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Abstract—The twin-pulse motion profile is still perhaps the
simplest profile in existence for reducing residual vibration. Its
primary drawback is that of narrow bandwidth, i.e., it is effective
for attenuating only a very narrow range of frequencies about
its design frequency. This has led to the inclusion of more
pulses to improve robustness to frequency variation. However,
one cost of adding pulses is extending the duration of the resulting
motion. This paper presents several techniques whereby the
basic twin-pulse motion profile can be expanded to reduce its
frequency sensitivity while still preserving its advantages. These
techniques include intentionally mis-aligning the null points of
ideal twin pulses and a convolved boxcar function, then adding
a trapezoidal profile component, finally culminating in what
we term a misaligned boxcar / trapezoidal / twin pulse (M-
BC:TZ:TP) motion profile. This expanded profile and a basic
twin-pulse profile were both evaluated on a ten-pendula system
with natural frequencies varying over a range of nearly 10%.
Simulation results showed an overall reduction of 97% with the
expanded twin-pulse profile, and notably all ten frequencies were
attenuated; only one frequency was attenuated with the standard
twin-pulse profile. Experiments using a linear rail transport
system and the ten pendula device validated the simulation. These
expanded profiles retain the simplicity and short duration of the
twin-pulse with increased robustness to frequency variations.

I. INTRODUCTION

Posicast control was the first use of pulses to eliminate
unwanted oscillations in lightly-damped systems [1], [2], and
was originally developed as a compensator to be used in
conjunction with an existing control system. The use of
posicast control was then expanded by Starr [3] to the realm of
profile generation to create profiles that eliminated or reduced
unwanted residual vibrations. Singhose, Singer and Seering
[9], [13] expanded Starr’s motion work by introducing the
concept of input-shaping in which a base profile is convolved
with a series of two to five pulses. Both approaches create
profiles that first excite then cancel out a range of frequencies
in the system that is being driven. Starr’s original work solved
the problem by ramping up the velocity in two steps, separated
by half the period of the natural frequency of the system.
Singer and Seering approached the problem by convolving a
twin pulse kernel with a position profile. Their pulses were
also separated by half the period of the natural frequency of
the system. This reduces to Starr’s work, since the derivative
or velocity of a convolved twin pulse is a two step velocity
profile as used by Starr.

The twin-pulse (TP) motion profile used by Starr was
sensitive to errors in the natural frequency of the driven
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system. Convolution based TP input-shaping (IS) reduced the
sensitivity to frequency errors and allowed for multiple modes
by increasing the number of pulses. The current maximum
number of pulses used by Seering, Singer, and Singhose is
five as used in the three-hump extra insensitive (EI) shaped
motion.

This paper presents a general approach of decreasing the
sensitivity of the original TP motion by manipulating the shape
and width of the pulses in the classic TP profile.

II. OVERVIEW OF EXISTING PULSE-BASED PROFILES

Profiles convolved with a series of pulses can create motion
that will not result in residual vibration in a driven system
(Figure 1). Actually, pulse-based profiles first introduce vibra-
tions into a system, then cancel out the vibrations when the
final series of pulses is applied. Figure 2 shows a series of
frequency spectra produced by a three-hump EI shaper. The
figure shows the resulting spectra as successive pulses in an
EI shaper are applied to a system. The first pulse creates a flat
spectrum that excites all frequencies. As each additional pulse
is added, the width of the notch increases and the magnitude
of the spectrum decreases. If this pulse train is convolved with
a step in position, a profile is generated that will cancel out
all residual vibration over a given frequency range. This is
the basic implementation of TP and IS motion (from a signal
processing view) as first described by Starr (Figure 1).
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Fig. 1: Swing Free motion with ∆tSF = π/ω. A) Position profile; B) Velocity
profile; C) Acceleration profile; D) Frequency spectrum with null point at ω =
2 rad/sec.
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Fig. 2: Input Shaping excites a system with its first pulse. As each successive
pulse is applied to the system, the frequency spectrum magnitude is reduced
and the notch widens.

III. MINIMAL PULSE-BASED PROFILES

A. Twin Pulse (TP) Profile

Starr’s original work was based on exciting and then cancel-
ing the energy in a system using two pulses. However, a pulse
(Dirac function) cannot be physically realized in software or
hardware. The pulses must have some physical width, usually
limited by the frequency or sampling period of software and
hardware. When width is added to the pulses, the shape of
the frequency response of the TP profile starts to change.
The frequency spectrum of the original TP motion and the
shape of the pulse itself are multiplied together to create a
final combined frequency spectrum.

B. Twin Pulse / Boxcar Motion Profiles (TP:BC profile)

This combining of the spectra can be advantageous. If the
points in the frequency spectrum where the magnitude goes
to zero (null or notch frequency) are aligned, the overall
sensitivity of the profiles can be reduced. For example, if
boxcar functions are used for the pulses, the null points can
be aligned to decrease the sensitivity (or increase the effective
width) of the notch in the frequency domain. Thus the slope
of the spectrum at the notch is reduced at the center frequency
(Figures 3, 4).

When designing a standard twin pulse profile the desired
frequency to be canceled, ωn, is aligned with the first null
frequency of the profile. The profile in Figure 3 has the desired
cancellation frequency aligned with the second null point of
the TP spectrum. The frequency spectrum of the TP : BC
profile is given by,

mag(TP :BC) = 1
4ωπ

∣∣∣e( (−2k−1)jπω
ωn

) − e(
(−2k+1)jπω

ωn
)

+e(
−2jπω

ωn
) − 1

∣∣∣ ,

(1)
where

k = The twin pulse null point number to
align with the boxcar null point

ωn = Notch frequency
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Fig. 3: Result of combining a twin pulse (TP) with a boxcar (TP:BC)when null
points are aligned. The second null point (k = 2) is aligned with the boxcar
null point.
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Fig. 4: Close up Semi-log plot of combined twin pulse with a boxcar (TP:BC)
of Figure 3.

The width ∆t of the boxcar, and the space between the two
pulses of the TP : BC profile are given by (2) and (3):

∆tboxcar(TP:BC) =
2π

ωn
(2)

tinterpulse(TP:BC) =
π

ωn
(2k − 1) . (3)

The total time required for the profile (length of the kernel)
is the sum of equations (2) and (3):

∆tkernel(TP:BC) =
π

ωn
(2k + 1) . (4)
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For the first null point of a twin pulse and boxcar function
to align, the width of the boxcar must be twice the distance
between the pulses. This creates an FIR filter (kernel) with a
pyramid shape (Figure 5). This kernel profile closely resembles
the first improvements of Singer and Seering IS, with three
pulses.
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Fig. 5: Result of combining a twin pulse of width = ∆tTP and a boxcar of
width = ∆tBC = 2∆tTP .

C. Mis-aligned Twin-Pulse / Boxcar Profiles (M-TP:BC pro-
files)

The notch width of the Twin Pulse / Boxcar motion profile
can be increased further by slightly mis-aligning the null points
of the twin pulse and the boxcar (Figure 6). The null points
of the boxcar and twin pulse can be slightly offset by δωn on
each side of the desired notch frequency ωn. The frequency
spectrum of the offset profile is defined by equation (5). Given
a desired error for the frequency spectrum magnitude, the
corresponding offset δωn can be found by iterating over (5)
using an algorithm such as the bisection method [25].
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Fig. 6: Combining a twin pulse with small mis aligned boxcar to increase
frequency notch (M-TP:BC).

mag(M−TP :BC) = 1
4ωπ

∣∣∣j (ωn + δωn)
(
e(

−jπω
δωn−ωn

) + 1
)

(
e(

−2jπω
ωn+δωn

) − 1
)∣∣∣

(5)
It should be noted that the offset δωn can be added to the

boxcar ωn and subtracted from the twin pulse ωn (referred to
as the M − TP : BC method) or subtracted from the boxcar
and added to the twin pulse (referred to as the M −BC : TP
method). If the latter method is chosen, the frequency spectrum
of (6) is created.

mag(M−BC:TP ) = 1
4ωπ

∣∣∣j (ωn−δωn)
(
e(

−jπω
ωn+δωn

) + 1
)

(
e(

−2jπω
ωn+δωn

) − 1
)∣∣∣

(6)
The length of the kernel is also affected by the method. The

M − TP : BC method creates the shortest kernel but has a
larger magnitude, resulting in higher acceleration. The length
of both kernels is shown in equations (7) and (8). The shape of
the kernel for the M −TP : BC profile is shown in Figure 7.
The primary difference between the methods is the order in
in which the null points appear in the frequency domain. For
the M − TP : BC the twin pulse null point has the lower
frequency.

∆tkernel(M−TP:BC) =
π(3ωn − δωn)

ω2
n − δω2

n

(7)

∆tkernel(M−BC:TP) =
π(3ωn + δωn)

ω2
n − δω2

n

(8)
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Fig. 7: Kernel shape for a mis-aligned (M-TP:BC) profile

D. Boxcar / Velocity Ramp (BC:VR) Motion Profile

If we let the width of the boxcar functions and the twin
pulse be equal in length they combine to form a single boxcar
function with a length twice that of the twin pulse. This is
a straightforward pulse-based profile. A simple boxcar can
create the same null point effect in the frequency domain, but
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also has the same robustness issues (but not quite as severe) as
the twin pulse profile. The advantage of the twin pulse is that
the duration of the kernel can be less than that of a boxcar. If
the magnitude of the acceleration of the two profiles is kept
constant, then the twin pulse degenerates to a single boxcar
(Figure 8).
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Fig. 8: Comparison of when a twin pulse and boxcar degenerates to a single
boxcar; A) Result of combining a twin pulse of width = ∆tTP = 0.4π and a
boxcar of width = ∆tBC = 0.4π − 0.2; B) Result of combining a twin pulse
of width ∆tTP = ∆tBC = 0.4π.

There is an advantage of using the boxcar kernel to generate
profiles. The boxcar profile is the standard profile used in most
commercial motion control systems. This profile is the first
half of what is usually referred to as a trapezoidal velocity
profile. Given the notch or natural frequency ωn and the
desired slew velocity v the acceleration command a can be
computed for a ramp velocity profile.

ωn = 2π
∆t

v = a ∆t
(9)

Combine, eliminating ∆t, and then solving for a results in.

a =
v ωn

2π
(10)

The duration of the acceleration section of the profile is given
by.

∆t(BC:V R) =
v

a
=

2π

ωn
(11)

E. Boxcar / Trapezoidal (BC:TZ) Swing-Free Profile

Even though the Boxcar / Velocity Ramp (BC:VR) kernel
is easily implemented in most commercial motion control
systems, the sensitivity of the narrow notch in the frequency
spectrum makes the single boxcar profile impractical in most
applications. The robustness can be improved by using the
combining technique described in section III-C. The trape-
zoidal frequency spectrum (acceleration followed by a decel-
eration) can be combined with the boxcar frequency spectrum.
If the desired profile starts at rest, slews a distance then comes
to a stop (trapezoidal profile) the overall profile can be used
to widen the notch in the frequency spectrum.

The trapezoidal profile can be broken down into two Dirac
pulses (one positive and one negative) convolved with a boxcar
function. As with the twin pulse and boxcar (TP:BC) example
in section III-B, the null points in the frequency spectrum can
be aligned to create the improved spectrum in Figure 9. In
the twin pulse alignment technique the first null point of the
twin pulse and boxcar spectrum were forced to align. In the
BC:TZ profile the same technique is used but the null point
must be picked to satisfy the distance and velocity constraints
of a trapezoidal profile.

The distance and slew speed desired for the trapezoidal
profile may require that the driven object cycles through many
half cycles of its natural period before it is brought to rest. The
first null frequency of the boxcar can still be used, but the fact
that the system goes through many cycles requires that any null
point of the trapezoidal pulse can be used. The first null point
of the boxcar will be aligned with the trapezoidal null point
that creates a slew velocity that comes closest to matching the
desired slew velocity. In most cases, the null point will be
picked that creates the largest velocity that does not exceed
the desired slew velocity. The following are the governing
equations for the null point alignment of a trapezoidal profile:

tBC = 2π
ωn

tTZ = 2π
ωn

k

t(BC:TZ) = tBC + tTZ = 2π(1+k)
ωn

vslew = d
tT Z

,

(12)

where

d = Distance to travel
vslew = Slew velocity of trapezoidal profile
tBC = Duration of boxcar
tTZ = Duration between trapezoidal pulses
tBC:TZ = Total time of trapezoidal profile
k = Null point number of trapezoidal profile.

Equation (12) can be solved for k;

k = ceil

(
d ωn

2 π vslew

)
. (13)

When computing k the desired slew velocity (vslew) is used.
The value of k is then rounded up to the nearest integer. Once k
is computed, the durations of the trapezoidal profile tTZ and
boxcar tBCprofile can be computed. Lastly the actual slew
velocity for the profile is computed also using k,

vactual slew =
dωn

2πk
. (14)

F. Mis-aligned Boxcar / Trapezoidal (M-BC:TZ) Swing-Free
Profile

The mis-alignment technique used for the twin-pulse profile
can also be used for the trapezoidal profile with the same
widened-frequency spectrum notch. The results for such a
profile can be seen in Figure 10. The formulation to compute
the durations of trapezoidal pulses and boxcar profiles is
similar to that for the aligned trapezoidal profile. Only the
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Fig. 9: Trapezoidal profile with frequency spectrum of the pulses and boxcar
aligned.

offset δωn must be added and subtracted from the natural
period of the system in (12).

tBC(M−BC:T Z) = 2π
ωn−δωn

tTZ(M−BC:T Z) = 2π
ωn+δωn

k

t(M−BC:TZ) = tBC(M−BC:T Z) + tTZ(M−BC:T Z)

= 2π(ωn(k+1)−δωn(k−1))
ω2

n−δω2
n

vslew = d
tT Z(M−BC:T Z)

(15)

Position

Velocity

Acceleration

BoxcarBoxcar

Trapezoidal 
Pulses with 

Boxcar

Trapezoidal 
Pulses with 

Boxcar

Trapezoidal 
pulses

Trapezoidal 
pulses

Frequency 
Notch Width

Fig. 10: Trapezoidal profile with frequency spectrum of the pulses and boxcar
slightly miss-aligned to increase width of frequency notch.

As with the twin pulse mis-align technique, the δωn offset
can be added to the trapezoidal ωn and subtracted from the
boxcar ωn (referred to as the M − BC : TZ method),
or subtracted from the trapezoidal and added to the boxcar
(referred to as the M−BC : TZ method). The M−TZ : BC
method creates the profile with the shortest duration, but also

has a larger magnitude, thus higher acceleration. The following
are the governing equations for the null point mis-aligned
trapezoidal profile:

tBC(M−T Z:BC) = 2π
ωn+δω n

tTZ(M−T Z:BC) = 2π
ωn−δωn

k

t(M−TZ:BC) = tBC(M−T Z:BC) + tTZ(M−T Z:BC)

= 2π(ωn(k+1)+δωn(k−1))
ω2

n−δω2
n

vslew = d
tT Z(M−T Z:BC)

.

(16)

These equations can then be solved for k and the profile times
computed:

k = ceil

(
d (ωn − δw)

2 π vslew

)
. (17)

When computing k the desired slew velocity (vslew) is used.
Once k is computed the actual slew velocity is computed using
(16).

The frequency spectrum magnitude for the mis-aligned
trapezoidal profiles is defined by (18). As with the mis-aligned,
twin pulse profiles, the quantity δωn can be computed by
iterating over the equations until the desired error is achieved
at ωn.

mag(M−BC:TZ) =
∣∣∣ j(ωn−δωn)

4πωn(
e(

−2jπωn
ωn−δωn

) + e(
−2jπωnk
ωn+δωn

) − 1

−e

(
−2jπ(ωn(k+1)−δωn(k−1))

ω2
n+δω2

n

))∣∣∣∣∣
(18)

mag(M−TZ:BC) =
∣∣∣ j(ωn−δωn)

4πωn(
e(

−2jπω
ωn+δωn

) + e(
−2jπωk
ωn−δωn

) − 1

−e

(
−2jπ(ωn(k+1)+δωn(k−1))

ω2
n+δω2

n

))∣∣∣∣∣
(19)

G. Mis-aligned Boxcar / Trapezoidal / Twin Pulse (M-
BC:TZ:TP) Motion Profile

The mis-alignment technique can be taken one step further
by combining the twin pulse, boxcar, and trapezoidal profiles
together. When two base profiles are combined, two possible
resulting profiles exist. When three base profiles are combined,
six resulting profiles are possible. The number of resulting
profiles can be reduced to two if the trapezoidal profile is
always the center profile. This can be justified by viewing
the frequency spectrum of the three profiles. The frequency
spectrum of the trapezoidal profile will usually have the
narrowest notch. This narrow notch is a result of the distance
and time required to traverse the trapezoidal profile. For long
duration moves, the system will go through many cycles. The
more cycles required to traverse the profile, the more compact
the lobes become in the frequency spectrum. This compaction
of the spectrum creates narrow notches. For each complete
cycle of the system there will be a null point to the left of
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the desired notch frequency. This requires the alignment of
high order null points with the first null points of the twin
pulse and boxcar. Placement of the wider notches (slope of
the frequency spectrum near the null point) of the twin pulse
and boxcar profiles on each side of the trapezoidal profile helps
to increase the overall width of the notch.

The triple mis-alignment technique can be thought of as
the twin pulse boxcar technique described above with the
trapezoidal profile centered at the notch frequency. The kernel
length of the triple mis-alignment is then the length of the
TP:BC profile (equations (7) and (8)) with the duration of the
trapezoidal profile added.

t(M−BC:TZ:TP) =
π(3ωn − δω)

ω2
n − δw2

+
2πk

ωn
(20)

t(M−TP:TZ:BC) =
π(3ωn + δω)

ω2
n − δw2

+
2πk

ωn
(21)

The frequency spectrum magnitude for the TP:TZ:BC pro-
files is defined by (22). As with the mis-aligned boxcar, twin
pulse and mis-aligned boxcar trapezoidal profiles, a δωn offset
can be computed by iterating over the equations until the
desired error at ωn is achieved:

mag(M−TP :TZ:BC) =
∣∣∣ j(ωn+δωn)

4ωπ

(
e(

−jπωn
δωn−ωn

) + 1
)

(
e(

−2jπωn
ωn+δωn

) − 1
)

(
1 − e(

−2jπωn
δωn−ωn

k)
)∣∣∣ ,

(22)

mag(M−BC:TZ:TP ) =
∣∣∣ j(ωn+δωn)

4ωπ

(
e(

−jπω
δωn−ωn

) + 1
)

(
e(

−2jπω
ωn−δωn

) − 1
)

(
1 − e(

−2jπω
δωn+ωn

k)
)∣∣∣ .

(23)
Figure 11 is a comparison of a M-TP:BC profile with a M-

TP:TZ:BC profile with the same δωn offset. In this comparison
we see that the addition of the trapezoidal spectrum reduces the
response by over 10db. The effect of the triple mis-alignment
profile can be thought of as two filters in series, reducing the
residual vibrations in a sequential fashion.

The example spectra in Figure 11(A) shows a TP:BC profile
and a M-TP:TZ:BC profile. During the ramp-up acceleration
phase of the profile, only the TP:BC portion of the profile is
felt by the system. At this point in the profile the residual
vibration will attenuated by 48db. During the ramp-down
deceleration phase of the profile, the residal vibration will be
attenuated an extra 12db to 60db due to the added alignment
of the trapezoidal part of the profile. Figure 11 also shows
the difference of the a M-TP:BC profile and a M-TP:TZ:BC
profile with δωn offsets adjusted to create the same magnitude
of filtering at the frequency notch.

Trapezoidal, 
Swing Free, 
and Boxcar

Swing Free 
and Boxcar
Twin Pulse 
and Boxcar

Trapezoidal, 
Twin Pulse , 
and Boxcar

Frequency

Frequency

A)

B)

Fig. 11: A) Mis-aligned twin pulse with boxcar (M-TP:BC) frequency spectrum
compared to twin pulse with boxcar and trapezoidal (M-TP:TZ:BC) with equal
δω’s; B) Mis-aligned twin pulse with boxcar (M-TP:BC) frequency spectrum
compared to twin pulse with boxcar and trapezoidal (M-TP:TZ:BC) with δω’s
adjusted to create equal magnitude attenuated.

IV. EXPERIMENTAL RESULTS

An experiment was conducted using a multi-pendulum
device. The lengths of the 10 pendula were arranged to have
a frequency span of 3.36 rad/s to 3.66 rad/s. The frequency
range corresponds to a the masses on the pendula being being
evenly spaced between 28.8 in to 34.2 in.

Ten Pendulums
with Different 

Natural 
Frequencies

Fig. 12: Multiple pendula of different lengths (the comb) being driven at the
University of New Mexico by the RTU in the MTTC robotics lab.

The pendula were driven a distance of 1.7 meters using two
different profiles. The first profile was a classic twin pulse
profile with a slew velocity of 0.7 m/s shown in Figure 13.
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The second profile was an expanded twin pulse (M-BC:TZ:TP)
motion profile with a desired slew velocity of 0.7 m/s which
resulted in an actual velocity ( see Equation 16, k=2 ) of
0.4735 m/s (Figure 14). The pulses in both profiles were
constructed using Boxcar filters such that the area under the
Boxcars (acceleration profile) was equal to the slew velocities.
Both profiles were constructed to have frequency notches
centered at 3.5 rad/s. The (M-BC:TZ:TP) profile was designed
with a δwn of 0.05 rad/s above and below the notch frequency.
From Figures 13 and 14 it can be seen that the acceleration
profiles of both methods have the same form. But by using
the methods presented herein the narrow notch of the classic
twin pulse profile has been significantly widened around 3.5
rad/s.

Both profiles were initially tested on a simulation of the
pendula. The results of the simulations are shown in Figure 15.
From the figure it can be seen that the (M-BC:TZ:TP) profile
eliminated virtually all residual vibrations over the frequency
range of the pendula, while the classic twin pulse profile only
eliminated the residual vibration of the pendula near 3.5 rad/s.

The simulation showed a reduction in residual oscillations
of 97% using the (M-BC:TZ:TP) profile as compared to the
classic twin pulse profile for the natural frequency range of the
pendula used in the simulation (of 3.36 rad/s to 3.66 rad/s).
The classic twin-pulse profile produced a maximum oscillation
of 0.374 degs whereas the the (M-BC:TZ:TP) profile had a
maximum oscillations of 0.012 degs.

When the actual pendula were driven with the profiles in
Figures 13 and 14, the results matched that of the numerical
simulations. When the classic twin pulse system came to rest
only one of the pendula had virtually no residual oscillations
while the remaining pendula had a noticeable motion. The
experiment also showed the sensitivity of unexpanded twin
pulse profiles. The profile was created based on a computed
ωn=3.5 rad/s for the center pendulum. The pendulum that
came to rest was the shortest pendulum which had a computed
natural frequency of 3.66 rad/s.

This offset of the twin pulse frequency notch is also apparent
in the frequency spectrum of Figure 13. The notch in the
spectrum is not exactly at 3.5 rad/s. The spectrum in the figure
was created from the actual profile used in the experiment.
The linear rail transport system used to drive the pendula
has a position-time update resolution of 1/60 second. The
time required for a twin pulse to notch out 3.5 rad/s (see
Equation 3, k = 1) is π/ωn = π/3.5 = 0.8976 which is
not evenly divisible by 1/60 contributing to the sensitivity of
implementing twin pulse profiles.

The expanded twin pulse (M-BC:TZ:TP) experiment closely
matched the numerical simulation without any sensitivity
issues. When the (M-BC:TZ:TP) system came to rest all of the
pendula came to rest with virtually no residual oscillations.

V. CONCLUSION

This paper demonstrates how the original swing free twin
pulse profile can be modified to increase significantly its
robustness. The method is based on exploiting the frequency
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Fig. 13: Acceleration, velocity, position, and frequency response of classic
swing free (twin pulse) profile.
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Fig. 14: Acceleration, velocity, position, and frequency response of Mis-aligned
Boxcar / Trapezoidal / Twin Pulse (M-BC:TZ:TP) motion profile.

response of all the components used to construct a twin pulse
profile. The technique includes intentionally mis-aligning the
null points of ideal twin pulses and a convolved boxcar
function, then adding a trapezoidal profile component, finally
culminating in what we term a ”mis-aligned boxcar / trape-
zoidal / twin pulse” (M-BC:TZ:TP) motion profile.

This expanded profile and a basic twin-pulse profile were
both evaluated on a ten-pendula system with natural frequen-
cies from 3.36 to 3.66 rad/s. Simulation of the profiles showed
a reduction in residual oscillations of 97% using the (M-
BC:TZ:TP) profile as compared to the classic twin pulse pro-
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Fig. 15: Comparison of results of simulated classic swing free (twin pulse)
profile (upper plot) and expanded twin pulse (M-BC:TZ:TP) Motion Profile
(lower plot). Both plots show the swing angles of each of the 10 pendula of
the comb in Figure 12. The lengths of the 10 pendula were arranged to have a
frequency span of 3.36 rad/s to 3.66 rad/s.

file. Experiments using a linear rail transport system and the
ten-pendula device validated the techniques. These expanded
profiles retain the simplicity and short duration of the twin-
pulse with increased robustness to frequency variations.
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