
 

 

 

 

 

  

Abstract— This paper describes the design of a gravity 

balanced spatial orthosis. Previous works introduced planar 

mechanisms only and neglected friction. They relied on 

counterweight or auxiliary parallelograms. The main 

contributions of this paper are: (i) we succeed in designing a 

spatial (3D) mechanism and (ii) we analyzed the effects of 

friction. We designed a very simple system made with two 

pulleys and two springs in order to ensure gravity 

compensation. The system is in static equilibrium whatever its 

posture. It has three passive degrees of freedom at the shoulder 

and two at the elbow. A prototype of this orthosis is presented 

at the end of the paper. 

Keywords: rehabilitation robotics, orthosis, gravity-

balancing. 

I. INTRODUCTION 

n orthotis is an exoskeleton worn by a patient who 

cannot control anymore the motion of one or several of 

his/her limbs in a voluntarily manner. This happens for 

instance to patient suffering from cerebral palsy. It can also 

be worn by persons having experienced a stroke to recover 

their strength and mobility, or for those who have control but 

lack muscular force. Restauring these functions is classically 

the job of physical and occupational therapists, but since a 

few years, several prototypes of such devices have been 

designed and experienced in labs, mainly in the US and 

Japan [1]. These rehabilitation robots are intended to 

exercise limbs of patients in order to retrain voluntary 

movement control or to improve their strength. Only a few 

commercial devices are available, among which for instance 

the InMotion robot of Interactive Motion Tech. Inc., the 

Lokomat from Hocoma, and very recently, the ReWalk from 

Argo Medical Technologies Ltd. 

For many patients with upper limb disabilities, it would be 

helpful to provide them with an orthotic device 

compensating for gravity that would allow them to carry out 

routine functions, such as eating for instance, with their 

remaining muscle strength. This is the objective of the work 

presented in this paper.  

There are three degrees of freedom (DOF) in the human 

shoulder and two in the elbow. The mechanisms presented in 

the literature (see section II) have generally two DOF for the 

shoulder and one for the elbow (sometimes two). They use a 

planar mechanism rotating around a vertical axis at the 

shoulder, which allows the patient to move his hand to 

 
 

wherever location but does not allow him to use all his 

muscles. The rotation around a vertical axis has no effect on 

gravity compensation. 

The mechanical device that we have developed is 

completely passive. It makes use of springs and pulleys for 

gravity balance. In the sequel, by analogy to the human 

body, we will denote the body next to the frame by “arm” 

and the other one by “forearm”, the passive joint between 

the arm and the frame by “shoulder” and that between the 

arm and the forearm by “elbow”. This mechanism has three 

DOF at the shoulder and two at the elbow. However, three 

parameters are enough to describe mathematically the 

positions of the centers of masses of the arm and the 

forearm. The device is kinematically redundant. We will 

make use of significant parameters such as extension of the 

shoulder elbow and abduction of the shoulder to modelize 

the orthosis. In the second section, we review previous 

works presented in this field. In the third section, we present 

the design of the orthotic device and its mechanical 

properties. The fourth section is devoted to the analysis of 

the effects of the friction on the device. Then, we present a 

numerical application and a CAD study of the device. The 

paper ends by a conclusion and propositions of further work. 

II. GRAVITY BALANCING 

A device is said to be gravity balanced if it is in 

indifferent equilibrium [2]. Mathematically, this condition 

means that the total potential energy of the device is 

invariant whatever its configuration. Physically, the potential 

energy is constant if the centre of mass of the device is 

inertially fixed. The potential energy can also remain 

invariant if elastic elements compensate for variations due to 

the motion of the masses. 

The center of mass can be inertially fixed when: 

(a) a countermass on each body of the mechanism is used 

to inertially fix the center of mass of the system [3,4], 

(b) auxiliary parallelograms designed from the knowledge 

of geometry and inertia properties are added to physically 

determine the center of mass of the device [5]. 

This procedure is more intuitive but its drawback is that it 

increases the dynamic inertia of the device, which pushes 

designers to use elastic elements. Previous works on design 

with spring balancers may be classified as follows: 

(a) Balancing with springs directly connected with 
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links[6-9], 

(b) Balancing with cable and pulley arrangement [10-14], 

(c) Balancing by using an auxiliary mechanism, which 

can be a linkage [15-20], a cam [21,22] or a gear train 

[23,24]. 

Unfortunately, in the literature most spring balanced 

mechanisms are planar. In [25], a hybrid methodology for 

gravity balancing of spatial robotic manipulators is 

presented. It makes use of auxiliary parallelograms to first 

locate the center of mass, and springs are also connected to 

this point to make the potential energy invariant with respect 

to configuration. This solution can be implemented on a 

manipulator but not on an orthosis because it is too bulky. A 

spatial two-DOF serial manipulator was studied for gravity 

balancing in [25]. The authors proved that for this class of 

manipulators, the conditions for gravity balancing require 

that the end points of the springs move relatively to the 

mechanism, i.e., be independently actuated. This would 

require extra actuators to be mounted on the system, which 

is undesirable. These different reasons led us to design a 5-

DOF mechanism balanced by two springs. 

III. DESIGN OF THE BALANCED ORTHOSIS 

The problem has two key issues: the equilibrium of the 

forearm and the equilibrium in 3D. In fact, in order to 

balance the forearm, a torque and a force have to be applied 

at the elbow. The force is constant and equal to the forearm 

weight. The torque is depending on both the forearm and 

arm orientations with respect to gravity. Therefore, the 

problem is to design a mechanism that balances gravity on 

the forearm whatever the orientation of the arm. 

A. Design of the mechanism 

The bodies (1), (2) and (3) are mounted on a support (0) 

(figure 1) and connected to it with a spherical joint. The arm 

(1) and forearm (2) are connected together by a revolute 

joint Rj2
. Two springs are used to compensate for gravity. 
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Figure 1:Kinematic scheme of the device and notations 

The spring S1 is used to equilibrate the arm when 

developing a torque around axis x1 of the revolute joint Rj1
. 

This torque depends on the orientation of the arm and the 

forearm with respect to gravity. The spring S2 is used to 

equilibrate the forearm when developing a torque around 

axis x2 of the revolute joint Rj2
. A pulley P2 is pinned to the 

forearm. The other pulley P1 is connected with the revolute 

joint Rj1
 to the arm (1) at O1. The axes x1 and x2 of both 

pulleys P1 and P2 remain parallel. The same torque is 

applied on both pulleys that have exactly the same motion. 

The mechanism described so far is planar. In order to 

provide 3D motion, we introduced a spherical joint at the 

shoulder. Finally, in order to allow an axial rotation of the 

forearm, we added a revolute joint Rj3 
along its main axis. 

Consequently, the suggested mechanism has five degrees of 

mobility, but relies on two springs to balance gravity. In the 

following sub-section, we discuss the dimensioning of the 

springs. 

B. Spring dimensioning 

The total potential energy is invariant if the variation of 

the gravitational potential energy is equal and opposite to 

that of the elastic potential energy 

The variation of the gravitational potential energy is the 

work of the device weight during motion. Mathematically, 

this work is the sum of the product of each weight by the 

vertical travel of the corresponding center of mass. We use 

two traction springs with zero initial length (the assembly is 

shown is the last section), the variation of their elastic 

potential energy being proportional to the sum of their length 

squares. We have to locate the centers of mass for both 

bodies (arm and forearm) and the extremities of the springs 

in order to developing an analytical expression for elastic 

and gravitational potential energies. These expressions have 

to be identical whatever the configuration. The coefficients 

of each factor have to be the same in both expressions. That 

allows us to identify the stiffness and to locate the 

extremities of each spring. 

In order to carry out this computation we need three 

parameters: the extension of the elbow, the abduction and 

extension of the shoulder. In what follows, let us denote 

these angles by θ2, φ and θ1 respectively. Let (x2y2z2), 

(x1y1z1) and (x0y0z0) be the coordinate frames associated to 

the forearm, the arm and the support respectively. The 

homogeneous transformation matrices between these 

coordinate frames are: 

2 2 1

2 22

1

cos sin 0

sin cos 0 0

0 0 1 0

0 0 0 1

l

T

θ θ

θ θ

− 
 
 =
 
 
 

  (1) 
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cos sin 0 0

cos sin cos cos sin 0

sin sin sin cos s 0

0 0 0 1

T
co

θ θ

ϕ θ ϕ θ ϕ

ϕ θ ϕ θ ϕ

− 
 

− =
 
 
 

 (2) 

 

The homogenous coordinates of G1 and G2 in the 

reference frames (x1y1z1) and (x2y2z2) respectively are: 

[ ] 1

1 1 2
0 0 0

T
l

O G  =
 

, [ ] 2

2 2 2
0 0 0

T
l

O G  =
 

 (3) 

then in frame (x0y0z0): 

[ ] [ ]

( )

( )( )
( )( )

1 2 1 1

1

1 2 1 1
0 1

1 1 1 1 1 0 2

1 1 2 1 1

2
1

2
1

1 2

2
2

2
2

2 2

cos cos
cos

cos sin sincos sin
,

sin sin sin sin sin

1
1

l
l

l
l

l l

l

l
O G T O G O G

l

θ θ θ
θ

ϕ θ θ θϕ θ

ϕ θ ϕ θ θ θ

 + +   
   

+ +   
 = = =    

   + +   
    

 

  (5) 

Let us measure the variation of the gravitational potential 

energy between the initial configuration θ1=π/2, θ2=φ=0 and 

an arbitrary configuration. The variation is: 

( )
1 21 2P G G

E m y m y g∆ = ∆ + ∆  (6) 

( )( )( ) ( )2 2 1

2 1 1 2 1 1 1 12 2 2
cos sin sin 1 cos sin

l l l
m l l m gϕ θ θ θ ϕ θ= + − + + + −  

  

Let 
1

f  and 
2

f be the coordinates of the fixed extremities 

of the first and second springs respectively: 

1 2

1 1 2 2
,

0 0

u u

f v f v

   
   

= =   
      

  (7) 

The coordinates of the moving extremity of the first 

spring, denoted as 
1'
f , is: 

1 1

1 1

1 1

1'

cos

cos sin

sin sin

h

f h

h

θ

ϕ θ

ϕ θ

− 
 

= − 
 − 

 (8) 

On the other hand, we know that vectors [ ]2 2
O G  and 

0 2'O f    are always parallel. In order to get the coordinates 

of G2, we have to replace l1 by 0 and l2/2 by –h2 in [ ]0 2
O G , 

yielding: 

( )
( )
( )

2 1 2

2 1 2

2 1 2

2'

cos

cos sin

sin sin

h

f h

h

θ θ

ϕ θ θ

ϕ θ θ

 − +
 

= − + 
 − + 

  (9) 

Then, the variation of the elastic potential energy is: 
2 2

1 1' 2 2'1 2

1

2sEp k f f k f f
 
 
 

∆ = +
������� �������  (10) 

( )

( ) ( )( )

2 2 2
1 1 1 1 1 1 1 1 1 1

2 2 2
2 2 2 2 2 2 1 2 2 2 1 2

2 cos 2 cos sin
1

2 2 cos 2 cos sin

k u v h u h v h

k u v h u h v h

θ ϕ θ

θ θ ϕ θ θ

 
 
 
  
 

+ + + +
=

+ + + + + + +

 

The identification of equations (6) and (10) gives: 

2 1

1 11 2 2

1

1 1

2

2 222 2

2

2
0

2

2

m m
k glu u

h
v h

m
k glv h

h

+
== =

= −

== −

 (11) 

The stiffness of both springs is independent of arm and 

forearm configurations. As indicated in equation 11, k1 and 

k2 are function of the lever arms h1 and h2. For constant h1 

and h2, k1 and k2 are constant. We can therefore make use of 

two linear springs. The system will be in indifferent 

equilibrium. Moreover, three parameters are enough to 

describe the configuration of the device. Indeed, the rotation 

around the y0 have no effect on the weight balancing. 

C. Balancing forces in the spherical joint 

The device is in indifferent equilibrium. This means that 

the mechanism is in static equilibrium whatever the posture 

of the arm. In order to dimension the components, we 

compute the internal loads. The most sensitive parts are the 

passive joints. A spherical joint is free of torques, however it 

is subject to variable forces. 

The spherical joint is the only connection between the 

device and the frame. The force applied on the spherical 

joint is the resultant of the loads applied on both rods. These 

forces are the weight and the spring tensions. 

( )
( )

( )
( )

1 1 2 1 2

1 2 1 1 1 1 2 2 2 1 2

1 1 2 1 2

0 cos cos

cos sin cos sin

0 sin sin sin sin

h h

F m m g k h h k h h

h h

θ θ θ

ϕ θ ϕ θ θ

ϕ θ ϕ θ θ

 +   
    

= + − + − + + − + +    
     +     

∑
��

 (12) 

 

 
Figure 2: Force along the x0-axis(N), angles are in deg 

 
Figure 3: Vertical force (N), angles are in deg 
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Figure 4: Force along the z-axis (N), angles are in deg 

 
Figure 5: Total force on the spherical joint (N), angles are in deg 

The force along the x-axis depends on the extension 

without the abduction. That can be explained by the fact that 

φ is the rotation around x0. Consequently the variation of φ 

doesn’t affect the component of the load along x0. 

The force along y0 (vertical component) is negative 

everywhere. It has a minimum absolute value (maximum 

algebric) for φ=0, θ1=π/2, θ2=0: for this configuration the 

device is vertical and springs are in rest, the load is the 

weight only. The force is in its maximum absolute value 

when φ=0, θ1=-π/2, θ2=0: for this configuration the tensions 

of both springs are maximum vertical and downward. The 

load is the sum of all the forces. For φ= π/2, the vertical 

force is constant whatever the values of θ1 and θ2. Indeed, 

when φ= π/2 the device is horizontal and the tilt doesn’t 

change the vertical load. The lengths of both springs remain 

constant and the vertical load too. 

The force along z0 can be negative or positive depending 

on θ1 and θ2. However the amplitude of this force depends 

on φ and this force becomes null when φ=0. This force is 

due to the spring tensions. When φ=0 the device is in the 

plane (x0y0) and there is not any force along z0. The 

maximum value of this force is for φ= π/2, θ1=π/2, θ2=0. In 

this case, the device is collinear with z0,  and the tensions of 

both springs have their maximum horizontal components. 

The maps for the norm of the force have a variation 

similar to the absolute value of the component along y0. The 

maximum is reached when φ=0, θ1=π/2, θ2=0 but never 

exactly for these values. In fact, for these value the y0 

component is maximum but not the x0 and z0 ones. 

IV. FRICTION EFFECTS 

To our knowledge, all previous works neglected friction 

(section II). In this section, the friction effect is modeled. 

The motion of a handicapped person can be considered as 

quasistatic. Hence, viscous friction is neglected but dry 

friction is taken into account. The friction increases the 

difficulty of motion for the patient, but it decreases the 

unbalance of the device. In the previous section, we found a 

specific stiffness for each spring according to each lever 

arm. We will see in the sequel that a range of stiffness 

corresponds to each lever arm. In a first assumption, let us 

consider friction as a constant torque. The forearm is in 

equilibrium. The acting torque at O2, along every direction, 

is less than the friction torque in both ways. The sum of 

torques applied at O2 without friction is: 

( )
2

' '

/ 2 2 2 1 2 2 2 2O O G m g O f k f fµ = ⊗ − + ⊗∑
������ �������������� �

   

( ) ( )2 22 2
2 2 2 1 2 2 2 2 1 2

sin sin cos
2 2

l l
m g k h i m g k h kϕ θ θ θ θ
   
   
   
   

= − + − − +
��  (13)  

The torque around the axis passing through O2 is given 

by: 

( )
2

22
/ 2 2 2 1 2. cos cos

2
O

l
z m g hµ θ θ ϕ

 
= − + 
 

∑
� �

  (14) 

The forearm is in equilibrium if: 

( )22
2 2 2 2 1 2 2cos cos

2

l
C m g k h Cθ θ ϕ

 
− ≤ − + ≤ 

 
 (15) 

( ) ( )
2 2 2 2

2 2 22 2 2 2

2 2 1 2 2 2 1 22 cos cos 2 cos cos

l C l C
m g k m g

h h h hθ θ ϕ θ θ ϕ
⇔ − ≤ ≤ +

+ +

  

We can verify that if the friction is null, equation (15) 

reduces to equation (11). The arm is in equilibrium if the 

sum of moments around O1 is less than the friction torque in 

all directions. The sum of torques applied at O1 without 

friction is: 

( ) ( )
2

' ' ' '

/ 1 1 1 1 2 2 1 1 1 1 1 1 2 2 2 2O
O G m g O G m g O f k f f O f k f fµ = ⊗ − + ⊗ − + ⊗ + ⊗∑

� � �

��� ��� ��� ������ ���

 

( ) ( ) ( ) ' ' ' '

1 1 1 1 2 2 2 2 1 1 1 1 1 1 2 2 2 2
O G m g O O O G m g O f k f f O f k f f= ⊗ − + + ⊗ − + ⊗ + ⊗

� �

��� ��� ��� ������ ��� ����

 

( ) ' '
1 1 1 2 1 2 1 1 1 1 1

21 2
1 1 1 1 1

2
sin sin cos

2

m O G m O O g O f k f f

m m
l g k h i kϕ θ θ

        

= − + ⊗ + ⊗

+
= − −

������ ������������� ������� �

��

 (16)  

Two torques have to be considered, the torque around  z2 

and the torque around x0. Taking friction into consideration, 

the arm is in equilibrium around z2 if and only if: 

2 1 2
1 1 1 1 1 1

2
cos cos

2

m m
C k h l g Cθ ϕ

+ 
− ≤ − ≤ 

 
 (17) 

1 2 1 1 2 1
1 1 12 2 2 2

1 1 1 1 1 1

2 2

2 cos cos 2 cos cos

m m C m m C
l g k l g

h h h hθ ϕ θ ϕ

+ +
⇒ − ≤ ≤ +   

The arm is in equilibrium around x0 if and only if: 

2 1 2
1 1 1 1 1 1

2
sin sin

2

m m
C k h l g Cϕ θ

+ 
− ≤ − ≤ 

 
 (18) 

1 2 1 1 2 1
1 1 12 2 2 2

1 1 1 1 1 1

2 2

2 sin sin 2 sin sin

m m C m m C
l g k l g

h h h hϕ θ ϕ θ

+ +
⇔ − ≤ ≤ +   

Without friction, for each hi corresponds a specific 

stiffness of the corresponding spring. With friction taken 

into account, the stiffness can be chosen inside an interval. 

The width of this interval depends on the configuration of 
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the orthosis. We can see easily that the minimum width is: 

( ) ( )1 2 1 1 1 2 1 1

12 2

1 1

2 2 2 2
22 2

2 2

2 2 2 2

2 2

2 2

2 2

m m l g C m m l g C
k

h h

mgl C mgl C
k

h h

+ − + +
≤ ≤

− +
≤ ≤

 (19) 

Stiffness chosen inside these intervals ensures the 

equilibrium whatever the configuration of the orthosis. We 

can see that, for cos 0ϕ =  and 
1

sin 0θ =  simultaneously, 

the device is in static equilibrium whatever the stiffness of 

both springs. The asked question in the following is: is there 

a domain of angles where the friction is sufficient for 

insuring static equilibrium? 

The device is in equilibrium without springs if: 

( )
2 2

2 2 2

2 2 1 2

1 2 1
12 2

1 1 1

1 2 1

12 2

1 1 1

0
2 cos cos

2
0

2 cos cos

2
0

2 sin sin

l C
m g

h h

m m C
l g

h h

m m C
l g

h h

θ θ ϕ

θ ϕ

ϕ θ

− ≤
+

+
− ≤

+
− ≤

 (20) 

The limit is when the three equations equal zero, yielding: 

( ) ( )
( )

1

1

1 2 1

4
sin 2 sin 2

2

C

m m gl
ϕ θ= =

+
 (21) 

Four combinations of solutions can exist: 

( )

( )

1

1 2 1

1

1

1 2 1

2

2 1

2 2

41

2 2

41

2 2 2

2

cos

C
Arsin

m m gl

C
Arsin

m m gl

C
Arcos

m gl

ϕ

π
θ

θ θ
ϕ

=
+

 
= ± −  + 

  
= ± −   

  

 (22) 

According to the physical parameters, we could define the 

domains where the system is in equilibrium without springs. 

We can remark that without friction this domain is reduced 

to the vertical position of the device. In this case three 

combinations correspond to a non-stable equilibrium (at 

least one body is above the passive joint) and the fourth to a 

stable one. To conclude, friction increases the effort required 

to move the device, but at the same time decreases the 

unbalance of the device. 

V. APPLICATION 

Let us consider a system for a handicapped person 

weighting 80Kg and 1.8m tall. The anthropometry ratios 

give [26]: 

1

2

1

2

0.028 80 2.24

0.016 80 1.28

0.186 1.80 0.33

0.146 1.80 0.26

m Kg

m Kg

l m

l m

= × =

= × =

= × ≈

= × ≈

 (23) 

N.B.: Most of the time, these ratios are not respected for 

handicapped people, and special adjustments are required. 

Without friction the relations between h1, h2, and k1, k2 

are: 

1 22 2

1 2

5.78 1.65
k k

h h
= =  (24) 

 

Figure 6: Stiffness of each spring with respect to the corresponding 

lever arm 

Equation (24) gives two curves that can be used to 

compute h1 and h2 according to k1 and k2. The design 

constraint is that each selected spring must have a minimum 

of elongation equal to twice the corresponding lever arm: 

2
i i

l h∆ =  (25) 

We can use two springs that have the following 

characteristics: 

Table 1: Mechanical characteristics of the springs 

Spring 
Stiffness Ki 

(N/m) 

Elongation 

allowed 

Initial 

tension Fi(N) 

R1 200 0.560m 1.0 

R2 100 0.300 m 0.276 

 

For this parameters Equation (24) gives: 

1 2

5.78 1.65
0.169 0.128

202 100
h m h m= = = =  (26) 

Both values are acceptable. Both springs are pre-stressed, 

and the initial lengths are not null. In order to compute the 

initial configuration we have to compute the initial elastic 

potential energy of both springs. This energy is given by the 

formula: 
2

0
2

i

i

i

F
Ep

K
= . (27) 

Consequently: 
2

10

2

20

1.01
2.54 3

2 200

0.276
3.8 4

2 100

Ep E J

Ep E J

= = −
×

= = −
×

. (28) 

We have 2 equations and three unknowns (φ, θ1, θ2). 
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Assuming that φ0=0, we can compute: 
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 (29) 

Based on these values, we designed the CAD model 

shown on figure 7. This device aims at verifying that static 

equilibrium is achieved. The spring guides have variable 

lengths. They are connected to the support and to the moving 

parts by spherical joints. The design of the real arm orthosis 

(where the classical spherical joint will be replaced by a 

joint not interfering with the real shoulder) will be done in 

further works. 

 
Figure 7: Preliminary CAD for the orthosis 

VI. CONCLUSIONS AND FURTHER WORKS 

In this paper, we have presented the design of gravity 

balanced device, which can be used as an upper-limb 

orthosis for an handicapped person. The device is 

kinematically redundant, because it has five degrees of 

freedom but three parameters are enough to define its 

posture. This redundancy allows the patient to use more 

muscles in his rehabilitation. The device uses two springs 

and a system of cable-pulleys for gravity compensation. We 

carried out the dimensioning of the springs, and we 

enlightened that two springs are sufficient to balance the 

device. We computed the forces in the spherical joint in 

order to be able to dimensioning it. We noticed that static 

friction has two effects. On the one hand, it increases the 

forces required from the patient to move the device, but on 

the other hand it makes the design easier as spring rigidity 

must not be so accurate, and it decreases the unbalance of 

the device. Finally, a case study was carried out, and 

numerical computation was done. In this paper, we 

considered the friction as constant torque, however it is a 

linear function of the force in every direction. The variations 

of this torque can give interesting aspects about the balance 

of the device. Moreover, the deformation of the device were 

neglected, mostly that of the lever arms. The study of these 

aspects and the design of a real prototype will be the subject 

of further works. 
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