
  

  

Abstract—We present an investigation into modeling of 
athetoid motion and prediction of user intent, for use in 
assistive computer interfaces during icon-clicking tasks.  
Data were recorded from three athetoid patients during 
unassisted icon-clicking trials with an isometric joystick.  
In order to facilitate development and testing of filter 
designs without the difficulty of repeated testing with 
human subjects, a quantitative model of the recorded 
patient data was developed using pseudoinverse 
methods.  Using this model within the visuomotor 
control loop for the icon-clicking task, a prediction filter 
was then developed to reduce the target acquisition 
time.  The filter is based on a novel “autoregressive 
stretching window” model which selects five data points 
evenly distributed across the input and output histories 
to predict the intended target, together with a second-
order system that smoothes the movement of the cursor. 
On average, the filter demonstrated a reduction of 
target acquisition time by a factor of 2.7 in experiments 
with the patient models. 

 

I. INTRODUCTION 
THETOID cerebral palsy can greatly impair control of 
hand movement, making many everyday tasks difficult 

or impossible. Interaction with computers is a particularly 
important problem, since computers have become a 
fundamental occupational tool, and standard interface 
devices such as mice, keyboards, and joysticks generally 
require high motor function.  Isometric or force-sensing 
joysticks [1, 2] may be easier for persons with athetosis to 
use [3].  However, even in this case, cursor control can be 
painfully slow:  athetosis both reduces the bandwidth of 
purposeful movement and corrupts the remaining 
bandwidth with involuntary movement at the same 
frequencies [4]. 

A variety of movement disorders exists.  In the case of 
pathological tremor, numerous linear and nonlinear 
approaches have been implemented as input filters for 
computer interfaces [5-7].  However, such filtering 
approaches are not particularly suited to the present case.  
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Targeting accuracy is of course crucial, but it may already 
be adequate:  in a previous study involving an icon-clicking 
task, subjects generally succeeded in clicking the intended 
icon, given sufficient time [8].  To improve the productivity 
of persons with athetosis, reduction of the time required for 
target acquisition is needed.  Hence, prediction seems to be 
the greatest need for this application, rather than smoothing 
the path to the target. 

This paper describes recent progress toward the 
development of an appropriate prediction method for icon-
clicking by athetoid users.  Data for development of the 
method were acquired in an icon-clicking experiment 
completed by three athetoid subjects [8].  The subjects were 
asked to use an isometric joystick to move a cursor and 
click a target circle on a computer screen.  The locations of 
the starting points and target circles were random.  A click 
was registered if the cursor remained inside the target circle 
for two seconds.  Because the closed control loop via the 
vision of the user is an integral part of such a task, and due 
to the cost and inconvenience of retesting filter algorithms 
with athetoid subjects, we developed a model of each 
athetoid subject using the data from [8].  Using this model, 
a prediction method using a novel “stretching average” 
approach has been developed.  This paper describes the 
development of the models and the predictor, and presents 
the results of closed-loop icon-clicking simulations using 
the predictor with the models obtained from the three 
athetoid subjects. 

II. PATIENT MODEL 
The suitability of linear systems for modeling the 

response of healthy human subjects during pursuit tracking 
tasks with a joystick has been established previously [9].   
Given the experimental data for three athetoid subjects 
collected in [8] (one female, age 24, and two males, ages 38 
and 49), we established a model based on the following 
state vector, z[n]:  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

][
][
][
][

][

ny
nx
ny
nx

n

&

&
z

,        (1) 

 
where the states are the position and velocity of the 

cursor in x and y, measured relative to the target location.  
The first step in creating the patient model was to identify 
the system matrix M of the linear system shown in (2) from 
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the patient data. 
 

][]1[ nn zMz ⋅=+        (2) 
 
Since the data sets were small, we solved for M using the 
pseudoinverse.  The matrix of inputs, IN, and 
corresponding outputs, OUT, for each of the N time steps of 
the data, shown in (3) and (4), which are related by (5), 
were used in order to solve for M as shown in (6). 
 

[ ]]1[]1[ −= NzzIN K      (3) 
[ ]][]2[ NzzOUT K=      (4) 

OUTINM =⋅        (5) 
+⋅= INOUTM        (6) 

 
This method produced a solution for M that yielded the 
minimum norm least squares error when mapping all the 
inputs in IN to all the outputs in OUT. 
 The error vector, e[n], which is the error between the 
output of the linear model and the actual patient data, was 
then computed as follows.  
 

][]1[]1[ nnn zMze ⋅−+=+      (7) 
 

 In models such as [9], in addition to the linear transfer 
function of the human controller, it is common to include an 
additive noise which is also considered part of the human 
response.  This is particularly appropriate in the case of 
athetosis, which is known to exhibit a large stochastic 
component [4].  Given the existing literature in spectral 
quantification of athetotic movement [10], we used a 
frequency domain approach based on a noise-shaping filter 
to simulate the random component of the subjects’ 
movements in the recorded data for use as additive noise in 
the overall model.  The Yule-Walker parametric power 
spectrum estimation method was used to generate a white-
noise-shaping filter, f[n], which would output a signal with 
approximately the same power spectrum as e[n].  We chose 
the order of the noise-shaping filter for each coordinate of 
each patient by choosing the lowest order for which the 
filter power spectrum is inside the 95% confidence interval 
of the power spectrum of e[n].  This resulted in a filter of 
third order for patient 1, second order for patient 3, and for 
patient 2, fifth order in x and third order in y.  Since the 
velocities in our data were derived from position data using 
a forward difference, the first two rows of e[n] (the x and y 
position) have almost no error, so we only characterized the 
power spectrum of the errors in the velocities.  Thus, the 
output of the human model at time n+1 is given by (8). 

 
]1[][]1[ ++⋅=+ nnn fzMz      (8) 

 
 The joystick that was used in the experiments features a 
dead zone, so this was incorporated this into the model as 

well, using the simple rule that if (9) is true, then we apply 
(10), and likewise for y[n]. 
 
        1]1[][ <+− nxnx        (9) 

][]1[ nxnx =+          (10) 
 

The stochastic noise in athetoid movement has been found 
to be positively correlated with the amount of force exerted 
by the subject [11, 12]. Therefore, we also included a scale 
factor for the f[n+1] term in (8), which is linearly related to 
the norm of z[n], as shown in (11). 
 

]1[)][(][]1[ +⋅+⋅+⋅=+ nbnann fzzMz    (11) 

 
The constants a and b were tuned by trial and error so that 
the time to target (click) and the click success rate of the 
model matched those of the real patients, and the model 
trajectories qualitatively resembled those of the patients.  
The results are summarized in Table I, which compares the 
performance of the model to that of the real patients.  The 
columns marked “real” indicate the performance of the 
patient in the 100 trials in [8].  The model performance in 
the table represents 1000 trials using the same starting 
points and target locations as for the patients; i.e., 10 
simulated trials were generated for each of the original pairs 
of start and end points.   

 

 
As expected, the model trajectories for patients 2 and 3 

were rather similar to the patient trajectories; those for 
patient 1 were less so, since the recorded data from patient 1 
displayed more evidently nonlinear behavior.  Fig. 1 shows 
a recorded trajectory from patient 3, together with the 
corresponding model trajectory. Since the model is 
stochastic, no two trajectories will be the same, but a certain 
qualitative similarity can be seen. 

TABLE I 
AVERAGE TARGET ACQUISITION TIMES AND SUCCESS RATES FOR MODELS 

AND PATIENTS 

Target Acquisition Time (s) Success Rate 
Patient 

Real Model Real Model 

1 12.5 13.3 85% 86% 
2 9.3 9.4 98% 97% 
3 6.7 6.6 100% 100% 

The data for each patient included 100 trials. The model data involved 
1000 runs, using the same start/endpoints as the actual patient runs. 
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III. FILTER DEVELOPMENT 
The athetoid patient model described above allows 

development and testing of the filter in a realistic closed-
loop environment.  The goal of the filter is to predict the 
intended target and make the patient’s target acquisition as 
fast as possible.  A two-stage filter was developed:  the first 
stage predicts the intended goal, and the second stage 
smoothes the approach to the goal somewhat in order to 
avoid jumpy cursor movement, which may be disconcerting 
for the user. Fig. 2 shows the overall block diagram of the 
system. 

 
A. The ARSA Stage 

The purpose of the ARSA stage is to predict the user’s 
intended goal.  Preliminary experimentation made it clear 
that a moving average system with a relatively short 
window would not work well, since longer-term trends, 
such as the general direction of the target, are important for 
the task in question.  On the other hand, a method that 
utilizes all the data samples at every time step is 
problematic due to the time-varying number of inputs and 

the increased computational complexity.  Our solution to 
this trade-off is the “auto-regressive stretching average” 
(ARSA) filter. Instead of a standard moving window, this 
filter takes as inputs the first and last samples in the input 
and output time histories, as well as some number of 
samples linearly distributed in between, and outputs a linear 
combination of these. However, since this filter is in 
discrete time, it is not always possible to have the filter 
inputs exactly equally distributed between the first and last 
samples. Therefore we used the pattern depicted in Fig. 3 to 
determine what samples would be taken as inputs.  

 
To further clarify the concept, Fig. 4 shows a third-order 

ARSA system in direct form II.  We found empirically that 
an ARSA filter of length 5 (as in Fig. 3) worked well for 
this application.  After some experimentation, we found that 
it worked well to let the system first run with the filter off 
for 9 time steps, and then begin filter operation with the 
tenth sample.   
 

 
 For simplicity, the set of 5 filter weights was trained once 
for a given patient model, and then held constant.  First, 

 
Fig. 1.  One of patient three’s trajectories along with the model’s 
simulated trajectory. Each dot on the trajectory indicates a single time 
step, which is 0.05s. 

 
Fig. 3.  Depiction of ARSA filter input sampling as time advances.  
Each row shows all of the samples up to that time, with time 
increasing to the right.  As time moves forward (moving down 
through the rows), different samples are used (black dots). 

 
Fig. 4.  A length three ARSA filter shown in direct form II.  Input on the 
left, output on the right.  The ARSA filter differs from the classical 
ARMA filter in that the delays increase linearly with time. 

 
Fig. 2.  Overall block diagram of the system, including both the human 
model and the two stages of the filter.  (The ARSA and Smoothing Stages 
accept multiple inputs; when arrows merge this does not represent 
summation.) 
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define W[n] to be the combination of the cursor state and 
the joystick inputs jx[n] and jy[n], shown in (12). 
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Let n0 = 0, n1, n2, n3, n4 = n be the correct five values of n 
chosen according to the pattern in Fig. 3.  We then define 
S[n], the total state of the ARSA system, which consists of 
the five W vectors at the correct n values, shown in (13). 
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Each S[n] is a single input to the ARSA system. Since each 
S[n] has 30 elements, and we desire a two-element point,  
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as output, the ARSA filter weight matrix, A, must be 2 × 
30. This is too many elements to tune by hand. However, 
this problem is quite similar to the problem of identifying 
the system matrix for the patient model; the pseudoinverse 
method seems attractive once again.  The problem is that 
this time, the input and output matrices are not clearly 
defined, since there are no pre-generated data as there were 
before. It is also impossible to simply run the filter with the 
human model and generate data, since the resulting data 
depend on the running of the closed-loop system of which 
A is a part.  However, we have recourse to a simple 
alternative that allows us to generate a useable solution:  
since the only purpose of the ARSA stage is to predict the 
user’s intended endpoint, and we know what the user’s 
endpoint is (we have to feed it to the human model to run 
the simulation), we simply assume that the ARSA stage’s 
guess will be correct, and substitute in the p that we know, 
thus cutting A out of the loop.  This approximation allows 
us to run the whole system and generate an input matrix, U, 
and an output matrix, T, and then use the pseudoinverse to 
generate A as the matrix that will map U to T, as shown by 
(15)-(18), where N is the total number of time steps we ran 
the system for. 
 

U = [S[10]…S[N]] (15) 

T = [p[10]…p[N]] (16) 

A · U = T (17) 
A = T · U+ (18) 
 

Thus, the approach attempts to train A such that (19) will 
result. 
 

][][ nn pSA =⋅          (19) 
 
It is known, of course, that the subject intends to move the 
cursor to the target, but almost certainly he or she does not 
intend to reach the target in a single time step, as in (19).  
Thus, this approach involves a rough approximation of user 
intent.  However, since the main goal of the work is to 
speed up the target acquisition as much as possible, this 
approximation has proved useful, as the testing results will 
show.  Closed-loop iteration to refine A would be possible, 
but so far performance has been adequate without it.  The 
only significant drawback is the possibility of jerky cursor 
movement, which has been resolved by adding a 
“smoothing” stage to the prediction filter.  

B. The Smoothing Stage 
This stage is merely a second-order model constrained to 

move the cursor directly toward the target at each step.  At 
each time step, given the current cursor position and the 
endpoint location predicted by the ARSA stage, this stage 
steps the cursor toward the endpoint. It would be possible to 
simply have the cursor go directly to the predicted endpoint, 
but this would likely result in “jerky” motion that would be 
difficult to control. As a second-order model, the stage has 
simple, intuitive parameters which can be used to tune the 
movement to fit a patient’s preferences.  

First, define x[n] to be the current cursor position, v[n] to 
be the current cursor velocity, and p[n] to be the user’s 
intended goal (the output of the ARSA stage). Define the 
error vector r[n] as 
 

][][][ nnn pxr −= .        (20) 
 

Next, create a unit vector in the direction of the error vector. 
 

][
][][ˆ

n
nn

r
rr =          (21) 

 
Now we can find v'[n], the component, v[n], that points in 
the direction of the desired endpoint. 
 

][ˆ])[ˆ][(][ nnnn rrvv ⋅•=′       (22) 
 

Now that we have position and velocity terms, we can 
define the “force,” f[n], that our second-order model is 
exerting on the cursor.  It is as though the cursor had a mass 
m, with a spring of constant k and damper of constant b 
connecting it to p[n]. 
 

][][][ nknbn rvf ⋅−′⋅−=       (23) 
 
Now that we have f[n], we can find a[n], the acceleration of 
the cursor. 
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m
nn ][][ fa =          (24) 

 
With a[n], we can use Euler integration to obtain the next 
position and velocity of the cursor, where h is the time step. 
 

][][]1[ nhnn avv ⋅+′=+       (25) 
][][]1[ nhnn vxx ′⋅+=+       (26) 

IV. FILTER TESTING 
To test the effectiveness of the filter, we used it with the 

patient models as shown in Fig. 2.  We used four different 
testing scenarios designed to resemble situations that 
commonly occur in normal computer use.  
1) Grid.  A 3x3 square grid of buttons was used, like 

icons on a desktop. The button the cursor started on 
and the desired destination were randomly chosen from 
the grid. In this scenario, the only way the trial could 
fail was if it timed out by running longer than 20 s 
before clicking the correct button.  In all four test 
scenarios, a click is registered by 2 s of uninterrupted 
dwell time.  

2) Grid with All Icons Active.  The second test used the 
same grid of buttons and the same clicking criteria, but 
now all of the buttons were active and could be clicked. 
This means that if the cursor stayed in any of the 
buttons for two seconds, a click was registered.  If an 
incorrect button was clicked, the run was recorded as a 
failure. 

3) Random.  The third test used randomly located buttons. 
This is the scenario that was used in the collection of 
the original data from the athetoid subjects [8].  The 
cursor started in a random location, and the desired 
button was randomly located on the screen. The same 
timeout and clicking criteria as before were applied. 

4) Random with All Icons Active.  The fourth test used the 
same randomly located target buttons, but this time it 
was possible to click anywhere on the screen where 
there could potentially exist a button that did not 
overlap the target button.  If the cursor dwelled for two 
seconds within any such hypothetical button, then the 
system registered a click and the run ended in failure. 
Obviously, this test was by far the most difficult since 
it was possible to falsely click almost anywhere on the 
screen; this is reflected in the much lower success rate 
for this scenario. 

The results for all these scenarios are shown in Table II.  In 
every case the filter decreased the target acquisition time, 
and increased or maintained the success rate.  The decrease 
in target acquisition time ranged from a factor of 1.7 to a 
factor of 4.7, depending on the patient and scenario, with 
the average reduction among the 9 patient/scenario 
combinations being a factor of 2.7.  For the fourth scenario, 
which is arguably the most realistic, and which produced 
the lowest reduction factors, the average reduction in target 

acquisition time was a factor of 2.0.  Fig. 5 shows an 
example of filtered and unfiltered trajectories for a typical 
pair of start and end points. 
 

V. DISCUSSION 
The results demonstrate the general feasibility of the 

approach.  In the future, in addition to matching the target 
acquisition time and frequency content of the raw data, we 
plan to evaluate the models using appropriate trajectory 

Fig. 5.  Filtered and unfiltered simulated trajectories for patient three.  
Each dot on the trajectories marks one time step, which is 0.05 s.  In 
this case, the unfiltered trajectory took 4.25 s, and the filtered 
trajectory took 2.75 s. 

TABLE II 
AVERAGE TARGET ACQUISITION TIMES AND SUCCESS RATES FOR MODELS 

WITH AND WITHOUT FILTERING 

Target Acquisition Time (s) Success Rate Patient/ 
Test 

Scenario Model Model with 
Filter Model Model with 

Filter 
1-G 15.4 3.3 83% 100% 
2-G 10.3 3.5 99% 100% 
3-G 7.1 3.5 100% 100% 
1-GA 13.6 3.4 73% 100% 
2-GA 10.5 3.6 98% 100% 
3-GA 7.0 3.6 100% 100% 
1-R 13.7 4.0 87% 98% 
2-R 9.3 3.6 98% 99% 
3-R 6.7 3.4 100% 100% 
1-RA 8.5 3.6 5% 92% 
2-RA 6.7 3.5 35% 95% 
3-RA 6.0 3.5 75% 100% 

Each patient/test scenario involved 240 trials.  G indicates a 3x3 grid of 
buttons with only the correct button active.  GA indicates the same grid 
with all buttons active.  R indicates randomly located buttons with only the 
correct button active.  RA indicates a randomly located target button, 
where it is possible to click on any hypothetical button that does not 
overlap the target. 
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similarity measures [13].  This will be followed by testing 
of the predictor system with the human users on whom the 
models are based. 

The characteristics of the human controller do not remain 
constant.  It was demonstrated in [9] that a person’s internal 
controller changes depending on the system the person is 
trying to control, i.e., the type of computer task.  
Furthermore, even if the task in which the filter is to be 
used is the same as the one described here, there are sure to 
be variations over time within any given human subject that 
will affect the parameters of the internal controller.  The 
degree to which a filter trained as presented here will yield 
an overall closed-loop system that remains useful or even 
stable when used at different times or for different tasks 
remains a subject for further investigation. 

As mentioned earlier, the filter as presented here was 
trained in a single step, using the approximation in (19).  
Iterative training is possible, however, and may result in 
improved performance. 
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