beacons.

III. TRACKING WITH KNOWN NODE LOCATIONS

A. Room-Level Tracking

When tracking a moving target in a cluttered environment,

it is often advantageous to know in which room the target is

located. Drawing from this observation, we discretize the

floor plan into convex rooms and hallways and use this

discretization to perform room-level tracking. This can be

done either by hand or by arbitrarily collapsing regions found

using a convex region finding algorithm. Figure 1 shows an

example floor plan used in our experiments in Section V.

Fig. 1. Discretization of office environment used for ranging radio tracking.
The discretization uses structural aspects of the built environment to provide
a room-level tracking with very noisy measurements.

Taking into account cell adjacencies in the environment

forms an undirected graph of the target’s movement op-

tions. Now, define a probability distribution pt(C) over

the target’s possible location at time t in m cells where

{c1, c2, . . . , cm} ∈ C. The resulting probability distribution

in addition to the cell adjacency matrix forms a Markov

Chain, which can be used to model the target’s motion [11].

We can now incorporate information from range-only mea-

surements. In a Bayesian framework, the posterior distribu-

tion is given by:

p+
t (c) = η p(z|c)p−t (c), (1)

where p(z|c) is the probability of receiving range measure-

ment z given that the target is in cell c, and η is a normalizing

constant.

Since the discretization of the environment into cells is

very coarse, it is often advantageous to calculate p(z|c) at a

finer resolution. For this purpose, we more finely divide each

cell c into subcells cb ∈ c. We then calculate the probability

p(z|cb) at each subcell and recalculate the larger probability

by summing over these subcells.

B. Ranging Radio Noise Modeling

Ultra-wideband ranging radios operating in the 6GHz+

frequency band can provide range measurements through

walls in indoor environments [12]. These sensors show

better accuracy than alternative ranging devices in cluttered

environments because their spread spectrum is more likely

to find a direct path from transmitter to receiver.

When ranging radio signals move through occlusions, the

peak in the signal becomes less pronounced. In a time-of-

arrival system, this often leads to the peak being detected

after it actually occurred. This creates a tendency towards

measurements that are longer than the actual range between

targets. Thus, the noise characteristics are non-linear and are

very difficult to model using simple techniques. This section

describes some methods to model this noise and to estimate

the target’s location at the cell level.
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1) Simple Gaussian Modeling: To determine the proba-

bility that a target is in cell c given a measurement z, it is

necessary to calculate the likelihood p(z|c). If one assumes

that the noise is Gaussian, noting that this is often not the

case with ranging radios, the likelihood can be calculated as

in Equation 2. The true range rc can be calculated at a point

by diving each cell into smaller subcells. The value p(z|c)
can then be recovered by summing over all subcells cb ∈ C.

p(z|c) = N(z; rc, σ
2
r ), (2)

where z is the observed range value, rc is the true range

from cell c to the ranging node, and σ2
r is the variance of

the noisy range measurement.

2) Gaussian Process Modeling: If calibration data is

available for the environment, we can use a learning method

to estimate p(z|c). As described above, the noise character-

istics of ranging radios are often non-linear. Gaussian Pro-

cesses offer a non-parametric Bayesian solution to modeling

non-linear noise given training data. This section has been

reduced due to space constraints. The longer version of this

paper gives the full Gaussian Process derivation [1].

We are given some training data of the form D =
[(x1, z1), (x2, z2), . . . , (xn, zn)] where xi ∈ ℜd and zi ∈ ℜ.

In the case of ranging radios, xi is a point in the 2D plane

(d = 2), and zi represents a range measurement from a

single node to this point. Since zi is a measurement of range

between nodes, we have a strong model that zi should follow.

To utilize this, we subtract off the true range rxi
from all

observed measurements zo
i :

zi = zo
i − rxi

. (3)

Subtracting off the range offset allows the Gaussian

Process to learn the deviation from the true range rather

than learning the underlying range function. Note that it is

necessary to know the positions of the nodes to determine

rxi
. We relax this constraint in Section IV.

For n training points, refer to the n × d matrix of xi

values as X and the n × 1 vector of zi values as Zq. Note

that there is a Zq vector for each of the Q nodes (used to

learn separate Gaussian Processes). The next step in defining

a Gaussian Process is to choose a covariance function to

relate points in X . We choose the commonly used squared

exponential kernel. This is enough to define a Gaussian

Process, which provides p(z∗|x∗, X, Zq) of receiving a range

z∗ at an arbitrary point x∗. If x∗ is replaced by a point in a

finely discretized subcell cb ∈ c, this represents the likelihood

p(z|cb). This can now be used to fold in information from

measurements in our room-level tracking framework.

3) Mixture of Gaussians Modeling: A mixture of Gaus-

sians model when coupled with a filtering algorithm offers

another alternative to modeling the sensor noise in the

presence of calibration data. We define this model recursively

as calibration data is fed into the system. In this approach,

the expected value of an observed range measurement zo is

as described below:

ẑ⋆ = (

‖Γ‖∑

i

ωisi) ∗ rq + ε, (4)

where rq is the true range measurement between the node q
and the target, ε is zero mean Gaussian noise with variance

σ, ωi is the weight of the mixture Gaussian i, and Γ is

the set of si, each representing a different Gaussian used

within the mixture model. The si terms scale the true range

measurements to model the expected mean offset within the

observed range measurements. The term ẑ⋆ is a mixture of

Gaussians, each of which has a scaled mean around the true

expected range rq .

The weights ωi can be updated recursively within each

iteration as described below:

ω+

i = η ω−
i exp(−

(ω−
i rq − zo)2

2σ2
), (5)

where η is a normalization term, which adjusts the weights

ωi such that
∑‖Γ‖

i ωi = 1.

After calibration, when we receive a new measurement, the

likelihood of the measurement can be computed as follows:

p(z|c, X, Z) = N(z; (

‖Γ‖∑

i

ωisi) ∗ rc, σ
2
r ). (6)

We can also combine this mixture model with a filtering

algorithm to reject outliers within the calibration data. We

can do this easily by applying a measurement validation gate,

such as a chi-squared test, to the update. The measurement

gating step provides increased robustness to outliers when

calculating the mixture of Gaussian model.

IV. TRACKING WITH UNKNOWN NODE

LOCATIONS

We now present a tracking method that does not require

calibration data and allows for initially unknown node lo-

cations. In this section, we assume that we are given an

ordered n×Q matrix Z of n measurements from a moving

target to a number of ranging nodes Q. We are not given

any information regarding the locations of those nodes in

the environment, nor are we given a vector of ground truth

locations that correspond to these measurements.

A. Path Reconstruction with GPLVMs

Given a matrix Z of range measurements, it is straight-

forward to frame the reconstruction the target’s path Xr as

a dimensionality reduction problem. The problem becomes

one of projecting from the Q dimensional data space to the

A dimensional latent space. In our case, Q is the number of

radio nodes, and A is two (the target’s path is in ℜ2). Since

the measurements from the ranging radios are non-linear, we

need a method that handles these non-linearities. Also, we

wish to utilize the information that Z is ordered, and the

points corresponding to Zt and Zt+1 are near each other in

latent space. This is the problem of incorporating dynamics.

Data from ranging radios are often sparse, and we do not

receive measurements from each radio at every time step.
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To prevent missing data in Z , we linearly interpolate across

time steps.

Bayesian dimensionality reduction consists of maximizing

both the marginal likelihood of the observations p(Z|Xr)
and a prior on the underlying positions p(Xr). For a matrix

Z with Q columns:

p(Z|Xr) =
∏

q=1:Q

N(Zq; 0, K + σ2
oI), (7)

where K is the squared exponential covariance matrix and

σ2
o is a Gaussian observation noise hyperparameter.

The prior value p(Xr) can be used to model the dynamics

in an ordered data stream. This can be done using the

standard auto-regressive prior [9] or using a more specialized

prior using distance and orientation constraints [10]. Our

results in Section V use the standard auto-regressive prior,

and we leave the derivation of a more informed prior to

future work.

Having defined both p(Z|Xr) and p(Xr), the values for

Xr can be recovered by running conjugate gradient ascent on

Equation 8. The resulting model includes hyperparameters,

which provide an estimate of the Gaussian noise variance.

We utilize this estimate when recovering node locations in

the next step.

p(Xr, Z) = p(Z|Xr)p(Xr) (8)

The resulting path defined by Xr is locally consistent.

To recover a globally consistent path, the values may need

to be rotated or flipped along an axis. We assume that the

locations of two points on the path are known, and we use

these points to rotate into a global frame consistent with

our environment map. Knowing these points would be as

simple as knowing when the target entered a building and

when it passed a landmark midway through the run. We

also found that, despite modeling dynamics, the scale of the

reconstructed path was often off, and we use the two known

points to readjust scale. It is important to note that knowing

two points on the target’s path is not equivalent to knowing

the locations of two stationary nodes. Even if the entire target

path were known, locations of all nodes in the environment

would still need to be reconstructed from noisy ranging data.

B. Recovering Node Locations with Occupancy Grids

Having reconstructed a globally consistent path Xr, our

next step is to reconstruct the radio node locations Lr.

Given a reconstructed path Xr and a corresponding vector

of ranging measurements Z , we estimate the locations of

each node using a Bayesian occupancy grid approach [13].

We finely discretize the region in ℜ2 in which node q could

be located into a grid Xq
occ. Now, step along the path Xr

calculating the following at each cell:

p(xq
occ) =

∏

t=1:n

N(zq
t ; |xq

occ − xr
t |, σ

2
r ), (9)

where n is the number of range measurements from node q to

the target, zq
t is the range measurement from node q at time

t, | · | is Euclidean distance, and σ2
r is a noise estimate for the

radio sensors (estimated from the GPLVM hyperparameters).

Having calculated p(xq
occ) for all cells in Xq

occ, we find the

location of node q by setting lrq = maxx p(xq
occ).

Once the node locations have been reconstructed, we can

combine them with the path estimate and range measure-

ments. This yields enough information to calculate any of

the noise models presented in Section III, which can then be

utilized for future tracking.

V. EXPERIMENTAL RESULTS

A. Hardware Setup

We setup a test environment using a Pioneer robot and

five radio nodes to examine the performance of our tracking

algorithms. The Pioneer carried a radio node and acted as the

target in these trials. The Pioneer also carried a SICK laser

rangefinder, and a map of the environment was found using

laser AMCL-SLAM methods from the Carmen software

package [13]. Laser localization with the map was used for

ground truth comparison as well as acquiring training data.

The odometry of the robot was used to generate the ground

truth, but it was thrown out for tracking experiments. This

better models the case of a human target without odometry.

The robot moved at a speed of approximately 0.2m/s during

the experiments.

We utilized five ultra-wideband radio beacons from Mul-

tispectral Solutions to provide sensor measurements [12].

These sensors use time-of-arrival of ultra-wideband signals

to provide inter-node ranging measurements through walls.

They are setup to operate continuously, and a full set of

measurements between five nodes is received approximately

every five seconds. In our experiments, we found that the

Multispectral radio nodes have an effective range of approx-

imately 30m when ranging through walls. Four radio nodes

were placed around the environment, and one was placed on

the Pioneer robot.

B. Results with Known Node Locations

We tested our methods in the office environment shown in

Fig. 1. We first ran a calibration test to estimate the ranging

radio noise variance with a simple Gaussian as σ2
r = 3.85m2.

Running a mixture of Gaussians, we found that a single

Gaussian with an offset modeled the data well. Fig. 2 shows

the offset Gaussian fit for the smaller loop. Applying this

offset to that data yielded σ2
r = 1.03m2 showing that

the offset significantly reduces the measurement variance.

These high variances demonstrate the noisiness of non-line-

of-site ranging sensors, which makes tracking with them a

challenging problem.

Table I shows tracking results with known node locations

in two office building loops. Each result is averaged over two

separate trials (not including the training trial). All methods

estimate that the target is either in the correct cell or in an

adjacent cell over 90% of the time.

The results with known node locations show that Gaussian

Process modeling improves room-level tracking accuracy

slightly over the simple Gaussian method. This improvement
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TABLE I

ROOM-LEVEL TRACKING ACCURACY IN OFFICE ENVIRONMENT.

FORMAT: (XX/YY), WHERE XX IS PERCENTAGE OF ESTIMATES IN

CORRECT CELL (ROOM OR HALLWAY), YY IS PERCENTAGE OF

ESTIMATES IN CORRECT OR ADJACENT CELL.

Known Node Locations 45 m x 30 m 60 m x 30 m

Kalman Filter 44.8% / 55.5% 60.7% / 66.1%
Simple Gaussian 71.9% / 97.6% 60.9% / 93.9%
Gaussian Process 75.0% / 95.5% 64.4% / 90.8%
Offset Gaussian 76.3% / 97.6% 68.0% / 94.1%

Reconstructed Node Locations 45 m x 30 m 60 m x 30 m

Offset Gaussian 52.4% / 76.4% 52.6% / 80.4%

would likely be more significant if the original measurement

variance were larger than the size of most cells in the

environment. The offset Gaussian derived using a mixture

of Gaussians outperforms both the simple Gaussian and the

Gaussian Process modeling methods. The offset Gaussian

if particularly useful with ultra-wideband ranging radios

because of their bias towards measurements longer than the

true range (see Fig. 2).

We also show results using a standard 2D Kalman filter

for comparison. We use a Kalman filter implementation with

a constant motion model (no odometry) that linearizes the

range measurements in polar space [3]. This filter does not

use a room-level discretization, so the estimate often falls

outside of rooms on the map. Room-level tracking prevents

this deviation from the map and improves tracking accuracy.
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C. Results with Unknown Node Locations

We also tested our method for tracking using reconstructed

node locations in the same office environment. We added

a test environment in which the target moved along a

30m × 30m cross. This trial shows that our method works

without closing the loop. Tables I and II present tracking

and mapping results with unknown node locations. Path

reconstruction with the GPLVM took approximately two

hours per trial on a standard desktop PC. Optimization was

terminated when the iterative log-likelihood increase fell

below a threshold.

Table II also shows mapping errors from running an

occupancy grid on the target’s ground truth path from laser

TABLE II

NODE MAPPING ERROR COMPARISON IN OFFICE ENVIRONMENT WITH

UNKNOWN NODE LOCATIONS. MAPPING ERROR IS AVERAGE

EUCLIDEAN ERROR FOR FOUR NODES.

Mapping Error

Map Size Path Ground EKF-SLAM EKF-SLAM GPLVM
(m x m) Type Truth w/ Odom w/o Odom

30 x 30 Cross 2.0 m 2.5 m 6.9 m 3.0 m
45 x 30 Loop 2.7 m 3.9 m 6.2 m 4.4 m
60 x 30 Loop 3.2 m 3.6 m 5.6 m 4.5 m

localization. These errors, as high as 3m on the large map,

can be considered a gold standard. In other words, if the

target’s path were reconstructed as accurately as ground

truth, occupancy grid mapping with ranging radio data would

yield these errors. These errors further demonstrate the non-

Gaussian noise characteristics of the ranging sensors.

For further comparison, we implemented an EKF-SLAM

method [3] for mapping unknown node locations. This

algorithm updates an online Kalman estimate of the locations

of the moving and stationary nodes in polar coordinates. It

maintains multi-modal estimates, which avoids errors from

poor initialization. We present results for the EKF-SLAM

method both with and without odometry in Table II. The

EKF-SLAM method outperforms our GPLVM method when

odometry is used. However, without odometry our GPLVM

method reconstructs the node locations 35% more accurately

than the EKF-SLAM method. This demonstrates the appro-

priateness of our algorithm in situations where odometry is

unavailable.

The extended version of this paper [1] compares our node

reconstruction algorithm to a method that uses solely odom-

etry to generate an initial path. Our algorithm outperforms

this method because inevitable drift in odometry leads to

inaccurate path reconstructions.

Fig. 3 shows example paths reconstructed by GPLVM

dimensionality reduction and an image of reconstructed

nodes on a floor plan. The floor plan demonstrates the

number of walls that the nodes must travel through to track

in this environment. The video included with the conference

proceedings also shows an animation of our tracking algo-

rithms. Fig. 4 shows an example occupancy grid progression

for a large loop. The node estimate quickly becomes a

circular range annulus and later becomes unimodal as more

measurements are incorporated.

(a) t = 10 (b) t = 50 (c) t = 300

Fig. 4. Likelihood map progression using GPLVM path for the rightmost
node (magenta) in Fig. 3. The estimate quickly becomes a range annulus
centered around the middle of the map (the moving node’s starting location)
and later collapse into a single mode as more range measurements are
incorporated.
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Fig. 3. Photograph of Multispectral ultra-wideband ranging radio mounted on Pioneer robot (far left). The robot was teleoperated around the environment
to act as the moving target. Example run in 60m × 30m loop of mapping unknown node locations with GPLVM: ground truth location of target (left),
reconstructed path from GPLVM (middle), and estimated positions of radio nodes after occupancy grid mapping (right). Squares show actual stationary
node locations, circles show reconstructed node locations, and triangle shows starting position of mobile node.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that it is feasible to track a moving

target in a cluttered environment using very few ranging

radio nodes and no odometry information. We have presented

tracking methods for both known and unknown node loca-

tions, and we have demonstrated these methods in a complex

environment. We have incorporated our methods into a room-

level tracking framework that outperforms standard tracking

methods, and we have presented a method using mixtures

of Gaussians that removes outliers and yields better tracking

results than both simple Gaussian modeling and Gaussian

processes. These methods correctly locate the target in the

correct cell or an adjacent cell up to 98% of the time.

When the node locations are unknown, we have demon-

strated that GPLVM dimensionality reduction without odom-

etry followed by Bayesian occupancy grid mapping can

effectively locate radio nodes with on average 35% more ac-

curacy than an EKF-SLAM technique. Our GPLVM method

provides a course estimate of the target’s position that puts

it in the correct or adjacent cell 80% of the time.

Our method for reconstructing unknown node locations

outperforms EKF-SLAM [3] when odometry is unavailable.

These gains are likely due to the resilience of batch tech-

niques in the face of outliers and measurement bias. Since

the GPLVM framework reconstructs the path using a batch

process, outliers in the data and the consistent bias of the

range-only measurements are mitigated by the influence

of the other data. In contrast, the EKF-SLAM technique

maintains an online estimate of the world state. All prior data

is folded into this estimate, and a history is not maintained.

In this application, it is clearly beneficial to maintain this

history, and this leads to improved results with GPLVM.

For future work, we plan to refine the target’s dynamics

models to better incorporate motion constraints and to better

regain scale. More informed dynamics models will help

improve the accuracy of the reconstructed node locations

and the tracking accuracy after reconstruction. To better

model the sensor noise, it may also be possible to utilize

information from the floor plan. Since outliers tend to

occur around highly cluttered areas, these characteristics of

the environment may be incorporated into the algorithm.

Another extension is to generalize our decoupled method

for recovering unknown node locations to sensors other than

ranging radios. We believe that probabilistic dimensionality

reduction provides a powerful tool for tracking and SLAM

problems, which we plan to explore further.
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