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Abstract— Developing stable controllers able to exhibit a
wide dynamic range of impedances is a persistent challenge
in the field of haptics. This paper addresses the effect of
internal vibration modes on the stability boundary for haptic
rendering. A theoretical study that analyzes the influence
of the first resonant mode on the maximum achievable
impedance is presented. Experiments carried out on the
LHIfAM haptic interface support the theoretical conclusions.
A control architecture that overcomes the undesired effect of
the resonant mode on the stability is also described.

Index Terms— Haptic systems, Stability, Vibrations

I. INTRODUCTION

Over the past years haptic interfaces have been suc-

cessfully integrated into a wide range of fields such as

engineering [1] or surgery [2], [3]. Haptic devices allow

users to interact with a certain environment, either remote

or virtual, by the sense of touch. In these applications—

unlike in conventional robotic systems—the user shares

workspace with the device. Therefore, an unstable behavior

can damage the device, or even worse, harm the operator.

Thus, stability must be guaranteed to ensure user safety and

achieve high haptic performance. Unfortunately, preserving

haptic stability usually implies reducing the range of dynamic

impedances achievable by the system. Hence, rigid virtual

objects cannot be perceived as stiff as real ones, and the

overall haptic performance is considerably degraded.

In a haptic system, the critical impedance depends on

many factors, such as inherent interface dynamics, motor

saturation, sensor resolution or time delay. Several studies

[4], [5], [6], have previously analyzed how these phenomena

affect the stability and passivity boundary. However, the

mathematical models used to analyze stability rarely take into

account the existence of internal vibration modes. This paper

presents a theoretical approach that studies the influence of

internal vibration modes on the stability of haptic rendering.

In particular, it addresses the influence of the first resonant

mode of cable transmission used in haptic devices. This

type of mechanical transmissions is widely used in haptic

devices because it offers a number of advantages such as low

friction, no backlash and low weight [7]. Well-known haptic

devices—i.e. the PHANToM haptic interface—use this type

of transmission.
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Fig. 1. Cable transmission of the translational degree-of-freedom of the
LHIfAM haptic interface.

The paper is organized as follows: in Section II a haptic

model with a single vibration mode is presented. Section III

theoretically analyzes the stability of the system using an

impedance interaction with the virtual environment. Sec-

tion IV shows the influence of the first resonant mode on

the gain margin of the system, and Section V supports

the analytical study with experiments carried out on the

LHIfAM haptic interface [8], [9] (Fig. 1). Section VI presents

an alternative control architecture for the system, and final

conclusions are summarized in Section VII.

II. SYSTEM DESCRIPTION

Fig. 2(a) illustrates a simplified model commonly used

to analyze the stability of haptic systems [10], [6]. It has a

mass m and a viscous damping b, and the model assumes

that the mechanical device is perfectly rigid. Although the

force exerted by the motor Fm and the force exerted by the

user Fh are introduced in different places, a single transfer

function is defined for this model,

Xh = G(s)(Fh + Fm), (1)

which is

G(s) =
1

ms2 + bs
. (2)

However, several authors [11], [12], have remarked the

existence of internal vibration modes in haptic devices.

Fig. 2(b) shows a haptic system with a single vibration

mode. The terminology used is defined for the case in

which the vibration mode is that of the cable transmission

connecting the motor (subscript m) and the main body of the

device (subscript d). The dynamic properties of the cable are
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Fig. 2. Scheme of a perfectly rigid haptic device (a), and haptic device
with a single vibration mode (b).

TABLE I

PHYSICAL PARAMETERS OF THE LHIfAM

Parameter Variable Value

Mass m 5.4 kg
Motor mass mm 0.3 kg
Body mass md 5.1 kg
Damping b 3.5 Ns/m

Motor damping bm 0.1 Ns/m
Body damping bd 3.4 Ns/m
Cable stiffness kc 79.5 kN/m
Cable damping bc 15 Ns/m

characterized by a spring and a damper, with coefficients kc

and bc respectively.

The new model is a two-input/two-output system. The

relationship between output positions and input forces is[
Xh

Xm

]
=

[
Gd(s) Gc(s)
Gc(s) Gm(s)

] [
Fh

Fm

]
, (3)

or,

x = Gf . (4)

Three new transfer functions have been defined,

Gd(s) =
pm(s)

pd(s)pm(s) − (kc + bcs)2
, (5)

Gc(s) =
kc + bcs

pd(s)pm(s) − (kc + bcs)2
, (6)

Gm(s) =
pd(s)

pd(s)pm(s) − (kc + bcs)2
, (7)

where,

pd(s) = mds
2 + (bd + bc)s + kc, (8)

pm(s) = mms2 + (bm + bc)s + kc. (9)

As can be expected, all these transfer functions have

the same characteristic equation. Fig. 3 shows the Bode

diagrams of Gd(s), Gc(s) and Gm(s) calculated with the

physical parameters of the translational degree-of-freedom

of the LHIfAM, shown in Table I.

An experimental approach described in [11] has been fol-

lowed in order to obtain the dynamic properties of the cable

(kc and bc). Before the experiment, the position of the haptic

device is mechanically locked. Then, a swept sine wave input

that varies from 10 to 200 Hz is applied to the motor, and the

output position response is measured. Parameters are fitted

from the relationship between the frequency content of input

and output signals. Fig. 4 shows both the experimental and
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Fig. 3. Bode diagrams of Gd(s), Gc(s) and Gm(s) calculated for the
LHIfAM.
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Fig. 4. Frequency response of the system to a chirp force input (blue) and
Bode diagram of the cable model (black) after parameter fitting.

empirically modeled results after parameter fitting. Although

the cable stiffness may be nonlinear (i.e. dependent on

position), the figure shows that a spring-damper model is

valid to adequately characterize the dynamic behavior of the

cable.

Assuming that m = mm + md and b = bm + bd, an

alternative way to define the system is

G = G(s)
ω2

n

s2 + zns + ω2
n

⎡
⎣ s

2
+z1s+ω

2

1

ω2

1

1 + bc

kc

s

1 + bc

kc

s
s
2
+z2s+ω

2

2

ω2

2

⎤
⎦ (10)

where,

ω2
1 =

kc

mm

, (11)
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ω2
2 =

kc

md

, (12)

ω2
n =

kcm

mdmm

, (13)

z1 =
bm + bc

mm

, (14)

z2 =
bd + bc

md

, (15)

zn = z1 + z2 −
b

m
. (16)

This formulation shows that the original transfer function

G(s) remains valid at low frequencies, because the other

elements add 0 dB and 0◦ within that range. The vibration

mode is characterized by the underdamped second-order

transfer function whose natural frequency is ωn.

III. IMPEDANCE INTERACTION

Introducing an impedance interaction with the virtual envi-

ronment, the device can be analyzed as a single-input/single-

output system, as it is illustrated in Fig. 5. C(z) is the force

model of the virtual contact (which usually includes a spring

and a damper) and H(s) is the zero-order-holder. T is the

sampling period.

G

XhFh

T
C(z)

Force model

H(s)

Holder

XmFm

–1 Xm*

Interface

Fig. 5. Haptic system with impedance interaction.

Using (3) and force model

Fm(s) = −H(s)C(z)X∗

m(s), (17)

the output positions are

Xh(s) = Gd(s)Fh(s) − Gc(s)H(s)C(z)X∗

m(s), (18)

Xm(s) = Gc(s)Fh(s) − Gm(s)H(s)C(z)X∗

m(s), (19)

and the sampled position of the motor is given by

X∗

m(s) =
Z[Gc(s)Fh(s)]

1 + C(z)Z[H(s)Gm(s)]
. (20)

A possible way to depict the block diagram of the single-

input/single-output system—using (18) and (19)—is shown

in Fig. 6.

The stability of the haptic system with impedance inter-

action depends on the position of the poles of the following

characteristic equation,

1 + C(z)Z[H(s)Gm(s)] = 0. (21)

If the force model has a virtual spring with stiffness K,

the characteristic equation becomes

1 + KZ[H(s)Gm(s)] = 0, (22)

Gd(s)
+

Fm

XhFh

–

Gm(s)

Gc(s)
+ Xm

T
C(z) H(s)

Holder
Xm

Gc(s)

–

*
Force model

Fig. 6. Block diagram of the system with impedance interaction.
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Fig. 7. Bode diagram and margins of Z[H(s)Gm(s)] calculated for the
LHIfAM.

and the critical stiffness is

KCR = Gm{Z[H(s)Gm(s)]}, (23)

where Gm{.} means gain margin of the transfer function

within brackets.

Fig. 7 shows the Bode diagram of Z[H(s)Gm(s)] for

the LHIfAM. It can be observed that the magnitude of

the gain margin, and the frequency at which it is placed,

are not being influenced by the resonant peak caused by

the vibration mode. Since G(s) and Gm(s) are similar

at those frequencies, the vibration mode does not have to

be considered to obtain the stability boundary. In other

words, G(s) is good enough to characterize the systems.

And previous stability criteria [6] that do not consider the

influence of vibration modes in the system are adequate to

calculate the critical stiffness of the system.

IV. INFLUENCE OF THE VIBRATION MODE

The theoretical analysis of Section III has shown that the

resonant mode of the cable transmission of the LHIfAM does

not affect the stability boundary. However, it is also evident

from Fig. 7 that the resonant peak could easily impose the

stability margin.

We have decreased the initial pretension of the cable in

order to analyze how this affects the stability of the system.
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Fig. 8. Frequency response of the system to a chirp force input (blue) and
Bode diagram of the cable model (black) with decreased pretension.

Fig. 8 presents the new dynamic properties of the cable

transmission.

Fig. 9 shows the Bode diagram of Z[H(s)Gm(s)] for the

new cable transmission setup. In this case, the first resonant

mode of the cable does impose the gain margin of the system.

Notice that the new gain margin is larger than the one of the

original system, but placed at a higher frequency. Although

it may not seem evident in Fig. 9, there is only one phase

crossover frequency at 411.23 rad/s in the Bode diagram.

A possible criterion to estimate whether the resonant peak

does influence on the critical stiffness is to measure the

distance Q from the resonant peak to 0 dB. This distance

is approximately

Q ≈ mmznωn. (24)

Distance Q should be compared with the critical stiffness

obtained using the criterion presented in [6], which gives

a gain margin similar to the one shown in Fig. 7. If Q is

similar or larger than that value, then the vibration mode

should be taken into account in the stability analysis. Using

the parameters of the LHIfAM, Q is approximately 78.16 dB

(with original cable setup).

V. EXPERIMENTAL RESULTS

The translational degree-of-freedom of the LHIfAM haptic

interface (Fig. 1) has been used as testbed to perform

experiments. The device is controlled by a dSPACE DS1104

board that reads encoder information, processes the haptic

control loop and outputs torque commands to the motor at a

sampling rate of 1 kHz. The linear transmission provides a

1500 mm linear stroke and a resolution of 3.14 μm with a

QuantumDevices D145 encoder. Cable transmission is driven

by a commercial Maxon RE40 dc motor. Experiments were

performed after reducing cable pretension (Fig. 8).

An interesting approach is to experimentally seek out—by

tuning a controllable parameter in the same system—several

critical stiffness values KCR: some that are influenced by

the resonant frequency and others that are not. This can be
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Fig. 9. Bode diagram and margins of Z[H(s)Gm(s)] calculated for the
LHIfAM after reducing cable pretension.

achieved by introducing an elastic force model with different

time delays td:

C(z) = Kz−
td

T . (25)

This way, the characteristic equation becomes

1 + Kz−
td

T Z[H(s)Gm(s)] = 0, (26)

and the critical stiffness is

KCR = Gm{z−
td

T Z[H(s)Gm(s)]}, (27)

KCR = Gm{Z[H(s)Gm(s)e−tds]}. (28)

Without any delay in the system, the gain margin should

be imposed by the resonant peak of the vibration mode.

Introducing certain time delays within the loop the gain

margin should move to the linear region of the Bode where

the slope is −40 dB/decade (as it is schematically shown in

Fig. 10).

The critical virtual stiffness of the device is calculated

by means of the relay experiment described in [13], [10],

[14], with and without time delay. In this experiment a relay

feedback—an on-off controller—makes the system oscillate

around a reference position. In steady state, the input force

is a square wave, the output position is similar to a sinusoid

wave, and both have opposite phase. These two signals in

opposite phase are shown in Fig. 11.

It can be demonstrated [13] that the ultimate frequency

is the oscillation frequency of both signals, and the ultimate

gain is the quotient of the amplitudes of the first harmonic

of the square wave and the output position. This ultimate

gain is, of course, the critical gain of this system. Since

we are relating force exerted on the interface and position,

this critical gain is precisely the maximum achievable virtual

stiffness for stability.

Nine trials with varying delays in the input force (from

0 to 8 ms) were performed. Each one of these trials was
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Fig. 11. Force input and position output of a relay experiment for time
delay td = 0.

repeated four times in order to have consistent data for

further analysis, and in each experiment input-output data

values were measured for more than 15 seconds (in steady

state). Oscillation frequencies were found by determining

the maximum peak of the average power spectral density

of both signals. Gain margins were obtained by evaluating

the estimated empirical transfer function at that frequency.

Table II presents these oscillation frequencies and gain

margins.

Fig. 12 shows that results of Table II and the Bode

diagram of Z[H(s)Gm(s)] calculated for the LHIfAM match

properly. Notice that the resonant peak of the vibration mode

conditions the stability of the system only for short delays.

All these experiments confirm the theoretical conclusions of

Section IV.

Critical gain margins shown in Table II for the undelayed

system should be similar to the gain margin obtained theo-

retically in Fig. 9. However, they differ in more than 7 dB. A

TABLE II

CRITICAL OSCILLATIONS OF THE LHIfAM

td ωCR Gm td ωCR Gm

(ms) (Hz) (dB) (ms) (Hz) (dB)

0 64.9414 80.3149 4 4.5166 73.9436

0 64.4531 79.9414 4 4.6387 74.6716

0 65.4297 80.3552 5 4.5166 73.9604

0 65.4297 80.3019 5 4.3945 73.6567

1 60.0586 76.2336 5 4.3945 73.4947

1 59.0820 75.3235 5 4.3945 73.3171

1 60.3027 75.8445 6 3.1738 66.8281

1 58.9600 75.3917 6 3.1738 66.7290

2 4.8828 76.1063 6 3.1738 66.6668

2 4.8828 76.4240 6 3.1738 66.7219

2 4.8828 76.9967 7 2.8076 64.1974

2 4.8828 75.7971 7 2.8076 64.4480

3 4.3945 73.5975 7 2.6855 64.1268

3 4.3945 73.8443 7 2.8076 64.6013

3 4.3945 72.9533 8 2.3193 61.0258

3 4.3945 73.9426 8 2.3193 60.8367

4 4.3945 73.5919 8 2.3193 61.3209

4 4.3945 73.6444 8 2.3193 61.4755
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Fig. 12. Experimental gain margins obtained for several time delays by
the relay experiment (circles), and the Bode diagram of Z[H(s)Gm(s)]
calculated for the LHIfAM (line).

possible reason could be that most practical systems experi-

ence some amplifier and computational delay in addition to

the effective delay of the zero-order holder [5]. This inherit

delay has been estimated using the Bode diagram of Fig. 9,

and is approximately 250 μs.

VI. ALTERNATIVE SYSTEM ARCHITECTURE

The gain margin and the critical stiffness of the system

could not be affected by the vibration mode of the cable

transmission if the feedback loop uses the position of the

user instead of the position of the motor. Fig. 13 presents

two equivalent block diagrams of this architecture.

With this architecture, the sampled position of the user

becomes

X∗

h(s) =
Z[Gd(s)Fh(s)]

1 + C(z)Z[H(s)Gc(s)]
, (29)
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and using an elastic force model, the critical stiffness is

KCR = Gm{Z[H(s)Gc(s)]}. (30)

The Bode diagram presented in Fig. 14 shows that in this

case the vibration mode does not play any role in the gain

margin of the system. The plot has been depicted by using

the parameters of the LHIfAM with the cable pretension of

Section IV.

Despite the advantages of the control strategy described in

this section, accurately measuring user position is not clear-

cut and requires the modification of the current configuration

of our system. In future research, we plan to perform

experiments to verify the benefits of the proposed approach.

VII. CONCLUSIONS

This paper has examined the influence of internal vibration

modes on the stability of haptic rendering. Haptic models

commonly used to analyze stability rarely take into account

this phenomenon. This work shows that the first resonant

mode of cable transmissions used in haptic interfaces can

affect the stability boundary for haptic rendering. A criterion

that estimates when this fact occurs is presented. Experi-

ments carried out on a haptic interface support the theoretical

conclusions.

The main dynamic properties of the cable transmission

of our haptic interface have been modeled experimentally.

The identification of the first vibration mode has been

proven enough to adequately characterize the transmission

and obtain the critical stiffness of the system.

An alternative control architecture that overcomes the un-

desired effect of the resonant mode has also been presented.

In future work, we plan to experimentally verify the benefits

and drawbacks of this strategy.

Human operator dynamics does modify the stability mar-

gins presented in this paper. It has already been shown [10],

[15] that human operator tends to stabilize the system for

the rigid model presented in Fig. 2(a). Therefore, the control

scheme without its influence can be considered as the worst

case for stability. Further work will also analyze this fact for

the case of the model including the vibration mode.
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