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Abstract— There are various methods to control a powered
AFO. As different as they are in their approach each of them
has certain advantages as well as difficulties. What is still
needed is a robust control concept that meets the requirements
for ankle gait assistance. A new, stiffness-control model has
been developed that divides the stance phase of gait into five
zones using either velocity or stiffness control for each zone.
The design and implementation of this new control algorithm
as well as some first test results are presented.

I. INTRODUCTION

A great number of people will benefit from a powered
ankle-foot orthosis. The applications vary from rehabilitation
purposes using a treadmill to wearing an AFO in order to
perform daily tasks in everyday life. One large group that will
use a powered AFO are stroke survivors. Over 5.7 million
people suffer from a stroke in the United States; this does
not include patients of post-polio, multiple sclerosis, spinal
cord injury or cerebral palsy [1],[2].

To make a powered AFO easily commercially available,
one does not only need a reliable, safe and energy efficient
design, but also simple and yet sophisticated controls for the
device. Our initial systems have used simple position control
of the motor with a predefined and adjustable gait pattern as
the reference command.

In this paper, the advantages and drawbacks of the existing
control concepts are shown. There is a need for more
sophisticated control models. The design and implementation
of one such advanced model will be presented. In the
first section, a mathematical analysis will provide a basic
understanding of the plant that is controlled as a background
for the subsequent sections.

“There is a marked lack of published quantitative
results on the performance of the active orthotic
devices that have been developed. Considering this,
one is left to wonder what real advantages of these
complicated expensive systems really are.” [1]

Secondly, as stated in the above quote there is a lack
of published data on powered AFO devices. Therefore, test
results with different control concepts will be shown, which
emphasize our control models.
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Fig. 1. Latest Version of the Robotic Tendon AFO

II. ROBOTIC TENDON

The Robotic Tendon consists of a DC motor in series with
a custom threaded lead screw and spring. Fig. 1 shows the
latest version of the Robotic Tendon AFO, which fits around
a person’s shoe for fast and easy attachment and detachment.
With only 0.5kg for the actuator alone and 1.75kg for the
system as a whole, it is a very light-weight design and is
comfortable to wear. The currently used electronic structure
consists of an Advantech 650MHz PC-104 computer with
512MB on board memory as a well as a Multifunctional
I/O board from Sensoray Co. The current for the RE-30
motor is provided by a custom designed 160 Amp single
motor controller developed by Robotics Group Inc. This
controller also provides a measurement of motor current
for true electrical power calculations. A digital incremental
motor encoder is used to determine the position of the lead
screw; an additional absolute angular encoder measures the
position of the output side of the spring and ankle position.
Force sensors attached to an insole that is inserted in the
person’s shoe are used to determine heel strike and toe
contact states. Finally, to control the position of the nut on
the lead screw a model for the amplifier and the DC motor
is used, see Fig. 2.

A. Amplifier Model

Generally, a motor controller takes either an analog voltage
or a pulse-width modulated signal as input and converts
this signal into the correct armature voltage for the motor.
The motor controller of the Robotic Tendon takes an analog
voltage from 0 to 2.5 volts (forward) and 2.5 to 5 volts
(reverse) as input and provides 24 volts as output for the
motor. We therefore can use a gain Kc as a simple model
for the motor amplifier.
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Fig. 2. Model of the Plant
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Fig. 3. Electric Diagram for a DC Motor

P1(s) =
Ua(s)
Uc(s)

= Kc (1)

Herein, Uc(s) denotes the control voltage sent to the
amplifier and Ua(s) denotes the armature voltage of the
motor, given from the amplifier, see also Fig. 2.

B. DC Motor Model

Fig. 3 shows the electric diagram for a standard DC motor.
Generally, a DC motor has a resistance Ra due to the wiring
as well as an inductance La due to the rotor. The rotation of
the rotor due to the electromagnetic force at the same time
causes the induction of a voltage which is called back emf
(back electromotive force), eb in the diagram. Kirchhoff’s
voltage law for Fig. 3 yields

La
dia
dt

+ Raia + eb = ua . (2)

Applying Lorentz’s and Faraday’s laws yields the follow-
ing equations for the torque T and back emf eb, whereas
Kt = lBr1, Ke = r2Bl and [Kt] = Nm/A, [Ke] =
V/rpm. These constants can usually be found in the specifi-
cation sheet of a motor. The vectors are considered as being
normal to each other to simplify the equations [3].

T = Ktia (3a)

eb = Keω (3b)

Newton’s second law of motion for the movement of the
load gives us the dynamics of the load with J being the
overall inertia seen by the motor.

Jω̇ + bω = T (4)

After taking the Laplace Transforms of the equations and
substituting them into each other, the following transfer

TABLE I
PARAMETERS FOR THE 2nd GENERATION ROBOTIC TENDON ACTUATOR

Parameter Value Unit
Kc 9.6 1
Kls 1.27 mm/revolution
Kt 25.9 mNm/A
Ke 0.00271 V/rpm
Ra 0.611 Ω
La 0.12 mH
J 681 gcm2

b 0.0065 kgm2/s

function from the motor voltage ua to the shaft velocity ω
can be derived.

P2(s) =
Ω(s)
Ua(s)

=

=
Kt

LaJs2 + (RaJ + Lab)s + Rab + KeKt

(5)

Given the parameter values, the transfer function can be
derived from the control voltage uc to the nut position y.
Kls is dependent on the pitch of the lead screw and has the
unit mm/revolution.

Y (s)
Uc(s)

=
KcKtKls

s (LaJs2 + (RaJ + Lab)s + Rab + KeKt)
(6)

Given the actual values for each of the parameters one
can use this transfer function to design a controller for the
system. For the 2nd generation Robotic Tendon actuator the
parameters shown in Table I were found.

Since the terminal inductance La is very small, the fol-
lowing approximate transfer function from Uc to Y can be
used to describe the system.

Tucy ≈
KcKtKls

s (RaJs + Rab + KeKt)
· 2/∆− s

2/∆ + s
(7)

Note, an additional term was added to the transfer func-
tion. This term models the time delay that one will find in
any real world system. This time delay results from signals
being processed and the magnetic fields being generated until
the motor finally reacts. The time delay is modeled using the
Padé1 approximation and the parameter ∆ was found to be
0.008.

1The Padé approximation uses the following linear expression to approx-
imate the non-linear time delay in the s-domain e−as ≈ 1−as/2

1+as/2
.
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C. Short Analysis of the Model

From (7) it can be seen that the plant has poles at

s = 0, −Rab + KeKt

RaJ
, − 2

∆

and that the system will be unstable due to the pole at the
origin. The open-loop step responses of the simulated model
with the parameter set provided in Table I and the real system
can be seen in Fig. 4.

Using basic root locus theory, one can find the possi-
ble controller structures that will provide stability for this
system. Already a proportional controller can stabilize the
system; however, for improved performance one may want
to add a differential and/or integral term. Also, the plant
already has an integral part included, which gives the closed-
loop system the ability to follow step reference commands.
An I-controller will never be able to stabilize the system.

III. EXISTING CONTROL MODELS

In this section basic control methods are presented and
analyzed. Fig. 5 shows a schematic of the mechanical linkage
for a Robotic Tendon.

A. Lever Control

In this control law, the actual lever position la is measured,
for instance, with a linear potentiometer and then subtracted
from a given reference command r. Equation (8) expresses
the described control law using a PD - Controller with uc

being the control voltage sent to the motor amplifier.

uc = Kp (r − la) + Kd

(
ṙ − l̇a

)
(8)

This simple control law can easily be implemented and
tested. However, since the controller is controlling the output-
side of the spring, it will force the user to follow the pattern
given by r. The user has no other choice than move in the
same pattern as the robot.

Fig. 4. Step Responses for Simulated Model and Real System
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Fig. 5. Model of the Robotic Tendon

B. Nut Control

A second possibility is to control the position of the nut y,
which is the backside of the spring. The actual nut position
ya can easily be measured with a motor encoder and then
subtracted from a given reference command r. Equation (9)
expresses the described control law using a PD - controller.

uc = Kp (r − ya) + Kd (ṙ − ẏa) (9)

Because we are now controlling the input side of the
spring, this means that the spring can act as a safety device
and can compensate for small errors of the human or the
robot, which highly increases wearer comfort.

Therefore, nut control is a very robust and safe control
method and good test results in terms of power output and
input are achieved with this method [4],[5]. Fig. 6 shows
the kinematics for one gait cycle. It can be seen that the
controller does its job very well and although the lever is
open-loop controlled, the resulting path is still close to the
curve found in theoretical texts for ankle gait kinematics [6].
Fig. 7 shows the measured mechanical input (nut) and output
(lever) power for one gait cycle. Note that the test was
performed with an able-bodied subject with a body weight
of 65kg and a walking speed of about 1m/s. The robot
is designed for 50% gait assistance. It can be seen that
power output is greater than power input because the spring
stores and releases energy. The ratio is Pout/Pin ≈ 2.12.
A reduction of required motor power significantly reduces
required motor size and weight.

However, limitations are reached as soon as optimization
of the controller for certain stages during gait is desired.
Other limitations include changing the reference command,

Fig. 6. Kinematics of One Gait Cycle
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Fig. 7. Mechanical Power Input and Output of One Gait Cycle

which essentially is a gait pattern, to adjust itself for different
walking speeds or different activities such as walking versus
stair climbing.

The first approach to this problem is to adjust the nut
profile in its duration in time as described in [4], [5]. One
approach to adjust the profile is by fitting a polynomial curve
through nut profiles with different durations and then find a
mathematical correlation between them.

Generally, it can be said that the amplitudes of plantarflex-
ion and dorsiflexion become smaller with lower speeds. In a
second approach, the nut profile is adjusted not only in its
duration in time but also in its amplitude as shown in Fig. 8.
Note that with increasing speed the pattern shrinks in time
(i.e. ∆t2 ≤ ∆t1) while its amplitude increases (∆y). This
method works very well, however, a few difficulties remain.

Firstly, the controller cannot be optimized for different
stages during gait or for different situations. One can easily
imagine that, as soon as a person is walking over uneven
ground instead of on a treadmill, the whole profile will
change as well. Secondly, this method will always be one
gait cycle too late, since it uses the stride time of the last
gait cycle to adjust the current gait cycle.

IV. THE ROBUST CONTROL CONCEPT

The discussion of different control laws in the previous
section has shown that very good results with the existing
control models, in particular with nut control, were achieved
but that we desire to eliminate some of their disadvantages.
The theoretical foundation for a very promising new method
has been developed by Sugar and Hollander [7], [8]. Their
approach is a mixture between stiffness control and velocity
control. They suggest to split the stance phase of gait into
five distinct zones and then set the stiffness or velocity for
a certain phase.

A. Equilibrium Controlled Stiffness

In the diagram of Fig. 5, the external force can be
determined.

F = −Kact · (l − y − d) (10)

F is the force applied at the end of the spring whereas
d denotes the free length of the spring. Shown earlier by
Sugar [7], one can develop a relationship for the motor

Fig. 8. Nut Profile adjusted in Time and Amplitude

position that allows the device to exhibit the behavior of any
desired value of stiffness. The following equation describes
this relationship.

F = −Kdes · (l − l0) + fdes . (11)

Herein, Kdes denotes the desired stiffness; l0 is the virtual
home position and fdes denotes the simulated preload. This
can be substituted into (10). Solving for the motor position
y yields the required control law.

y =
(

1− Kdes

Kact

)
· l +

Kdes

Kact
· l0 +

fdes

Kact
− d (12)

This rather simple control law achieves stiffness control
for one link. To show how powerful this control law is,
consider two special cases for the desired stiffness Kdes.
For simplicity we will assume a zero length spring and the
home position for both cases is the same. Therefore, l0, fdes

and d are all equal to zero.

Case 1: Kdes = 0. Equation (12) then becomes

y = l . (13)

This means that the motor will behave as if the spring was
infinitely soft and will just follow whatever the lever (in the
case of the robotic tendon this is the user) does. Hence, this
control law could be used to obtain measurements for the
ankle angle profile for different persons.

Case 2: Kdes = Kact. Equation (12) then becomes

y = 0 . (14)

When the desired stiffness is equal to the physical spring
stiffness this means that the motor will hold its position.

B. Combination of Velocity and Stiffness Control

In [8], Hollander suggests to split up the stance phase
of gait into five distinct zones, see Fig. 9, whereas each
zone will be governed by a certain control law, either
velocity control or stiffness control. In this figure the circled
numbers are zones that can be described by linear stiffness
values while the other two zones, which are represented by
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square numbers, are described by constant velocity. While
the desired stiffness can be calculated using ankle gait data,
for instance from [6], the actual stiffness of the actuator
needs to be chosen by the designer and remains fixed. In
this method, the actual stiffness is designed to match the
desired stiffness in zone 5.

For zone 1, which starts at heel strike, the author suggests
to use velocity control to keep the motor velocity constant
and at a level proportional to the speed of the previous swing
phase.

Zone 2 starts when the ankle angular velocity, θ̇, crosses
through zero. For this zone it is suggested to maintain
a constant stiffness which is 1.35 times the actual spring
stiffness.

For, zone 3, which starts at flat foot and occupies most
of the loading phase, again a constant stiffness should be
applied which is 3 times the actual stiffness of the spring.

Zone 4 starts when the heel lifts off the ground. It is
suggested to maintain a constant velocity during this zone
that is equal to the motor velocity in the previous zone.

Zone 5 starts as the body can no longer resist the energy
that was stored in the spring and therefore the energy is
released which propels the body forward. For this phase it
is important for the motor to just “hold position”, hence
allowing the energy to be released. The end of this zone
is when all the stored energy of the spring has been released
and the swing phase begins.

What is fascinating and promising about this approach is,
that the motor control action follows a simple stretch - hold
- release pattern. In the method described in section III-
B, a fixed pattern is fed to the motor. This is based on
experimental data which represents an average gait cycle.
However, every person has their own way of walking as
well as their own walking speed and although the spring can
compensate for small errors, the system is not as flexible.
Using this new method, the controller eliminates the time
dependence and allows dynamic adjustment to the walking
pattern by only detecting the transitions between each zone.

C. Implementation

As was briefly mentioned, a digital incremental encoder
is used at the motor to control its position. Additionally an
absolute angular encoder for measuring the ankle angle, and
subsequently the lever position, the spring deflection and

Fig. 9. Ankle Angle Divided Into Zones for One Gait Cycle [8]

force, is used as well to zero the robot. In order to detect
the transitions between the zones, a heel and toe switch is
needed. The heel switch is used to detect heel strike, whereas
the toe switch is used to detect flat foot.

The control structure fits perfectly into a (finite) state ma-
chine. Fig. 10 shows the state machine that was implemented
with MATLAB stateflow. The arrows with a full black circle
at their tail denote default states that are entered when there
is ambiguity between two or more states.

Note that six other states have been added to the ones
discussed in section IV-B. Firstly, when the system is turned
on, variables are initialized and the controller waits for a user
command, which in this case is the activation of the hand
switch, in order to begin zeroing. Upon completion of the
zeroing procedure, the system goes into a safe mode where
the motor maintains zero stiffness, so the person can walk
with the robot with zero motor assistance. Another press of
the hand switch brings the system into a ready state where
it waits for the heel switch in order to begin powered gait
assistance. The goal during swing phase is rather simple. The
robot brings the foot up quickly so that the person does not
drag their toes over the ground. Therefore, it was decided to
maintain a constant velocity through this phase (6) until the
ankle angle reaches a certain amount of dorsiflexion. Lastly,
the motor will again hold position and wait until the next
heel strike occurs. This last phase is labeled 7 in Fig. 10.

D. Test Results

The robust control method described previously was tested
on an able bodied subject with a body weight of 65kg,
walking at a speed of 1.25m/s. The robot is designed for
50% assistance. Fig. 11 shows the kinematics as well as
the phases of one gait cycle. Note that the phase numbers
are assigned from 11 to 17 for the seven phases for a gait
cycle in Fig. 10. It can be seen that the controller switches
through the phases as planned in section IV-B and section IV-
C and that the resulting kinematics match up well with the
theory. During phase one the foot is brought to the ground
with a given velocity. Phase three shows the energy storage
in the spring where the user and motor drive in opposite
directions due to setting the desired stiffness equal to three
times the actual spring stiffness. The spring deflection is
indicated by the shaded area between the nut and lever
curve. During phase five the motor holds position and the
stored energy is released. Results show the ratio of power
input to power output has an amplification factor of about
max (Pout)/ max (Pin) ≈ 1.89.

V. CONCLUSION

The test results using the new stiffness based controller
are encouraging. Firstly, since clear and simply detectable
transition signals were used, the controller was able to switch
through the states continuously without getting locked into
one state. Secondly, the motor and lever curves that have
been obtained during the test are similar to the ones that are
obtained through simulation in [8], which verifies the models.
Thirdly, no predefined nut pattern was used to obtain the
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Fig. 10. Implemented State Machine, HS ... Heel Switch, TS ... Toe Switch

Fig. 11. Kinematics

curves shown in section IV-D. Still the motor path matches
the previously used pattern well. At the same time, the
lever displacement, which is open-loop controlled, matches
a normal person’s gait. The robot is interacting with the user
rather than forcing the user into its pattern.

Therefore, these results encourage further research and
testing. These tests show that we can achieve similar power
in to power out ratios and similar motor paths with this new
control law. The first test of this control structure was an
important step and brings the overall project closer to the
goal of creating an intuitive and robust control methodology
for a robotic tendon actuator.
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