
 
 

 

 

  

Abstract—We propose a new robotic task practice system 
designed to enhance the recovery of upper extremity functions in 
patients with stroke. Our system, ADAPT (ADaptive and 
Automatic Presentation of Tasks), which was designed in 
accordance to current training guidelines for stroke 
rehabilitation, engages the patient intensively, actively, and 
adaptively in a variety of realistic functional tasks that require 
reaching and manipulation. A general-purpose robot simulates 
the dynamics of the functional tasks. Based on the subject’s  
performance, a task scheduler adaptively selects a task and sets 
the task difficulty. The tool changer selects the tool 
corresponding to the selected task, a doorknob for instance. The 
low-level controller then implements the selected task with the 
desired difficulty on the robot during the robot-patient 
interaction. Our preliminary experimental results demonstrate 
the feasibility of our system. 

I. INTRODUCTION 
troke is the leading cause of disability among American 

adults. Over 80% of first-time strokes (infarctions only) 
involve acute hemi-paresis of the upper limb [1]. Because a 
substantial number of activities of daily living involve use of 
the upper extremities [2], rehabilitation of reach and grasp 
skills is critical for patients in their attempts to return to a 
reasonable quality of life [3]. 

Recognizing that intensive motor practice is beneficial for 
recovery of upper extremity functions [4-6], and that current 
medical practice does not adequately allow for the required 
training intensity [7, 8], a growing number of investigators 
have been developing robotic systems for the rehabilitation of 
upper extremities after stroke. In these systems, such as the 
MIT-MANUS [9], the mirror-image motion enabler robot 
(MIME) [10], the ARM-guide system [11], and the 
Bi-Manu-Track [12], the robot assists the movements of the 
affected limb. These robots can enhance performance and 
function in patients post-stroke by providing intensive, 
cost-effective, rehabilitation, e.g. [13, 14]. Recent 
developments include using robots that allow re-training of 
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multiple joints [15], adaptive algorithms that balance robotic 
assistance and patients’ active movements, e.g. [16], and 
EMG triggered robots [17].  

Although shown to be effective to some extent, these 
systems do not exactly parallel the role of rehabilitation 
therapists, who typically expend considerable effort to set up 
functional tasks that require a patient to actively engage in 
challenging reach and grasp practice [18]. To be effective, the 
tasks should be meaningful [19-21] and should involve the 
manipulation of real and functional objects. AutoCite [22], a 
semi-automated (non-robotic) system that allows patients to 
engage in the practice of such tasks, has recently been shown 
to be as effective as standard Constraint Induced (CI) therapy 
[23]. In AutoCite, however, the number of tasks cannot be 
increased easily, task selection and scheduling is manual, and 
task difficulty is not adjusted automatically. 

Here we propose a new system, ADAPT (ADaptive and 
Automatic Presentation of Tasks), that presents functional 
tasks automatically, that can accommodate an expanding 
number of tasks, and that allows the implementation of 
adaptive performance-based task scheduling and adaptive 
modification of task difficulty. As AutoCite, but unlike most 
other robotic systems, ADAPT does not move the patients; 
instead, it adapts the tasks, such that each patient can perform 
doable, but constantly challenging tasks. The system is 
designed for patients with some volitional motor capability of 
the arm and hand, as those patients benefit the most from 
intensive rehabilitation [3].  

The primary focus of this paper is to present an overall 
conceptual design, a control architecture, and preliminary 
results obtained with the current implementation of ADAPT. 

II. DESIGN OF ADAPT 

A. Overall conceptual design  
Fig. 1 presents an overview of the ADAPT system. A 

general-purpose robot simulates the dynamics of functional 
tasks. Based on previous performance, the task scheduler 
adaptively selects a task and sets the difficulty of the task. The 
tool changer selects a tool corresponding to the selected task, 
a doorknob for instance. The low-level controller then 
implements the selected task with the desired difficulty on the 
robot during the robot-patient interaction.   

B. High-level Controller: Adaptive Task Scheduler 
Adaptive task schedules: Although individual tasks can be 

scheduled sequentially, random scheduling of several tasks 
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has been shown to enhance motor learning performance, as 
measured in delayed retention tests compared to sequential, or 
blocked, scheduling [24, 25]. Random task scheduling 
however does not account for differences in difficulty between 
tasks. Depending on nominal task difficulty and skill of the 
learner, the rate of performance improvement varies from task 
to task for each learner. Accordingly, we recently showed that 
an algorithm that adaptively determines the number of trials 
for each task, based on learner’s performance, outperforms 
fixed random scheduling [26].  

Because manual change would limit the ability to 
implement adaptive random task schedules (in which tasks 
should be quickly changed) and limit the cost-effectiveness of 
the system, ADAPT is able to switch between tasks rapidly 
using a tool changer (see below) 

Adaptive task difficulty: The difficulty of each task is 
defined by parameters such as stiffness, damping, position, or 
range of motion. Challenging tasks, but not tasks that are too 
difficult or too easy, are most likely to elicit motor learning 
[27-30]. Challenging tasks also enhance motivation, which 
may in turn further enhance learning [31]. Because patients’ 
performance will usually improve during rehabilitation, and 
because re-learning evolves at different rates for each task and 
each subject, the challenge needs to be dynamically 
maintained. We recently showed in a learning experiment 
involving multiple visuomotor tasks that adaptive difficulty 
algorithms outperform fixed difficulty [26]. Thus, we adopt a 
similar approach to adapt task difficulty as a function of 
performance (see result) – furthermore, at each session, initial 
task difficulty depends on prior performance records and 
possibly the therapist’s input. 

Once the task has been selected, the tool chosen and 
mounted on the robot with the tool changer, and the task 
difficulty determined, the low-level controller simulates the 
dynamics of the task on the robot (see below).  

C. Low-level Controller 
Detailed structure of the low level controller is shown in Fig. 

2. Because we use a general-purpose robot that has low 
back-drivability, we used admittance control to compute the 
control signal for the motion response to external force. The 
control signal is the motor current, and is computed from the 
output of two feed-forward control modules (see Figure 2). 
The first module is a controller for motion without interaction 
force (motion model), and the second is for a controller for 
interaction force without motion (force model). We trained 
both modules trained off-line with Receptive Field Weighted 
Regression (RFWR) [32]. RFWR generates locally linear 
models, and combines them for the inverse dynamics 
prediction of the two modules 

The motion model is trained with a typical sinusoidal 
excitation without any interaction. In case of the force model, 
while the subject exerts force in the position controlled state of 
the robot, the exerted force and the current from the robot 
motor are recorded to be used as training data. The motion 
data (angle, angular velocity, angular acceleration) and the 
control current are regressed by RFWR to provide inverse 
dynamics of model of only motion model. The force model is 
regressed similarly with force data (torque) and the control 
current for the positioned control state. 

Our novel control architecture has three main advantages: 
First, learning the control currents directly allows accurate 
control even when, as in our system, the robot’s dynamics are 
unknown and when the control current is not proportional to 
the motor torque. Second, our modular controller simplifies 
the training of the controllers (compared to a combined 
controller) because separation of force and motion models 
allows us to train each model with fewer training data points. 
Third, the force module can be used for the implementation of 
“virtual walls” (which is required for some tasks such as 
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Fig. 1.  The ADAPT system. At each trial, the task scheduler adaptively 
chooses a task and its difficulty based on previous subject’s 
performance, prior practice records, and physical therapist’s input. The 
tool changing system automatically selects the tool corresponding to the 
selected task. The low-level controller computes the control current 
needed to simulate the desired task dynamics during robot-patient 
interaction.  
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Fig. 2. Low-level controller with admittance control scheme. The 
controller generates the desired motion in response to the external force 
by the subject. The measured external force is input to the trajectory 
generator that defines the dynamics of the functional tasks. Based on the 
dynamics of the task, the trajectory generator generates the ideal desired 
motion. f1 computes the control current for the desired motion. and f2 
computes the control current to compensate against the external force.
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turning a key), because the module can simulate infinite 
stiffness successfully. 

D. Robot and tool changer  
The current robot used in ADAPT (Fig. 3) is a reconfigurable 
robot from AMTEC Robotics [33]. It consists of a 3-DOF 
wrist mounted on a 1-DOF linear actuator. This configuration 
allows the system to present the end-effector at different linear 
vertical locations and to rotate the end-effector in almost any 
orientation. A 6-DOF ATI Force/Torque (F/T) sensor (MINI 
SI-580-20) is attached to the end-effector to measure 
interaction forces between the subject and the robot. The tool 
changer in ADAPT connects a functional task tool, such as a 
doorknob, to the F/T sensor. Encoders in the motor module 
provide position data of each joint. A Pentium-4 3.4Ghz PC 
with a Linux operating system (SUSE 10) receives the 
position data via a CAN bus, receives the interaction force 
data via a National Instrument A/D converter, and sends 
control commands via the CAN bus. 

Task tools such as a doorknob, a screwdriver, a jar, a faucet, 
keys, etc. are arranged in a tool rack, and when a task is 
scheduled, the robot re-positions the current tool and picks up 
another tool from the rack. A tool changer is locked or 
unlocked by a 4/2 way pneumatic valve (V5A-3341-BX1, 
MEAD corp), which is computer-controlled via RS-232C, a 
serial communication. The tool changer can switch between 
the tool in use and a tool in the tool rack automatically with the 
task scheduler in the PC. 

As shown in Fig. 3 the robot’s end effector is equipped with 
a master plate, and each tool with an interface plate from ATI 
corp. In the current version, four tools are arranged in the rack, 
and up to six additional tools can be included. A pneumatic 

system ensures the locking and unlocking of tools. The 
pneumatic system is automatically controlled via serial 
communication by the controller program in the PC. 

The tool changing process is demonstrated in Fig. 4. After 
the scheduler chooses a task, the 4 DOF robot positions each 
joint so that it can pick up the tool in the tool rack. Then, the 
PC sends a lock command to a 24 VDC relay circuit, which 
sets the direction of the air flow in the 4/2 way pneumatic 
valve so that the master plate of the tool changer docks with 
the tool plate. After the two plates are docked, the robot 
repositions to present the tool to the subject. When the task 
scheduler decides a new task to be practiced, the robot 
positions the current tool in the tool rack, picks up a new tool, 
and presents it to the subject. The subject is seated in a chair 
facing the robot with an in-between table, lays his/her hands 
on the table, and practices the tasks simulated by the robot. 

E. Safety 
Safety was a crucial issue in the design of ADAPT. From 

the initial robot design process, we made special efforts to 
guarantee operational safety. Our choice of design makes our 
robot safer than a traditional multi-DOF robotic arm because 
of the small overall workspace. The linear DOF is only used 
for tool positioning, not for task dynamics simulation. 
Furthermore, the patient is not strapped to the robot. 

For simplicity and safety reasons, we chose tasks that 
require movements around a single DOF during subject-robot 
interactions. Because many functional tasks in daily life (such 
as turning a key or door handle, screw driving, steering, 
opening a jar, turning a water faucet, wrist 
supination/pronation, etc.) need only a single rotary DOF, this 
configuration does not overly restrict the available number of 

                     
 
Fig. 3.  The robot and the tool changer in the current implementation of ADAPT. 
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tasks to practice. After a task is set up for presentation to the 
subject, the magnetic brakes that are built into the robotic 
articulations are engaged on the other three DOFs during 
subject–robot interactions. This single DOF method 
simplifies kinematics and dynamics computation, and the 
device never falls into the wrist-singular posture, which can 
occur in PUMA-like manipulators [34]. 

Several surveillance routines are implemented to limit the 
maximal torque output and cap the maximum velocity of the 
linear and rotational motors. Watchdog routines that 
continuously check for failure of the position and force 
sensors, computer crashes, and electrical failures 
automatically freeze the robot by engaging the magnetic 
breaks in all DOFs.  

An emergency red stop button can stop all robot operation 
and turn on magnetic brakes to disable any movement of all 4 
DOF of the robot. When voltage is applied to the coil in the 
magnetic brake composed of a permanent magnet and spring, 

the magnetic field of the permanent magnet goes low and the 
spring opens the brake. When power is cut by the stop button, 
the magnetic field recovers and the brake closes. This 
emergency button is accessible both to the subject with his/her 
less affected hand and to the therapist. The magnetic brakes 
can also be operated when the subject is not interacting with 
the robot. For example, during tool changing process, the 
subject will be instructed to have his/her hands on an on/off 
switch at chair arm, which turns on the magnetic brake to stop 
the movement of robot if the hands are off the switch. 

III. RESULTS 
We tested ADAPT01 (Version 1) with one healthy subject 

(we have not tested the therapeutic performance of the system 
at this stage). The dynamics of two tasks, doorknob turning 
and screw driving were simulated to demonstrate the 
performance of low-level controller. Then, we validated the 
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(c)                   (d)   

Fig. 5.  Stiffness simulation (a)(b), and damping simulation (c)(d) with ADAPT.  (a), torque versus angular displacement for stiffness simulation: 
measured data points (dot) stay near the desired stiffness (dashed, 1 Nm/rad)  (b), torque (dashed) and angle trajectory (solid) of stiffness simulation for 
one trial. (c), torque versus angular velocity for damping simulation: measured data points (dot) stay near the desired damping (dashed, 3 Nm /(rad/sec)). 
(d), torque (dashed) and angle trajectory (solid) of stiffness simulation for one trial.

     
     Fig. 4.  The tool changing process in the current implementation of ADAPT 
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overall functionality of the system, including the task 
scheduler and the tool changing system. 

We assumed that the dynamics of the doorknob could be 
described as a spring with constant stiffness (Fig. 5a). The 
torque versus angular displacement curve (dot) shows that our 
low-level controller can simulate the desired stiffness (dashed 
line) very precisely. In Fig 5b, the smooth torque and angle 
trajectories for one trial of doorknob turning demonstrate the 
stable performance of the low-level controller. Next, we 
assumed that the dynamics of screw driving could be 
described as constant damping (Fig. 5c and 5d). The torque 
versus angular velocity curve shows successful damping 
display performance of the low-level controller.  

 To test the overall functionality of ADAPT01, tasks were 
scheduled randomly and difficulty was updated adaptively 
based on performance by 

 
refDif ( t 1 ) Dif ( t ) ( 1 ( PE( t ) PE ))α+ = × + −         (1) 

where Dif(t+1) is next difficulty, Dif(t) is current difficulty, α 

is learning rate, PE(t) is current performance and PEref is 
reference performance for which the task is challenging – see 
[26] for details. Stiffness was controlling difficulty for the 
doorknob turning task and damping was controlling difficulty 
for the screw driving task. The range of motion, that is, how 
far the subject turned the knob or the screwdriver in a trial, 
was used as the index of performance PE(t). Equation 1 
ensured that PE(t) was maintained near PEref, which was here 
arbitrarily set to be difficult enough for the healthy subject to 
be challenged in these tasks. 
 The subject practiced a total 40 trials in random schedule 
with 20 trials per task. Whenever a new task was selected by 
the scheduler, the tool changer switched to a new tool. As 
shown in the random schedule of Fig. 6a, the tool changer 
switched tools thirty two times. In this preliminary test, the 
system did not experience any failure in tool changing. As 
shown in Fig. 6, the adaptive scheduler rapidly adapted the 
difficulty for both tasks and the subject’s performance 
converged to the reference performance in about 5 trials.  

IV. CONCLUSION AND FUTURE WORK 
A novel robotic task practice system, ADAPT, was 

designed in accordance to training guidelines for stroke 
rehabilitation of upper extremities. Our preliminary test with a 
healthy subject validated the feasibility of the system. Thanks 
to our novel low-level controller, the robot could precisely 
simulate the desired task dynamics with parameters specified 
by the adaptive scheduler. The preliminary test further 
demonstrated the functionality, robustness, and safety of our 
adaptive scheduler combined with the tool changing system.   

Although only two tasks (doorknob opening and screw 
driver motion) were implemented in the current version, 
ADAPT01, in future versions the robot will be able to present 
a large task repertoire by selecting from a flexible set of 
functional tools. These tasks, which will require active 
manipulation of concrete objects (e.g., turning a key or door 
handle, steering, opening a jar, turning a water faucet, wrist 
supination/pronation, etc.), will allow a large number of 
possible types of grasps (e.g, overhand, precision, lateral 
pinch, power) and individual finger motions. 

In the present implementation, the tasks were modeled with 
simple a priori determined dynamics equations. In future 
work, in order to increase the realism of each task feel, the 
dynamics of the tasks will be captured, as we described in [35]. 
Briefly, we will first record position and force data with real 
tools. We will then generate the force models using RFWR. 
After capturing and modeling the tasks dynamics, we will 
replay the tasks using fixed tools mounted at the tip of the 
robot as described here.  
While the realism of functional task is a crucial factor in 

task-oriented training for stroke rehabilitation, training on the 
robot should also be motivating. In this respect, our system 
can be largely improved. For instance, performing the two 
current tasks even with adaptive difficulty was not motivating 
to our subject. Moreover, the intermediate rest time was too 
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Fig. 6. Illustration of the function of the high-level controller. (a) 
Random schedule for two tasks. Details of 20 trials for each task are 
separately shown in (b),(c), which show how task difficulty is adapted 
to maintain challenging performance. (b)(c) Doorknob turning task & 
Screw driving task: the range of motion (cross) converges to the 
reference performance as stiffness (dot) or damping (dot) is increased.  
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short, causing the subject to fatigue in latter trials.   
Safety concerns were strongly addressed in the initial design 

process of ADAPT, and the subject did not feel threatened 
from the robot movement. However, to guarantee the safety 
measures, we need long-term, intensive, and systematic tests 
with more subjects.   

Once the current issues of the system have been solved and 
it has been fully tested with healthy subjects, we will begin 
pilot studies of efficacy and safety with patients who have had 
a stroke. 
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