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Abstract— An adaptive neural network controller is proposed
to deal with the task-space tracking problem of manipulators
with kinematic and dynamic uncertainties. The orientation of
manipulator is represented by the unit quaternion, which avoids
singularities associated with three-parameter representation.
By employing the adaptive Jacobian scheme, neural networks,
and backstepping technique, the torque controller is obtained
which is demonstrated to be stable by the Lyapunov approach.
The adaptive updating laws for controller parameters are
derived by the projection method, and the tracking error
can be reduced as small as desired. The favorable features
of the proposed controller lie in that: (1) the uncertainty in
manipulator kinematics is taken into account; (2) the unit
quaternion is used to represent the end-effector orientation;
(3) the “linearity-in-parameters” assumption for the uncertain
terms in dynamics of manipulators is no longer necessary;
(4) effects of external disturbances are also considered in the
controller design. Finally, the satisfactory performance of the
proposed approach is illustrated by simulation results on a
PUMA 560 robot.

I. INTRODUCTION

Most research so far in robot control has assumed either

kinematics or Jacobian matrix of the robot manipulator is

known exactly [1], [2]. Unfortunately, due to the imprecision

measurement of manipulator parameters and interactions

between robot and different environments, it is consequently

difficult to obtain the exact kinematic model. Therefore,

robot kinematic uncertainty is a practical problem when the

control objective is formulated directly in task space.

In [3], Arimoto described the importance of the problem

with uncertain kinematic parameters and stated the research

which targeted this problem was just in a beginning stage. In

[4], Cheah et al. developed an approximate Jacobian feed-

back controller which exploited a static, best-guess estimate

of the manipulator Jacobian to achieve control objectives.

Some drawbacks of this controller, such as the requirement of

task-space velocity of the robot end-effector, were resolved

in [5]. In contrast to the use of a static estimated Jacobian, in

[6], an adaptive controller was proposed to compensate the

parametric uncertainty in the manipulator Jacobian, which

eliminated the bounded mismatch assumption required in

[4], [5]. However, above methods focus on the setpoint

control of robot. As to tracking control problems, Cheah et

al. suggested an adaptive Jacobian controller for trajectory
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tracking of non-redundant robot with uncertain kinematics

and dynamics [7]. Extensions to the redundant robot and

uncertain actuator parameters were done in [8]. In [9], the

orientation tracking problem of non-redundant manipulators

was solved well by employing the unit quaternion represen-

tation. It is noted that aforementioned adaptive controllers

employ the standard adaptive control scheme to compensate

the effects of gravity and other terms in the manipula-

tor dynamics, which means that they will suffer from the

“linearity-in-parameters” assumption and the tedious analysis

of determining “regression matrix”. In addition, the surface

friction and external disturbance in robot dynamics have been

neglected in the controller design.

Recently, neural networks have been successfully used

for the nonlinear system identification and control due

to their “universal-approximation” property [10]. Several

neural-network-based adaptive controllers are also presented

to eliminate the “linearity-in-parameters” assumption in stan-

dard adaptive control (see [11] for the general framework

of these methods). The stability of this neural-network-

based adaptive control system is guaranteed by the Lyapunov

synthesis method, and synaptic weights of neural networks

are tuned on-line without any off-line learning phases. In

literature, some adaptive neural network controllers have

been proposed for the tracking control of robot manipulators

[12], [13]. However, these controllers are designed to move

the robot along the desired joint angles, the manipulator

kinematics is not taken into account.

This paper addresses the task-space tracking problem of

robot manipulators with uncertain kinematics and dynamics.

The unit quaternion is utilized to represent the orientation of

manipulators, then the singularity problem occurred in the

three-parameter representations (e.g. Euler angles, Rodrigues

parameters) will be avoided. By employing adaptive Jacobian

method, neural network approximation, and backstepping

technique, an adaptive neural network controller is obtained.

The adaptive updating laws for uncertain kinematic para-

meters and neural network synaptic weights are derived by

the projection method. Stability of the proposed controller

is guaranteed by the Lyapunov theory. And the tracking

error can be reduced as small as desired. Compared with

aforementioned controllers for uncertain kinematics, the pro-

posed controller has several features: (1) the “linearity-in-

parameters” assumption for the manipulator dynamics is

no longer necessary; (2) external disturbances and surface

frictions are taken into account; (3) the task-space velocity

of robot end-effector is not required.

The remainder of this paper is organized as follows.
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Section II introduces the problem formulation and some

preliminary results. Section III discusses the controller de-

sign procedure. Section IV demonstrates the stability of

proposed controller. Illustrative simulation is given in Section

V. Section VI concludes this paper with final remarks.

II. MATHEMATICAL PRELIMINARIES

A. Kinematics and Dynamics of Robot Manipulators

The dynamic model for a rigid n-link, serially connected

robot manipulator can be expressed as [13]

M(θ)θ̈ + V (θ, θ̇)θ̇ + F (θ̇) + G(θ) + τed = τ, (1)

where θ, θ̇, θ̈ ∈ R
n denote the joint position, velocity, and

acceleration vectors, respectively; M(θ) ∈ R
n×n is the

inertia matrix; V (θ, θ̇) ∈ R
n×n is the centripetal-Coriolis

matrix; F (θ̇) ∈ R
n denotes the surface friction; G(θ) ∈ R

n

is the gravitational vector; τed ∈ R
n denotes the bounded

external disturbance vector including unstructured model

dynamics; τ ∈ R
n represents the torque input vector.

Two important properties of the dynamics equation de-

scribed by (1) are given as follows [6].

Property 1: The inertia matrix M(θ) is symmetric and

positive definite, and satisfies the following inequalities:

m1‖y‖
2
2 ≤ yT M(θ)y ≤ m2‖y‖

2
2, ∀y ∈ R

n,

where m1 and m2 are known positive constants, and ‖ · ‖2

denotes the standard Euclidean norm.

Property 2: The time derivative of the inertia matrix and

the centripetal-Coriolis matrix satisfy the skew symmetric

relation; that is,

yT
(

Ṁ(θ) − 2V (θ, θ̇)
)

y = 0, ∀y ∈ R
n.

Let Ψm and Ψb be orthogonal coordinate frames attached

to the manipulator end-effector and fixed base, respectively.

Let p(t) ∈ R
3 represent the position of the original of Ψm

relative to the origin of Ψb. Traditionally, the orientation of

Ψm relative to Ψb can be described by a rotation matrix

R(t). However, this representation is clearly impractical

because there are too many elements in the matrix, and

not all of elements are independent. As an alternative, the

three-parameter representation (e.g. Euler angles, Rodrigues

parameters) is used widely to specify the orientation. Al-

though it is the simplest representation method, the singu-

larity problem is inevitable, which results in the degraded

performance or unpredictable responses by the manipulator.

To resolve this problem, an efficient way to specify the

orientation is the quaternion description which is given by

q(t)
def
=

[

qo(t), q
T
v (t)

]T
∈ R

4. It is shown in [14] that the

rotation matrix R(t) can be calculated by

R(t) = (q2
o − qT

v qv)I3 + 2qvq
T
v + 2qoA(qv), (2)

where I3 is the 3×3 identity matrix, and the notation A(a),
∀a = [a1, a2, a3]

T denotes the following skew-symmetric

matrix:

A(a) =





0 −a3 a2

a3 0 −a1

−a2 a1 0



 .

Quaternions have many interesting properties, such as nor-

mality, uniqueness, and it is related to the end-effector

angular velocity ω(t) via the following differential equation

[14], [15]

q̇(t) =
1

2
B(q)ω, (3)

where

B(q) =

[

−qT
v

qoI3 − A(qv)

]

.

It is well-known that the manipulator forward kinematics

can be expressed by
[

ṗ
ω

]

= J(θ, φJ )θ̇ (4)

where φJ ∈ R
r represents the kinematic parameters, such

as link lengths and joint offsets; J(θ, φJ ) ∈ R
6×n denotes

the manipulator Jacobian matrix which has the following

property.

Property 3: The product of the manipulator Jacobian ma-

trix with the joint velocity vector can be linearly parameter-

ized as

J(θ, φJ )θ̇ = YJ(θ, θ̇)φJ , (5)

where YJ (θ, θ̇) ∈ R
6×p can be computed directly by the

measurable joint position θ and velocity vectors θ̇.

B. Radial Basis Function Neural Networks

In control engineering, neural networks are usually em-

ployed as the function approximator to emulate the unknown

ideal control signal. Due to the “linear-in-the-weight” prop-

erty, the radial basis function neural network (RBFNN) is a

good candidate for this purpose. In this paper, the following

RBFNN [13] is used to approximate the continuous function

h(Z) : R
m → R

n,

hnn(Z) = WT S(Z), (6)

where the input vector Z ∈ Ω ⊂ R
m, weight matrix W ∈

R
l×n, l denotes the number of neural network node, and

S(Z) = [s1(Z), · · · , sl(Z)]T with

si(Z) = exp

[

−(Z − µi)
T (Z − µi)

σ2
i

]

, i = 1, 2, · · · , l

where µi = [µi1, µi2, · · · , µim]T is the center of the recep-

tive field and σi is the width of the Gaussian function.

It has been proven that above RBFNN can approximate

any smooth function over a compact set ΩZ ⊂ R
m to

arbitrarily accuracy. That is, for any given positive constant

εN , there exist the ideal weight matrix W ∗ and the number

of neural network node l such that

h(Z) = W ∗T S(Z) + ε, (7)

where ε is the bounded function approximation error satis-

fying |ε| < εN in ΩZ .

It is noted that the ideal matrix W ∗ is only quantity

required for analytical purpose. For real applications, its es-

timation Ŵ is used for the practical function approximation.

The estimation of h(z) can be given by

ĥ(Z) = ŴT S(Z). (8)
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C. Stability of Systems

Definition 1 ([13]): Given a nonlinear dynamical system

ẋ(t) = f(x, t), x(t) ∈ R
n, t ≥ t0.

If there exists a compact set Ux ⊂ R
n such that for all

x(t0) = x0 ∈ Ux, there exist a δ > 0 and a number T (δ, x0)
such that ‖x(t)‖ ≤ δ for all t ≥ t0 + T , then the solution of

the nonlinear dynamical system is called uniformly ultimately

bounded (UUB).

III. ADAPTIVE NEURAL NETWORK CONTROLLER

The control objective is to develop a task-space tracking

controller for the robot manipulator with uncertainties and

external disturbances. Here, the backstepping approach is

employed to achieve this control goal. The backstepping

method designs partial Lyapunov functions and auxiliary

controllers for each subsystem of the whole nonlinear sys-

tem, and integrates these individual controllers into the

actual controller by “back stepping” through the system and

reassembling it from its component subsystems [16].

First, the desired position and orientation of the robot

end-effector is defined by a desired orthogonal coordinate

frame Ψd. Let pd(t) ∈ R
3 denote the desired position of the

origin of Ψd relative to the origin of Ψb. It is commonly

assumed that pd(t) and its derivatives up to the second order

are bounded. Define the end-effector position tracking error

ep(t) as

ep = p − pd. (9)

The orientation of Ψd relative to Ψb is specified by a desired

unit quaternion qd(t) = [qod(t), q
T
ov(t)]

T ∈ R
4. Then by

(2), the rotation matrix Rd(t) of Ψd relative to Ψb can be

obtained. According to (3), the time derivative of qd(t) is

related to the desired angular velocity of the end-effector

ωd(t) ∈ R
3 as follows

q̇d = B(qd)ωd. (10)

According to the analysis of [15], the rotation matrix

R̃(t) = RT
d R from Ψm to Ψd is defined to quantify

the difference between the actual and desired end-effector

orientations. The quaternion representation of R̃ is given by

eq(t) = [eo(t), e
T
v (t)]T whose derivation has the following

form

ėo = −
1

2
eT

v RT
d (ω − ωd), (11a)

ėv =
1

2
(eoI3 − S(ev)) RT

d (ω − ωd). (11b)

It can be seen that, if limt→∞ ev(t) = 0, then

limt→∞ eo(t) = 1 and limt→∞ R̃(t) = I3, which means

that the orientation tracking error is zero [15]. Therefore,

the tracking control objective can be stated as

lim
t→∞

ep(t) = 0, lim
t→∞

ev(t) = 0. (12)

To achieve this control goal, by the methodology of

backstepping approach, θ̇ is first designed as an auxiliary

controller which makes ep(t) and ev(t) approach zero.

Construct the following Lyapunov function

L1 =
1

2
eT

p ep + (1 − eo)
2 + eT

v ev. (13)

By (4) and (11), the derivative of L1 can be obtained that

L̇1 = − eT
p Kpep − eT

v Kvev + eT
1

[

ṗd + Kpep

−RT
d ωd + Kvev

]

+ eT
1 ΛJ(θ, φJ )θ̇, (14)

where e1 =
[

eT
p , eT

v

]T
, and Kp, Kv ∈ R

3×3 are diagonal

positive definite matrices, respectively; and

Λ =

[

−I3×3 Θ3×3

Θ3×3 RT
d

]

, Θ3×3 denotes the zero matrix.

In the presence of kinematic uncertainty, the parameter φJ

in the Jacobian matrix J(θ, φJ ) is not known exactly. By

replacing the unknown parameter φJ with its estimation φ̂J ,

an approximate Jacobian Ĵ
(

θ, φ̂J

)

can be obtained. Then

the auxiliary controller for θ̇, which is called by θ̇d, is chosen

as

θ̇d = −
(

ΛĴ(θ, φ̂J )
)+

[

ṗd + Kpep

−RT
d ωd + Kvev

]

+ (In×n−

(

ΛĴ(θ, φ̂J )
)+ (

ΛĴ(θ, φ̂J )
)

)λ, (15)

where (·)+ denotes the pseudoinverse of given matrix, i.e.

(G)+ = GT
(

GGT
)

−1
; λ ∈ R

n is an auxiliary term which

can be used for optimization purposes. It is assumed that the

manipulator is operating in a finite task space such that the

approximate Jacobian matrix Ĵ
(

θ, φ̂J

)

is of full rank. This

assumption is commonly adopted to deal with manipulator

kinematic uncertainty in the existing literature [6]–[9]. Then

(14) can be rewritten as

L̇1 = −eT
p Kpep − eT

v Kvev + eT
1 ΛJ(θ, φJ )e2

+ eT
1 Λ

(

J(θ, φJ ) − Ĵ(θ, φ̂J )
)

θ̇d

= −eT
p Kpep − eT

v Kvev + eT
1 ΛYJ(θ, θ̇d)

(

φJ − φ̂J

)

+ eT
1 ΛJ(θ, φJ)e2

= eT
1 Λ

(

J(θ, φJ )e2 − YJ(θ, θ̇d)φ̃J

)

− eT
p Kpep

− eT
v Kvev, (16)

where φ̃J = φ̂J − φJ and e2 = θ̇ − θ̇d. It is assumed

that the uncertain parameter φJ in manipulator kinematics

is bounded by its upper limit φ+

J and lower limit φ−

J , i.e.

(φ−

J )i ≤ (φJ )i ≤ (φ+

J )i, i = 1, 2, · · · , p, where (·)i denotes

the ith element of given vector.

The second step is try to design real torque controller τ
which makes e2 as small as desired. To achieve this, the error

dynamics for e2 is derived by (1) that

M(θ)ė2 + V (θ, θ̇)e2 = τ − M(θ)θ̈d − V (θ, θ̇)θ̇d − F (θ̇)

− G(θ) − τed

= τ − f1 − τed. (17)
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The torque controller τ is chosen as

τ = F̂1 − K1e2 − γ1, (18)

where K1 is a diagonal positive definite gain matrix; γ1

is a robustness signal which counteracts the approximation

error and external disturbances in the second step. F̂1 is the

estimation of F1 which is defined by

F1 = f1 − JT (θ, φJ )ΛT e1. (19)

It is emphasized that the term −JT (θ, φJ )ΛT e1 in F1 is used

to compensate the coupling term eT
1 ΛJ(θ, φJ )e2 in (16).

In the standard adaptive scheme, it has to assume that the

uncertain term F1 has the “linearity-in-parameters” property

in order to obtain the adaptive parameters updating law.

However, this assumption does not hold if the friction F (θ̇)
has the particular nonlinear form (see examples in [17]).

Motivated by the universal approximation ability of neural

networks, the RBFNN is employed to learn the unknown

function F1. By the previous introduction for RBFNN, it

can be obtained that, over a compact set,

F1 = W ∗T S(Z1) + ε1, (20)

with the approximation error ε1 and neural network input

Z1 = [eT
1 , eT

2 , pT
d , ṗT

d , p̈T
d , qT , ωT

d , ω̇T
d ]T . The estimation of

F1 is given by

F̂1 = ŴT S(Z1). (21)

Substituting (18), (19), (20) and (21) into (17) obtains that

M(θ)ė2 + V (θ, θ̇)e2 = F̂1 − K2e2 − γ1 − f1 − τed

= −K1e2 − JT (θ, φJ )ΛT e1 + δ1 − γ1 + W̃T S(Z1),
(22)

where W̃ = Ŵ − W ∗; δ1 = −τed + ε1.

The robustness signal γ1 takes the following hyperbolic

tangent form

γ1 = δM1 tanh

(

2kuδM1e2

ǫ1

)

, (23)

where ku = 0.2785, ǫ1 is a positive design scalar, δM1 is

the upper bound of δ1. It is easy to check that γ1 has the

following properties

eT
2 γ1 ≥ 0, (24a)

δM1‖e2‖ − eT
2 γ1 ≤ ǫ1. (24b)

By the projection algorithm [6], the updating laws for esti-

mated kinematic parameters φ̂J and neural network weight

matrix Ŵ are derived as follows

(

˙̂
φJ

)

j
=



































βj

(

Y T
J (q, q̇d)Λ

T e1

)

j
, if (φ−

J )j < (φ̂J )j < (φ+

J )j

or if (φ̂J )j = (φ−

J )j and
(

Y T
J (q, q̇d)Λ

T e1

)

j
> 0,

or if (φ̂J )j = (φ+

J )j and
(

Y T
J (q, q̇d)Λ

T e1

)

j
≤ 0;

0, if (φ̂J )j = (φ−

J )j and
(

Y T
J (q, q̇d)Λ

T e1

)

j
≤ 0,

or if (φ̂J )j = (φ+

J )j and
(

Y T
J (q, q̇d)Λ

T e1

)

j
> 0;

for j = 1, 2, · · · , p. (25)

˙̂
W =







































−ΓwS(Z1)e
T
2 , if Tr

(

ŴT Γ−1
w Ŵ

)

< Wm, or if

Tr
(

ŴT Γ−1
w Ŵ

)

= Wm and eT
1 ŴT S(Z1) > 0;

Γw
eT
2 ŴT S(Z1)

Tr
(

ŴT Γ−1
w Ŵ

)W − ΓwS(Z1)e
T
2 , if

Tr
(

ŴT Γ−1
w Ŵ

)

= Wm and eT
1 ŴT S(Z1) ≤ 0,

(26)

where Wm is the positive constant for limiting the estimated

neural network weight matrix, which satisfies the condition

Tr (W ∗T Γ−1
w W ∗) ≤ Wm; Γw is a diagonal matrix with

positive diagonal elements which controls the parameter

adaption rate.

It is emphasized that the initial kinematics parameter

φ̂J (0) should be selected as

(φ−

J )j ≤
(

φ̂J (0)
)

j
≤ (φ+

J )j , (27)

and the initial neural network weight matrix Ŵ (0) satisfies

that

Tr
(

Ŵ (0)Γ−1
w1Ŵ

T (0)
)

≤ Wm. (28)

IV. STABILITY ANALYSIS

Theorem 1: Given the robot manipulator defined by (1)

and (4), if the controller is constructed as (18), the parameters

updating laws are provided by (25) and (26), and the initial

values of estimated parameters satisfy the conditions (27)

and (28), then ep, ev , e2, φ̂J and Ŵ are all uniformly

ultimately bounded signals. Moreover, ep, ev and e2 can

be reduced as small as desired by choosing appropriate

controller parameters.

Proof: According to the principle of projection algo-

rithm, it is easy to check that φ̂J is bounded by its upper

and lower limitations.

To prove the boundness of Ŵ , let Lw = Tr
(

ŴT Γ−1
w Ŵ

)

.

By (26), it follows that

(1). When Lw = Wm and eT
2 ŴT S(Z1) > 0,

dLw

dt
= 2 Tr

(

ŴT Γ−1
w

˙̂
W

)

= −2 Tr
(

ŴT S(Z1)e
T
2

)

= −2eT
2 ŴT S(Z1) < 0;

(2). When Lw = Wm and eT
2 ŴT S(Z1) ≤ 0,

dLw

dt
= 2 Tr

(

ŴT Γ−1
w

˙̂
W

)

= −2 Tr(ŴT S(Z1)e
T
2 )

+ 2 Tr



ŴT Γ−1
w

eT
2 ŴT S(Z1)

Tr
(

ŴT Γ−1
w Ŵ

)Ŵ





= −2eT
2 ŴT S(Z1) + 2eT

2 ŴT S(Z1) = 0.

Hence, if the initial neural network weight matrix Ŵ (0)

satisfies (28), then Tr
(

ŴT Γ−1
w Ŵ

)

≤ Wm always holds,

which means that Ŵ is bounded.

To prove the uniform ultimate boundedness of error signals

e1 and e2, the following Lyapunov function is considered,

V = V1 + V2, (29)
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where

V1 = L1 +
1

2
φ̃T

J Γ−1

β φ̃J , (30a)

V2 =
1

2

(

eT
2 M(θ)e2 + Tr

(

W̃T Γ−1
w W̃

))

. (30b)

with Γβ = diag (β1, β2, · · · , βp) ∈ R
p×p.

By (25) and (16), the time derivative of V1 can be obtained

that

V̇1 = L̇1 + φ̃T
J Γ−1

β

˙̂
φJ

= eT
1 ΛJ(θ, φJ )e2 − eT

p Kpep − eT
v Kvev

− φ̃T
J

(

Y T
J (q, q̇d)Λ

T e1 − Γ−1

β

˙̂
φJ

)

≤ −eT
p Kpep − eT

v Kvev + eT
1 ΛJ(θ, φJ )e2. (31)

By (1), (22), (24) and (26), the time derivative of V2 is

V̇2 = eT
2 M(θ)ė2 +

1

2
eT
2 Ṁ(θ)e2 + Tr

(

W̃T Γ−1
w

˙̂
W

)

≤ −eT
2 K1e2 − eT

2 JT (θ, φJ )ΛT e1 + ‖eT
2 ‖‖δ1‖ − eT

2 γ1

+ eT
2 W̃T S(Z1) + Tr

(

W̃T Γ−1
w

˙̂
W

)

≤ −eT
2 K1e2 − eT

2 JT (θ, φJ )ΛT e1 + ǫ1

+ Tr
(

W̃T
(

S(Z1)e
T
2 + Γ−1

w
˙̂

W
))

. (32)

By (26), it follows that

(1). If
˙̂

W = −ΓwS(Z1)e
T
2 , then

Tr
(

W̃T
(

S(Z1)e
T
2 + Γ−1

w
˙̂

W
))

= 0.

(2). If
˙̂

W = Γw
eT
2 ŴT S(Z1)

Tr
(

ŴT Γ−1
w Ŵ

)W − ΓwS(Z1)e
T
2 , then

Tr
(

ŴT Γ−1
w Ŵ

)

= Wm, eT
2 ŴT S(Z1) ≤ 0, and Tr

(

W̃T

(S(Z1)e
T
2 + Γ−1

w
˙̂

W )
)

=
eT
2 ŴT S(Z1)

Tr
(

ŴT Γ−1
w Ŵ

) Tr
(

W̃T Γ−1
w Ŵ

)

.

It is noted that

2 Tr
(

W̃T Γ−1
w Ŵ

)

= 2 Tr
(

W̃T Γ−1
w W̃

)

+ 2 Tr
(

W̃T Γ−1
w W ∗

)

= Tr
(

W̃T Γ−1
w W̃

)

+ Tr
(

ŴT Γ−1
w Ŵ

)

− Tr
(

W ∗T Γ−1
w W ∗

)

≥ 0,

where the facts that Tr
(

W ∗T Γ−1
w W ∗

)

≤ Wm and

Tr
(

W̃T Γ−1
w W̃

)

≥ 0 have been used.

Therefore, it can be seen that in both cases the following

fact holds

Tr
(

W̃T
(

S(Z1)e
T
2 + Γ−1

w
˙̂

W
))

≤ 0.

Hence, according to (32), it can be obtained that

V̇2 ≤ −eT
2 K1e2 − eT

2 JT (θ, φJ )ΛT e1 + ǫ1. (33)

Thus, by (31) and (33), the time derivative of Lyapunov

function V is

V̇ = V̇1 + V̇2 ≤ −eT
2 K1e2 − eT

p Kpep − eT
v Kvev + ǫ1

= −eT Ke + ǫ1 ≤ −λmin (K) ‖e‖2 + ǫ1, (34)

where K = diag (K1, Kp, Kv), e =
(

eT
2 , eT

p , eT
v

)T
, and

λmin (K) is the minimum eigenvalue of matrix K .

Therefore, V̇ is strictly negative outside the following com-

pact set
∑

e

∑

e
=

{

e(t)

∣

∣

∣

∣

0 ≤ ‖e(t)‖ ≤

√

ǫ1
λmin (K)

}

. (35)

According to the Lyapunov theory extension [13], this

demonstrates that e2, ep and ev are all uniformly ulti-

mately bounded signals. And ∃To, for ∀t > To, e(t) ∈
{

‖e‖
∣

∣

∣0 ≤ ‖e‖ ≤
√

ǫ
k + εs

}

, where εs > 0 is an arbitrarily

small positive constant. Therefore, by choosing K suffi-

ciently large and ǫ1 sufficiently small, e2, ep and ev can

be reduced as small as desired.

V. SIMULATION EXAMPLE

Computer simulations based on the Unimation PUMA

560 robot arm is conducted to demonstrate the ef-

fectiveness of the proposed controller. The mechani-

cal configuration and coordinate system are given in

[18]. The initial joint configuration of PUMA 560 is

θ(0) = [π/4, π/4, π/4, π/4, π/4, π/4]T rad and θ̇(0) =
[0, 0, 0, 0, 0, 0]

T
rad/s. Table I gives the Denavit and Harten-

berg parameters of the PUMA 560 manipulator, where link

length α2 = 0.4318m, α3 = 0.0203m and joint offset

d3 = 0.15005m, d4 = 0.4318m. α2, α3, d3 and d4 are the

uncertain kinematics parameters. In the proposed controller,

they are estimated as â2(0) = â3(0) = d̂3(0) = d̂4(0) =
0.1m. The upper and lower limits of the estimated parameters

are (0.5, 0.5, 0.5, 0.5)T and (0, 0, 0, 0)T . The PUMA 560

end-effector is required to follow a given trajectory [15]

pd(t) =





0.1 sin(0.1t)
(

1 − exp(−0.01t3)
)

+ 0.02
0.1 sin(0.1t)

(

1 − exp(−0.01t3)
)

− 0.25
0.1 sin(0.1t)

(

1 − exp(−0.01t3)
)

+ 0.40



 m.

And the end-effector orientation is commanded to be stable at

qd(t) = [−0.5, 0.5, 0.5, 0.5]T . In this simulation, parameters

of controller are set that Kp = 2I3×3; Kv = 5I3×3;

K1 = 20I6×6; λ = 0; τed = (5 cos(πt/2), 4 sin(πt/2) +
e−t, 2 cos(t) + 3 sin(πt/3))T ; Γβ = 2I4×4; Ŵ (0) is set to

be zero matrices; Wm = 500; δM1 = 20, ǫ1 = 0.5. The

simulation results are shown in Figs. 1–4, which verifies the

good tracking performance of the proposed controller.

VI. CONCLUSION

A neural-network-based adaptive controller is proposed to

deal with the manipulator task-space tracking problem. The

proposed controller eliminates the “linearity-in-parameters”

assumption for the uncertain terms in manipulator dynamics,

avoids the tedious computation of regression matrix, and

considers the external disturbance. The good control perfor-

mance can be demonstrated by the Lyapunov approach and

illustrated by the simulation example. Finally, by the cascade

backstepping design procedure, the proposed controller can

also be extended to the cases where the uncertain actuator

model or the flexible joint manipulator are considered.
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TABLE I

THE DENAVIT AND HARTENBERG PARAMETERS OF PUMA 560.

Link i θi (rad) ai (rad) αi (m) di (m)

1 θ1 π/2 0 0
2 θ2 0 α2 0
3 θ3 −π/2 α3 d3

4 θ4 π/2 0 d4

5 θ5 −π/2 0 0
6 θ6 0 0 0

REFERENCES

[1] C. Abdallah, D. Dawson, P. Dorato and M. Jamshidi, “Survey of robust
control for rigid robots,” IEEE Control Systems Magnize, vol. 11, no.
2, pp. 24–30, 1991.

[2] H. Berghuis, R. Ortega and H. Nijmeijer, “A robust adaptive robot
controller,” IEEE Transactions on Robotics and Automation, vol. 9,
no. 6, pp. 825–830, 1993.

[3] S. Arimoto, “Robotics research toward explication of everyday
physics,” International Journal of Robotics Research, vol. 18, no. 11,
pp. 1056–1063, 1999.

[4] C.C. Cheah, S. Kawamura and S. Arimoto, “Feedback control for
robotic manipulators with an uncertain Jacobian matrix,” Journal of

Robotic Systems, vol. 12, no. 2, pp. 119–134, 1999.
[5] C.C. Cheah, S. Kawamurab and S. Arimoto, “Approximate Jacobian

control for robots with uncertain kinematics and dyanmics”, IEEE

Transactions on Robotics and Automation, vol. 19, no. 4, pp. 692–
702, 2003.

[6] W.E. Dixon, “Adaptive regulation of amplitude limited robot manip-
ulators with uncertain kinematics and dynamics,” IEEE Transactions

on Automatic Control, vol. 52, no. 3, pp. 488–493, 2007.
[7] C.C. Cheah, C. Liu and J.J.E. Slotine, “Approximate Jacobian adaptive

control for robot manipulators,” Proceedings of IEEE International

Conference on Robotics and Automation, New Orleans, LA, pp. 3075–
3080, 2004.

[8] C.C. Cheah, C. Liu and J.J.E. Slotine, “Adaptive Jacobian tracking
control of robots with uncertainties in kinematic, dynamic and actuator
models,” IEEE Transactions on Automatic Control, vol. 51, no. 6, pp.
1024–1029, 2006.

[9] D. Braganza, W.E. Dixon, D.M. Dawson and B. Xian, “Tracking
Control for Robot Manipulators with Kinematic and Dynamic Un-
certainty,” IEEE Conference on Decision and Control, Seville, Spain,
pp. 5293–5297, 2005.

[10] K.S. Narendra and K. Parthasarathy, “Identification and control of
dynamical systems using neural networks,” IEEE Transactions on

Neural Networks, vol. 2, no. 2, pp. 252–262, 1991.
[11] J.A. Farrell and M.M. Polycarpou, Adaptive Approximation Based

Control: Unifying Neural, Fuzzy and Traditional Adaptive Approxi-

mation Approaches, Hoboken, NJ: Wiley-Interscience, 2006.
[12] F.L. Lewis, A. Yesildirek and K. Liu, “Multilayer nerual-net robot

controller with guaranteed tracking performance,” IEEE Transactions

on Neural Networks, vol. 7, no. 2, pp. 388–398, 1996.
[13] F.L. Lewis, S. Jagannathan and A. Yesildirek, Neural Network Control

of Robot Manipulators and Nonlinear Systems. New York: Taylor &
Francis, 1998.

[14] J.S. Yuan, “Closed-loop manipulator control using quaternion feed-
back,” IEEE Transactions on Robotics and Automation, vol. 4, no. 4,
pp. 434–440, 1988.

[15] B. Xian, M.S. de Queiroz, D. Dawson and I. Walker, “Task-space
tracking control of robot manipulators via quaternion feedback,” IEEE

Transactions on Robotics and Automation, vol. 20, no. 1, pp. 160–167,
2004.

[16] I. Kanellakopoulos, P.V. Kokotovic and A.S. Morse, “Systematic
design of adaptive controllers for feedback linearizable systems,” IEEE

Transactions on Automatic Control, vol. 36, no. 11, pp. 1241–1253,
1991.

[17] S.S. Ge, T.H. Lee and S.X. Ren, “Adaptive friction compensation of
servo mechanisms,” International Journal of Systems Science, vol. 32,
no. 4, pp. 523–532, 2001.

[18] P.I. Corke and B. Armstrong-Helouvry, “A search for consensus among
model parameters reported for the PUMA 560 robot,” Proceedings

of IEEE International Conference on Robotics and Automation, San
Diego, CA, pp. 1608–1613, 1994.

0.01

0.02

0.03

0.04

0.05

0.06

-0.25

-0.24

-0.23

-0.22

-0.21

-0.2

-0.19

0.32

0.34

0.36

0.38

0.4

0.42

0.44

x
(m)

y(m)

z
(

m
)

Starting point

Robot trajectory
Given trajectory

Fig. 1. The tracking performance of PUMA 560 manipulator.
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Fig. 2. The position tracking errors.
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Fig. 3. The orientation tracking errors.
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