
Generating Robust Assembly Plans in Constrained Environments

Frederik W. Heger

Abstract— In the future, teams of robots will construct
outposts on Mars and orbital structures in space. Such tasks
will require assembly of a large number of components into
structures. Automatic generation of assembly sequences is a
difficult and well-studied problem in structured factory environ-
ments that are specifically engineered for the assembly task at
hand, but it is much less understood in less constrained settings.
Instead of representing the problem in the space of the many
degrees of freedom of the robots and components involved in
the assembly, we approach the problem in the space of valid
configurations of the structure to be assembled. We use a graph-
based framework to describe valid assembly configurations
and feasible assembly steps. In addition to reasoning about
kinematic feasibility of assembly steps, we consider the quality
of potential configurations with respect to actions for the mobile
robots. This method automatically repositions the structure
in the workspace so that components to be assembled are
most approachable. That is, the sequence of assembly and the
position of the structure as it is assembled is chosen so as
to maximize the area in which mobile robots can operate to
perform their tasks. We present simulation results from a simple
five-componetn assembly with and without the constraints of a
narrow confined environment. Results show that our method
allows over twice as much space available for robots during
assembly. In addition, the plans preserve most of their free-
space flexibility in tight workspaces where other planning
approaches are left with only a few candidate solutions.

I. INTRODUCTION

Robots of the future will go beyond the passive motion
capabilities that characterize today’s machines – they will
directly manipulate their surroundings by clearing obstacles
if necessary and performing complex tasks such as assembly
or disassembly. Capable and dextrous manipulation is essen-
tial for useful robots to accomplish such tasks. Manipulation
of the environment and objects within it will enable robotic
systems to expand their mission capabilities beyond what
is possible today. Such capabilities will be especially useful
in the construction of space habitats, planetary outposts and
orbital structures (Fig. 1) – places where human workers
cannot or do not want to go.

Assembly in our context means arranging components
relative to one another so that low-level docking controllers
can then guide mobile robots to establish the required
connections. This task has the interesting property of being
inherently a discrete step-by-step process, but one that is car-
ried out by robots moving through a continuous workspace.
For the kinds of assembly scenarios we consider here, speed
of operation is not the primary measure of quality of a
plan. While efficiency is an important aspect, robust and

Frederik W. Heger is a Ph.D. student at the Robotics Institute at Carnegie
Mellon University, School of Computer Science, 5000 Forbes Avenue,
Pittsburgh, PA 15213, USA. fwh@cs.cmu.edu

Fig. 1. An artist’s rendition of a team of construction robots assembling
a truss as the base frame for a large orbital structure. The robots’ motions
are constrained to walking along the truss. Taking advantage of working
as a team, subassemblies can be constructed and then brought to the main
structure for final assembly.

reliable operation is more important. We argue that currently
available approaches can solve specific parts of the whole
problem, but they fall short of a comprehensive solution.

Today, large-scale mission planning is often a tedious pro-
cess of manually scripting long sequences of procedures and
contingency plans. An autonomous planner should be smart
about potential problems and difficult or critical steps along
the assembly sequence and actively plan to avoid predictable,
expected or likely trouble where possible. Execution of a plan
should not start unless the planner can provide a reasonable
guarantee that it is nominally feasible and likely to succeed
based on what the system knows from its past performance.

The high dimensionality of the motion planning aspect of
assembly makes it infeasible to tackle the problem from that
direction, the number of alternatives to consider is simply too
large. Notice, however, that the structure to be assembled is
fairly constrained, both by the workspace and by ordering
constraints among the components. We propose a hybrid
approach that leverages constraints in the symbolic assembly

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 4068

sequence to focus the (expensive) motion planning efforts to
assembly steps that are promising at the abstract level.

Our approach plans from the point of view of the task
to be accomplished. Since the task is more constrained
than the robots that will perform it, we can more easily
avoid dead-ends, and we can reason about it symbolically.
However, any plan is only as good as it is feasible to be
executed by real robots. Therefore, we reason about moving
the (partial) structure to good locations in the workspace and
verify potential (symbolic) plan segments using (continuous)
motion planning techniques. For an assembly step to be
valid, we require a motion plan with sufficient clearance.
We also score nominally feasible steps according to metrics
such as mean clearance along the path and accessibility of
the docking locations. Finally, we evaluate the robustness of
a plan by the number of alternative valid steps remaining
after taking workspace constraints into account.

In this paper, we present a new planning system for
effective autonomous planning of complex assembly tasks
for mobile robots. We first review relevant related work in
different areas of robotics research and show how available
approaches only solve parts of the problem we are con-
sidering. Motivated by the cases where existing methods
fall short, we describe our approach that uses a graph-
based representation and mixes discrete state transitions with
continuous constraint representation that can overcome these
issues. We show simulation results in which our planner
produced significantly more robust plans when considering
structure moves than when not. Finally, we conclude and
present future directions and extensions of this work.

II. RELATED WORK

Previous work relevant to assembly planning falls into two
main categories: approaches that tackle the problem as a
sequencing problem on an abstract symbolic level, and ones
that consider fine-grained motions of the robots involved. We
see both as integral aspects of a larger problem that cannot
be solved well with either one method alone.

Symbolic planning methods profit from abstracting the
problem into simple operators that require preconditions
and produce effects. A sequence of operators that transform
a given initial condition into a desired final configuration
describes a plan for the scenario [1][2][3]. Such approaches
efficiently take advantage of the step-by-step nature of many
problems and abstract away difficult to compute constraints
into simple heuristics. This abstraction, however, limits the
reasoning about the real world to simple yes/no queries (e.g.,
Is this a valid action? Can the robot get there?). Information
about what to do to resolve an impasse in a constructive
manner is generally not available (i.e., How can it get there?
How much do certain parameters need to change?). As a
result, symbolic planners for real-world systems are generally
either conservative or wrong.

For systems with multiple robots available to perform a
task, scheduling systems consider task and resource alloca-
tions of symbolic action sequences to available agents as well
as deadlines that need to be met by the system [4][5][6]. As

in symbolic planning, the physical reality of the problem
can only be approximated as it cannot be easily expressed
in a set of heuristics. Infeasibility of a schedule often cannot
be detected until the robots, during execution, come to a
dead end caused by a workspace constraint unknown to the
scheduler (e.g., the robots cannot reach their positions for
the next task). Plan verification systems can help reduce
such problems by verifying a symbolic plan step by step
either after it is completed or while it is being planned [7].
Since in our case validity depends on the solution of a (high-
dimensional) motion planning problem, verification is a fairly
expensive operation.

Due to its step-by-step nature, traditional assembly plan-
ning is a prime setting for symbolic planning approaches.
The main concerns of existing systems is on assembly
feasibility and serviceability (e.g., access to certain compo-
nents without having to disassemble the entire assembly) of
products or assemblies [8][7]. The robot motions considered
in such applications are generally limited to horizontal and
vertical part insertions by a robot in a work cell. The
focus is on optimal plans to maximize efficiency of the
assembly/production process. Once a plan has been found,
the assumption is that it can and will be executed thousands
of times in exactly the same way.

A common feature of the approaches mentioned thus far
is that the robots are restricted to reach into a workspace
from the outside. The problem of navigating through a
changing and constrained workspace is not considered in
these formulations. Homem de Mello developed a representa-
tion for describing mechanical assembly sequences based on
AND/OR graphs [8][9] similar to our representation. Using
this graph structure, he presented a complete and correct
algorithm for generating assembly sequences of a desired
configuration by planning the disassembly of the goal [10].

Alternatively, the problem can be approached from a mo-
tion planning perspective where workspace constraints and
physical reality of the environment are inherently taken into
account. Koditschek et al. tackle the problem of endogenous
(robot and parts live in the same space) assembly using a
navigation function approach [11][12]. They describe the
problem as a non-cooperative game and use a feedback-
based event-driven approach to generate robot motion. This
work implicitly assumes that all states between the initial
and final configurations are valid, which is not the case in
assembly scenarios where only a few states represent stable
configurations. There is no guarantee that extrema in the
navigation functions coincide with valid assembly states.
Lengyel et al. present a grid-based motion planning approach
to solve the piano mover’s problem using graphics hardware
to achieve real-time performance [13]. Klavins describes self-
assembly using graph grammars to encode local interactions
agents may engage in. The resulting global process results
in an organization behavior that brings individual parts into
an assembled configuration [14].

Since assembly scenarios have a distinct underlying step-
by-step structure, pure motion planning approaches do not
produce the results we are looking for. Stilman et al.’s

4069

navigation among movable obstacles [15] plans first in an
abstract graph of configuration space segments and then uses
motion planning techniques to evaluate paths suggested by
graph edges. Yang and Brock’s work on decomposition-
based motion planning [16] focuses on important points
along a trajectory that are most constrained to focus their
high-resolution planning efforts and then plan intermediate
motions between those key points at lower resolution.

In addition to our own work in multi-robot assembly
[17] we are aware of one other group where real robots
cooperate to assemble a (simple) structure [18]. Both efforts
thus far focus on the execution part of the problem and
operate according to a simple script written by hand that
is followed by the robots. The planning system we describe
here will replace manual scripting of assembly actions and
will generate a task tree that can be executed by robots.

III. MOTIVATION

As assembly robots are required to operate beyond the
structured environment of work cells and attempt to per-
form useful tasks in more general settings, purely symbolic
approaches and ones based on motion planning alone will
quickly reach limits of their performance. Environmental
(size, reachability, etc.) constraints become increasingly im-
portant as the extends of the workspace shrink relative to the
size of the structure to be assembled.

Symbolic planners, unable to consider such constraints,
rely on abstractions that in general are either (overly) con-
servative or even wrong. As a result, they will inevitably
produce many plans that cannot be executed. Similarly,
as the structures to be assembled become more and more
complex, motion planning approaches will require very high-
dimensional representations that become intractable. More
importantly, motion planners are lacking an understanding
of certain discrete states being valid (stable sub-assemblies,
etc.) whereas others are not (components brought part way
from their storage location to the place where they are to be
attached to the structure being assembled). With fewer ma-
nipulation agents than parts to be manipulated, components
have to be moved in a certain order.

We propose a hybrid planning approach that exploits the
symbolic step-by-step characteristics of assembly problems
to find promising assembly sequences and then uses motion
planning methods to validate those steps in the context of
workspace and resource constraints. We use the fact that the
structure to be assembled is more constrained than individual
components to focus high-resolution motion planning tech-
niques to simpler sub-problems. In addition, we reason about
constraints on the structure as a whole at a lower resolution to
determine good initial conditions for the individual assembly
operations. Combining both planning modalities, we are able
to produce plans that are feasible and remain flexible in
case execution-time problems (e.g., drift in the state of the
structure, occlusions, etc.) require re-planning.

The chosen scenario to show the capabilities of our planner
is the assembly of furniture from individual components in

Storage
Room

Fig. 2. Plan view of a room to be furnished with a bed on the left, a
bookshelf along the bottom and a desk with chair along the top wall. Our
approach produces robust plans that allow robots to assemble and arrange
the furniture as desired from individual parts located in the storage room.

a small room (Fig. 2). Given the desired final layout of fur-
niture in the room, a description of the room and knowledge
about what pairwise connections between components are
required for the different pieces of furniture, we want our
planner to produce plans executable on mobile robots that
will result in the room being furnished as desired.

IV. APPROACH

We approach the assembly planning problem in a task-
centric way. Instead of planning directly for the robots that
will carry out specific subtasks, we plan (at first with abstrac-
tions) for the order and motions of the components being
assembled, which in turn frames the robot motion planning
problem. In this hybrid framework, we use both abstract
symbolic planning and motion planning modalities in order
to produce robust plans that are likely to be successful when
executed by teams of mobile robots.

As is common in the assembly planning literature, we plan
the disassembly of the goal structure and encode possible
sequences in an assembly graph. We annotate that graph
with to kinds of workspace information: freedom of motion
for components through assembly steps described by edges
of the graph, and approachability of components in assem-
bly configurations marked by graph vertices throughout the
workspace. Finally, we search the graph for good or best
sequences according to the costs associated with assembly
steps in response to the constraints on the problem. This
search technique is valid for an initial plan as well as for
new solutions should an execution-time error occur.

We consider monotone (components are assembled into
their final positions relative to the structure, no intermediate
placements) and binary (two subassemblies are combined at
each assembly step) assemblies. For this paper, we are further
limited to linear sequences (only individual components can
be added to the structure). Consider the furniture room prob-
lem described in the previous section (Fig. 2). At the highest
level, this task requires finding a sequence of furniture pieces
to assemble (e.g., bed-desk-shelf, or shelf-bed-desk, etc.). A
selected furniture sequence then gets decomposed into part
motions required to assemble each piece of furniture. If for
example there is no way (at the motion planning level) to
assemble a required bed part in the (abstract) sequence desk-
bed-shelf, the assembly graph is updated and the planner
has to backtrack to a higher level to find another sequence.

4070

Finally, the motion of a component further decomposes into
several sub-tasks (acquire, carry, dock, etc.) that have to be
considered before execution can begin.

A. Representation

We call the graph structure underlying our approach an as-
sembly graph (see Fig. 3). Vertices represent valid assembly
states, and edges encode nominally feasible assembly steps.
Since we are currently only considering linear assemblies,
the assembly graph is an augmented directed acyclic graph
(DAG). As assemblies become more complex and we want
to take into consideration the potential for parallel operations
in separate sub-assemblies, AND/OR graphs [9] will be more
suitable to the problem. Note, however, that the DAG repre-
sentation we currently use is equivalent to the corresponding
(simple) AND/OR graph.

The assembly graph respects all constraints imposed by the
structure itself (i.e., ordering of parts, etc.), but it knows noth-
ing of the particular workspace or agent resource situation in
place. In a sense, the assembly graph assumes a free-space
environment and self-mobile ”flying” components. The graph
is static for a given goal structure and encodes all possible
assembly sequences. Any path following the directed edges
from the empty assembly state to the goal state represents a
valid sequence of actions (note the similarity to the output
of a symbolic planner). In a free-space assembly setting,
this plan is often sufficient to be instantiated and executed
on robots. Thus, in a free-space setting, the additional
computation necessary for our approach is unnecessary.

Consider now an assembly scenario of the same structure
but in a fairly constrained environment and with real robots.
In this case, the validity of edges (i.e., the component
motions associated with these edges) are affected by en-
vironmental constraints. An assembly step is only valid if
the component to be assembled can be brought into position
in such a way that there is a reasonable expectation that
the robots that will be moving the component have enough
room to operate. Evaluating the validity of an edge of the
assembly graph involves solving a motion planning problem
associated with that edge. As graph edges are invalidated, so
are graph vertices (assembly states) that are left without in- or
out-edges. In constrained environments it is not unlikely that
most if not all of the entire graph gets invalidated, leaving
the problem with no solution.

In order to avoid this situation, we introduce a measure of
”approachability” for each component that can be removed
from a given assembly state. In its simplest form, approacha-
bility is a measure of distance from walls and obstacles – the
further a component is from other objects in the environment,
the more approachable it is. If we allow a partial structure to
be moved around the workspace, there are better and worse
poses of the sub-assembly for the removal of a particular
component. Encoding such structure repositioning moves
within the graph vertices (since the configuration does not
change) enables us to preserve the validity of many assembly
graph edges simply by repositioning the structure between
assembly steps.

 graph generation

 assembly order

 individual
components

complete
assembly

Fig. 3. An example assembly graph for a three-part assembly. The graph
is constructed backwards from the complete assembly state by considering
all components that can be removed (i.e., all components external to the
structure). Once constructed, the graph contains all valid assembly sequences
for the desired goal without workspace constraints.

B. Implementation

At this point, primarily for run-time reasons, we are only
planning for single pieces of furniture (not the entire room).
There is significant potential for efficiency improvement
throughout the implementation which is part of ongoing
work. Fundamentally, the approach will work also for larger
and more complicated problems.

The assembly planner library is implemented in C++ using
the boost graph library to represent the assembly graph. We
use the MPK Motion Planning Kit from Stanford University
[19][20] for the motion planning aspects of the planner. This
choice was made primarily for ease of integration, but any
motion planner that can plan motions for arbitrarily shaped
components through arbitrary workspaces will work here.

During the assembly graph generation process, each state’s
approachability scores for all its components have to be
calculated. This calculation is carried out at poses spaced
every 20 cm in x and y and every 15◦ in θ. It is currently
implemented as a flood-fill of the workspace from walls
and obstacles inward toward the structure. As the flood
hits the components, we record the flood value and then
compute statistics on all hits for each component to estimate
that component’s approachability. Once a component is at
a certain (large compared to a characteristic size of the
robots available) distance from all walls and obstacles, its
approachability is at its maximum value. We achieve this
behavior by letting the flood plateau at a certain value.
Each assembly state can report the structure pose for best
approachability for a given component. Among all poses
with equal approachability, we chose that with the shortest
Euclidian distance from the goal pose.

In a second pass over the assembly graph, a motion
planning problem is instantiated using MPK for each edge
in the graph. If the planner finds a valid motion for the
components that are involved in the particular assembly state
transition from its best pose back to that its storage location,
the plan is stored with the edge, and a cost value (length
of motion plan, clearance along the path, etc.) is computed.
Otherwise the edge is removed form the assembly graph.

With the assembly graph completely constructed and anno-

4071

tated, we have to select a sequence of edges (i.e., an assembly
sequence). For this paper we are considering two alternative
selection criteria to select the next best edge. In both cases
we start from the completely disassembled state and use a
greedy method to select the immediate best next option to
take. The first consideration is path length. This metric is
a combination of the path length of the component moving
along the edge of the assembly graph and the length of the
structure motion path required, weighted by the number of
components in the structure. The second choice is to select
that component that is most approachable as the next step.

For visualization purposes, we have developed a GUI
using the Qt graphics toolkit. Through it, the user can set
planner parameters, trigger planning, and eventually view an
animation of the selected assembly sequence.

V. RESULTS

We conducted a series of experiments in simulation to
evaluate the benefits of considering moving the structure
being assembled during planning on the resulting plan’s
quality and robustness. Plan quality is high if there is
sufficient room for components (and robots) to move and
if component connections are easily accessible. A measure
of robustness is the assembly graph’s size after annotation.
In three environments, we used our planner to find assembly
sequences for an idealized planar ”bookshelf”: Case 1 (Fig. 4,
top) in relative free-space, Case 2 (Fig. 4, center) with a
constrained goal configuration, and Case 3 (Fig. 4, bottom),
a narrow version of Case 1.

For each case, we planned assemblies with and without
repositioning the structure. We evaluated two criteria for
goodness of assembly steps when selecting the best assembly
sequence: the length of (component and structure) motion
along a particular assembly graph edge and the approacha-
bility of the component being added to the structure corre-
sponding to a graph edge.

Table I shows a summary of our results. Since the numbers
for both edge selection criteria (approachability and shortest
motion) were very similar, we only present results for the
most approachable component criterion. All columns in the
table are indicative of plan quality and robustness: mean
clearance is a measure of space available to the moving
component as it is brought from its storage location to
the structure, goodness is a score of reachability of the
actual docking locations (see Fig. 5), and graph remaining
shows the valid assembly states and transitions after plan-
ning (compare those to 26 states and 53 transitions in the
original graph) as a measure of how many options remain to
accommodate execution-time problems.

The first observation is to note that in Case 1 the algorithm
has the same performance whether or not the structure is
allowed to be moved. This is not surprising since there
is plenty of free space around the goal configuration, and
even with motion, only minimal structure repositioning was
observed. Comparing goodness scores across the three cases,
notice how Case 2 with motion is able to preserve most of the
goodness of the freespace assembly, whereas without motion

Storage
Room

Storage
Room

Storage
Room

Fig. 4. Three goal configurations. Case 1 (top): relative freespace,
reasoning about approachability not necessary. Case 2 (center): constrained
goal configuration, reasoning about motions (especially structure reposi-
tioning) during planning increases the robustness of the plan by doubling
the accessibility of part connection locations. Case 3 (bottom): tightly
constrained workspace, planning with structure repositioning increases the
plan robustness by doubling the clearance around moving parts as they are
brought to the structure.

Fig. 5. Evaluation of the reachability of a docking location without
(left) and with (right) repositioning the partial structure. Both frames show
the evaluation of an end piece assembly (although at different points
along the entire assembly sequence). Each circle marks a potential robot
position (filled=blocked, empty=accessible). With motion, the accessibility
is significantly higher than without.

Fig. 6. A representative assembly sequence for case 2. The frames are
ordered left-to-right, top-to-bottom. All component assembly and structure
repositioning steps are shown. Note how the structure is assembled mostly
horizontally and then rotated into position as the last step.

the reachability of docking locations drops to approximately
half. In fact, during the simulation, the planner moved the
structure into the center of the workspace, assembled the
structure there, and finally rotated it into place (see Fig. 6).

4072

case mean clearance goodness graph remaining
no move 1 9.49 0.71 25 / 48
no move 2 13.24 0.31 13 / 20
no move 3 3.88 0.44 18 / 30

move 1 11.30 0.70 26 / 53
move 2 14.75 0.68 22 / 41
move 3 7.48 0.44 22 / 40

TABLE I
EXPERIMENTAL RESULTS USING APPROACHABILITY CRITERION.

MEAN CLEARANCE IS A MEASURE OF AREA AVAILABLE FOR MOTION,
GOODNESS DESCRIBES ACCESSIBILITY OF DOCKING LOCATIONS

While Case 3 considers a very tight workspace with and
without structure motion, including the repositioning in the
plan resulted in twice the clearance around the moving
component compared to the static case. Finally, not allowing
the structure to be repositioned results in as many as half
the potential assembly states and 62% of possible assembly
steps being invalidated.

VI. DISCUSSION

In the still fairly simple workspaces used in this experi-
ment, the two criteria of most approachable component and
shortest motion to select the next component for assembly
gave nearly identical results. In more cluttered workspaces
and with more elaborate structures, we expect to see pro-
nounced differences. In addition, we will include further
criteria (such as clearance along the path, goodness at the
goal location, etc.) and optimize a combined cost function.

In a freespace environment, there is no win over the simple
assembly graph method. However, with constrained goal
configurations and in overall tight workspaces, our method
improves the quality and robustness of the resulting plan
by producing plans of higher goodness to perform docking
tasks, higher clearance along the path of motion for added
components, and by maintaining the validity of a larger part
of the original assembly graph. These plan characteristics
provide a good starting point for more detailed planning
toward the generation of full task trees that can be executed
by mobile assembly robots.

VII. CONCLUSION

In this paper, we present assembly planning as an impor-
tant problem to solve in order to increase robots’ usefulness
into the domain of active manipulation tasks. We show
that the state of the art in autonomous robot planning can
successfully solve important sub-problems of assembly, but
that there is currently no system available that is able to plan
entire scenarios for mobile robots performing construction
tasks in constrained spaces.

We present a planner that plans in the space of the task
itself while considering enough real-world constraints to
make the resulting plans useful and realistically executable.
We use assembly graphs to exploit the symbolic nature of
assembly problems and augment them using motion planning
approaches where necessary.

Our planner can generate more robust and reliable plans in
a simulation environment than available approaches. There
is still room for improvements to the runtime of the planning

process, but fundamentally all necessary tools are in place
to plan entire room furnishing missions. We have plans to
integrate this planner into our robot testbed [17] and use it
in combination with a powerful scheduling system [6] to be
able to demonstrate its capabilities in a real-world robotic
assembly scenario.

REFERENCES

[1] S. E. Fahlman, “A Planning System for Robot Construction Tasks,”
MIT AI Laboratory, Cambridge, MA, Tech. Rep., 1973.

[2] J. Hoffmann and B. Nebel, “The FF Planning System: Fast Plan Gen-
eration Through Heuristic Search,” Journal of Artificial Intelligence
Research, vol. 14, pp. 253–302, 2001.

[3] H. L. S. Younes and R. G. Simmons, “VHPOP: Versatile Heuristic
Partial Order Planner,” Journal of Artificial Intelligence Research,
vol. 20, pp. 405–430, 2003.

[4] X. Xia and G. A. Bekey, “SROMA: An Adaptive Scheduler for
Robotic Assembly Systems,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 1988.

[5] B. Fox and K. Kempf, “Opportunistic Scheduling for Robotics Assem-
bly,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), March 1985.

[6] S. Chien, G. Rabideau, R. Knight, R. Sherwood, B. Engelhardt,
D. Mutz, T. Estlin, B. Smith, F. Fisher, T. Barrett, G. Stebbins, and
D. Tran, “ASPEN - Automated Planning and Scheduling for Space
Mission Operations,” in Proceedings of the International Symposium
on Space Missions Operations and Ground Data Systems (SpaceOps),
Toulouse, France, 2000.

[7] S. G. Kaufman, R. H. Wilson, R. E. Jones, T. L. Calton, and A. L.
Ames, “The Archimedes 2 Mechanical Assembly Planning System,”
in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Minneapolis, MN, 1996.

[8] L. S. Homem de Mello and A. C. Sanderson, “Planning Repair
Sequences Using the AND/OR Graph Representation of Assembly
Plans,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), April 1988, pp. 1861–1862.

[9] L. S. Homem de Mello, “Task Sequence Planning for Robotic Assem-
bly,” Ph.D. dissertation, Carnegie Mellon University, May 1989.

[10] L. S. Homem de Mello and A. C. Sanderson, “A Correct and Complete
Algorithm for the Generation of Mechanical Assembly Sequences,”
IEEE Transactions on Robotics and Automation, vol. 7, no. 2, pp.
228–240, April 1991.

[11] H. I. Bozma and D. E. Koditschek, “Assembly as a Noncooperative
Game of its Pieces: Analysis of 1D Sphere Assemblies,” Robotica,
vol. 19, pp. 93–108, 2001.

[12] C. S. Karagöz, H. I. Bozma, and D. E. Koditschek, “Feedback-Based
Event-Driven Parts Moving,” IEEE Transactions on Robotics, vol. 20,
no. 6, pp. 1012–1018, December 2004.

[13] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg, “Real-
Time Robot Motion Planning Using Rasterizing Computer Graphics
Hardware,” Computer Graphics, vol. 24, no. 4, pp. 327–335, 1990.

[14] E. Klavins, “Self-Assembly From the Point of View of its Pieces,” in
Proceedings of the American Control Conference (ACC), June 2006.

[15] M. Stilman and J. J. Kuffner, “Navigation Among Movable Obstacles:
Real-Time Reasoning in Complex Environments,” in Proceedings of
the International Conference on Humanoid Robotics, 2004.

[16] Y. Yang and O. Brock, “Efficient Motion Planning Based on Dis-
assembly,” in Proceedings of Robotics: Science and Systems (RSS),
Cambridge, MA, June 2005.

[17] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh,
“Coordinated Multiagent Teams and Sliding Autonomy for Large-
Scale Assembly,” Proceedings of the IEEE, vol. 94, no. 7, July 2006.

[18] A. Stroupe, T. Huntsberger, A. Okon, and H. Aghazarian, “Precision
Manipulation with Cooperative Robots,” in Multi-Robot Systems:
From Swarms to Intelligent Automata, L. Parker, F. Schneider, and
A. Schultz, Eds. Springer, 2005.

[19] G. Sanchez and J.-C. Latombe, “A Single-Query Bi-Directional
Probabilistic Roadmap Planner with Lazy Collision Checking,” in
Proceedings of the International Symposium on Robotics Research
(ISRR), Lorne, Victoria, Australia, November 2001.

[20] F. Schwarzer, M. Saha, and J.-C. Latombe, “Adaptive Dynamic Colli-
sion Checking for Single and Multiple Articulated Robots in Complex
Environments,” IEEE Transactions on Robotics and Automation.

4073

