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Abstract— The control approaches based on tasks, and
particularly based on a hierarchy of tasks, enable to build
complex behaviors with some nice properties of robustness and
portability. However it is difficult to consider directly unilateral
constraints in such a framework. Unilateral constraints presents
some strong irregularities (in particular at the level of their
derivative) that prevents the insertion of unilateral-based tasks
at the high-priority level of a hierarchy. In this paper, we present
an original method to generalize the hierarchy-based control
schemes to take unilateral constraint into account at the top-
priority level. We develop our method first at the kinematic level
then directly at the dynamic level using the operational space.
The method is then validated on a various set of robots by
realizing a visual servoing under the constraint of joint limits.

I. INTRODUCTION

Traditionally, the classical approach to control a robot

has been to define the objective directly in the joint space.

The control approaches based on the definition of a task

objective [14], [8] have been introduced to simplify the

control problem. Working directly in a properly-chosen task

space produces a more intuitive manner to define the robot

objective. It also enables to work directly in the sensor space,

which closes more tightly the control loop [4]. Finally, since

a same task space is valid for a large set of robot, the control

scheme could be easily adapted from one robot structure

to another. Moreover, these methods produce directly the

kinematic or dynamic model to decouple the motions due

to the task to the free remaining motions [9]. A secondary

task can then be applied in the space of free motions, and,

recursively, a hierarchic set of tasks can be considered [16].

Hierarchy of tasks are more and more popular to build

complex behavior on very redundant robot such as humanoid

robots [1], [12], [15], [11].

A task is generally defined by an equality of reference such

as e = 0 where e = s − s∗(t) is an error to be regulated

to 0. The task thus represent a bilateral constraint. On the

opposite, unilateral constraint are typically represented by an

inequality ei ≤ 0. Unilateral constraints present an irregular-

ity at the activation point ei = 0. Due to this irregularity, it is

impossible to consider an unilateral constraint as a classical

(bilateral) task. A first solution is the gradient projection

method [9]: the unilateral constraint is embedded in a cost

function [7] whose gradient is projected in the space of free

motion as a lowest-priority task. However the irregularity still
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exist and prevents the insertion of the unilateral constraint

at any level of the task hierarchy but the lowest-priority

one. Indeed, the unilateral constraints have always been

considered as a secondary objective to be optimized only

when enough degree of freedom (DOF) are available.

We propose here to study a solution to introduce the

unilateral constraints at the top-priority level of the hierar-

chy. Some work have already been proposed to go in this

direction. Our work is based on a specific inverse operator

introduced in [10] to smooth the irregularity of the unilateral

constraint while computing the control law. Using such an

operator, we can generalize the notion of hierarchy of task

for both bilateral and unilateral constraints at the kinematic

(Section III) and at the dynamic levels (Section IV). The

tasks used in the experiments are then given in Section V. A

set of experiments that validate our approach are discussed

in Section VI.

II. INVERSE KINEMATIC CONTROL

We first remind the classical task-based control, valid only

for bilateral tasks and show the evidence of discontinuities

when considering unilateral constraints in this formulation.

A. Considering only one task

Let q be the joint position of the robot. The main task

is e. The robot is controlled using the joint velocities q̇ (to

improve the readability, we will generalize to torque control

in Section IV). The Jacobian of the task e is J defined by

ė = ∂e
∂q

q̇ = Jq̇. Let n be the number of DOF of the robot

(n = dimq) and m be the size of the task (m = dim e).

The controller has to regulate e to 0 according to a

reference decreasing behavior ė∗. The joint motion q̇ that

realizes ė∗ is given by the least-square inverse:

q̇ = J+ė∗ (1)

where A+ is the least-square inverse of A. By (1), we

consider that the Jacobian matrix is perfectly known. If it is

not the case, an approximation Ĵ+ has to be used instead of

J+. The control law is stable if JĴ+ ≥ 0 and asymptotically

stable iff JĴ+ > 0 [14]. In the following, we make the

assumption that J is perfectly known: the control law is thus

always stable, and asymptotically stable if m ≤ n.

In the state of the art, an implicit condition of such control

schemes is always the constant rankness of the Jacobian J.

Indeed, the pseudo-inverse J+ is continuous with respect to

J only when the rank is constant. When the rank increases

or decreases, the continuity is not ensured, which can result
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in an awkward or even dangerous behavior. This is typically

what happens when the robot reaches a singularity.

B. Evidence of discontinuity

An unilateral constraint can be written e < 0. In that case,

the reference behavior ė∗ is typically set to:

ė∗ =

{
−λe if e > 0

0 otherwise
(2)

Some control laws based on (1) have been proposed [5], [2],

[3]. They can be put under the common following form [10]:

q̇ =
(
HJ

)+
Hė∗ (3)

where H = diag(h1, . . . , hm), and hi =

{
1 if ei > 0
0 otherwise

.

The continuity of the control law is then obtained by ensuring

that the number of activated feature (i.e. the number of

non-zero hi) is large enough to ensure that HJ has a

constant rank. However, such a hypothesis is not admissible

in the general case. We can easily check [10] that a large

discontinuity of the control law arises each time the rank

of HJ changes (corresponding typically to what happens

when the robot comes to a singularity - see Fig. 2 in the

experiments). In this article, we will focus on a general

solution to solve this discontinuity and ensure a proper

behavior of the robot whatever the variation of H.

C. Extension to k tasks

The solution (1) is only one particular solution ensuring

ė∗: it is the solution of least norm. If the rank of J is smaller

than n, a second criterion can be taken into account using

the redundancy formalism [14]:

q̇ = J+ė∗ + Pzq̇2
(4)

where P is the projection operator onto the null space of J

(P = In−J+J), and zq̇2
is an arbitrary vector, used to apply

a secondary control law. Thanks to P, zq̇2
is performed

without disturbing ė∗. Consider now two tasks e1, e2. The

control law performing ė1
∗ and if possible ė2

∗ is [16]:

q̇ = J1ė1
∗ +

(
J2P1

)+(
ė2

∗ − J2J1ė1
∗
)

(5)

This equation can be generalized to perform k tasks, while

ensuring a proper hierarchy between them [16]:

q̇i = q̇i−1 + (JiP
A
i−1)+(ėi

∗ − Jiq̇i−1), i = 1..k (6)

where q̇0 = 0 and PA
i is the projector of JA

i = (J1, . . .Ji).
The robot joint velocity realizing all the tasks is q̇ = q̇k.

In the following section, we will consider an unilateral-

constraint task ei, and compute a control law that ensure the

continuity both at level i and at all the upper levels i+1 . . . n.

III. CONTINUITY AT THE KINEMATIC LEVEL

We propose here a new control law whose form is similar

to (6) and ensures the continuity for any kind of constraints.

A. Considering only one task

Consider a task function e (dimension m), its Jacobian J

(dimension n × m and constant rank r) and its activation

matrix H (diagonal matrix m × m whose diagonal compo-

nents (hi)i=1...m are in the interval [0, 1]). The continuous

inverse of J activated by H is defined by [10]:

JH⊕ =
∑

P∈P(m)

( ∏

i∈P

hi

)
XP (7)

where P(m) = P([1..m]) =
{
P| P ⊂ [1..m]

}
are all the

subsets composed of the m first integers, and the XP are

the coupling matrices of J defined by:

∀P ∈ P(m),XP = J+
P −

∑

Q(P

XQ (8)

where X∅ = 0n×m and JP = H0J with H0 a diagonal

matrix whose diagonal components hi are equal to 1 if i ∈ P ,

and to 0 otherwise. This inverse is proved to be continuous

with respect to the variation of the activation matrix H and to

be equal to
(
HJ

)+
H when the component of H are binaries

(hi = 0 or hi = 1). This means that the resulting control

law is continuous and keeps the same behavior and all the

properties of local convergence of the corresponding classical

control law. Finally, using this inverse, the control law that

applies the task e upon activation H is the following [10]:

q̇ = JH⊕ė∗ (9)

Using (9) we can verify that each component ei of ė∗ is

perfectly realized if the corresponding hi is equal to 1, not

taken into account if hi is zero, partially realized otherwise.

B. Extension to two tasks

The general solution corresponding to (9) can be written:

q̇ = q̇1 + P⊕zq̇2
(10)

where q̇1 = JH⊕ė∗ and P⊕ = I − JH⊕J. Consider now

two tasks
(
e1,H

)
and e2. We obtain ė2 = q̇1 + J2P⊕zq̇2

.

We now search the optimal zq̇2
that performs e2. Inverting

directly this last equation by analogy to (5) would result in:

q̇ = q̇1 + P⊕

(
J2P⊕

)+(
ė2

∗ − J2q̇1

)
(11)

However, since P⊕ does not have a constant rank, this

leads to the same discontinuities than the classical control

laws. Instead, we recognize a form similar to (3), with

P⊕ at the place of the activation matrix. The continuous

inverse operator can then be used to solve the discontinuities.

However, it is not possible to apply directly this operator

since P⊕ is not diagonal. We will thus first generalize the

inverse operator for such a matrix.

C. Continuous inverse activated by a non diagonal matrix

Let Q be any matrix m × n, n ≤ m and W be a

positive symmetric matrix of size m whose singular value

are all between 0 and 1. We note U, σ the eigen-value

decomposition of W and S = diag(σ). We can write:
(
WQ

)+
W =

(
SQu

)+
SU (12)
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where Qu = U⊤Q. We now recognize the previous

form (3), with Q the matrix to be inverted, and S a proper

diagonal activation matrix. We thus defined the continuous

inverse of Q activated by any positive symmetric matrix

whose eigen values are in [0, 1] by the following:

Q⊕W = Qu
⊕SU =

∑

P∈P(m)

( ∏

i∈P

σi

)
XP

QuU (13)

where XP
Qu are the coupling matrix of Qu.

We also define the continuous inverse activated on the right

(i.e. activation of the columns of Q), noted QH⊕:

QH⊕ =
((

Q⊤
)⊕H

)⊤

=
∑

P∈P(n)

( ∏

i∈P

hi

)
XP

⊤ (14)

where the XP are the coupling matrices of Q⊤. Finally, the

continuous inverse of Q activated on the right by a symmetric

matrix W is defined similarly QW⊕ =
((

Q⊤
)⊕W

)⊤

.

D. Extension to k tasks

The control law (11) can now be re-written using this

generalization. The continuous inverse is valid since the

eigen values of P⊕ are in [0, 1]. The control law that

performs e1 under activation H and e2 if possible is then:

q̇ = J1
⊕H ė1

∗ + J2
P⊕⊕

(
ė2

∗ − J2q̇1

)
(15)

using the notations q̇1 and P⊕ defined in (10). The matrix

P2
⊕ corresponding to the projection operator is obtained

classically by P2
⊕ = P⊕−J2

P⊕⊕J2. The extension of (15)

to k tasks (e1,H), e2 ... ek is given by the following:

q̇i = q̇i−1 + (Ji)
P

i−1

⊕ ⊕(ėi
∗ − Jiq̇i−1), i = 1..k (16)

with q̇0 = 0. A similar recursion is used to compute the

operators Pi
⊕ = Pi−1

⊕ − Ji
P

i−1

⊕ ⊕J2 and P0
⊕ = I.

All the control law have been written supposing that some

local controllers provide a control of the robot in velocity

q̇. In the following section, we extend this result to torque

control.

IV. EXTENSION TO THE OPERATIONAL SPACE CONTROL

Operational Space Control [8] has been proposed to com-

pute a control law torques as a direct input. Contrary to the

inverse-kinematic-based control schemes, operational space

control unify at the global level the forces applied by the

robot and its displacement in the free space. In this section,

we first recall the generic form of the control law in the

operational space. We then introduce the continuous inverse

account for unilateral constraints in the hierarchy.

A. Classical control law

1) One task: The acceleration q̈ in free space is defined

by Aq̈ + g + µ = τ, where A is the inertia matrix, g is the

gravity force, µ are the Coriolis forces and τ are the torques

applied by the motors on the joints, used as the control input.

Given a task e with Jacobian J, it is possible to write:

ë + b = JA−1τ (17)

with b = JA−1
(
g + µ

)
− J̇q̇. We define Ω = JA−1J⊤

and Λ = Ω−1. By multiplying (17) by Λ, we obtain:

Λë + Λb = J
⊤

τ (18)

where J = A−1J⊤Λ is the generalized inverse of J

weighted by A−1: J = J#A−1

. Therefore JJ = I.

Multiplying (18) by J⊤, we obtain the control law:

τ = J⊤Λ
(
ë∗ + b

)
(19)

2) Two task: As in the previous section, this control law

is only a specific solution: this is the solution of the least

acceleration energy [13]. The general solution is [8]:

τ = J⊤Λ
(
ë∗ + b

)
+ N⊤zτ2 (20)

where zτ2 is arbitrary and N⊤ = I−J⊤J
⊤

is the projection

operator that ensures the realization of ë∗ despite zτ2 .

3) k task: The control entry zτ2 can be used to perform

a secondary task under the condition ë1 = ë1
∗. The control

can then be extended by recurrence to k tasks e1 ... ek [15]:

τi = τi−1 + Ji
⊤Λi|i−1(ëi

∗ + b − JiA
−1τi−1) (21)

with τ0 = 0, Ωi|i−1 = JiA
−1Ni−1

⊤Ji and Λi|i−1 =
Ωi|i−1

−1. The control law to be applied on the robot is

finally τ = τk. The projection operator is computed by

Ni
⊤ = Ni−1−Ji

⊤Ji|i−1

⊤
where Ji|i−1 = A−1Ji

⊤Λi|i−1.

B. Unilateral constraint in the Operational Space

Let us now consider a task (e,H) with e the task function

and H the activation matrix. We want to determine the torque

entry to perform e under activation H. Applying directly the

classical formalism with jacobian HJ leads to:

τ = J⊤H
(
HJA−1J⊤H

)−1
H(ë∗ − b) (22)

As in the kinematic space, this control law produces

some strong discontinuities when the rank of HJ changes.

We recognize the form J⊤H
(
HJA−1J⊤H

)−1
H =(

HJA−1
)#A

H, the inverse of HJA−1 weighted by the

matrix A, whose form is similar to (3). As previously the

continuous inverse is introduced to prevent the discontinuity:

τ =
(
JA−1

)⊕H,#A
(ë∗ − b) (23)

where
(
Q

)⊕H,#A
denotes the generalized continuous in-

verse of Q activated by H and weighted by A, defined by

replacing all the classical pseudo-inverse in (7) and (8) by

the corresponding generalized inverse weighted by A. By

developing the sum (7) in (23) and factorizing by J⊤, we

finally obtain the control law on the following form:

τ = J⊤Λ⊕(ë∗ − b) + N⊕
⊤zτ2 (24)

where Λ⊕ = Ω⊕H , N⊕
⊤ = I − J⊤J⊕, with J⊕ =

A−1J⊤Λ⊕ and zτ2 being any arbitrary torque.
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C. Extension to two tasks

This secondary torque τ2 can be used to perform a sec-

ondary task. Let
(
e1,H

)
and e2 be two tasks. The equation

of motion of the robot constraint by the main task is:

Aq̈ + g + µ = J⊤Λ⊕(ë∗ − b) + N⊕
⊤τ2 (25)

By multiplying this last equation by J2A
−1, we obtain:

ë2 + b2 = J2A
−1τ1 + J2A

−1N⊕
⊤τ2 (26)

where b2 = J2A
−1(g+µ) and τ1 is the control law defined

in (24) applied to e1. It is very tempting to directly inverse

(26) to obtain the optimal control τ2 performing e2, as it has

been done in (21), obtaining the following control law:

τ = τ1 +N⊕

(
J2A

−1N⊕

)#A(
ë2

∗−b2−J2A
−1τ1

)
(27)

However, the operator N⊕ does not have a constant rank.

It is thus necessary to proceed like in II-C, by activated the

inverse by the projection operator N⊕. The generalization of

the continuous inverse is only valid for symmetrical matrices

whose singular values are between 0 and 1. This is not the

case of N⊕, since this matrix is not an orthogonal projection

operator. However, we can rewrite the inverse weighted by

A under the following form:

N⊕

(
J2A

−1N⊕

)#A
= N⊕

√
A

(
J2A

−1N⊕

√
A

)+

= N⊕

√
A

(
J2A

−1/2(A−1/2N⊕

√
A)

)+

(28)

It is therefore possible to normalize N⊕ by setting:

N
||
⊕

⊤
= A−1/2N⊕

⊤
√

A

= I −
(
J1A

−1/2
)H⊕(

J1A
−1/2

) (29)

Using the second part of this equation, it is easy to demon-

strate the N
||
⊕ is normalized that is to say symmetrical and

with proper singular values. The inverse (28) is then finally√
AN

||
⊕

(
J2A

−1/2N
||
⊕

)+
. We recognize here the form (3),

where J2A
−1/2 is the matrix to be inversed, and N

||
⊕ is

the activation matrix. Like in (15), we apply the continuous

inverse activated on the right by the matrix N
||
⊕. The control

law that performs the two task (e1,H) and e2 is then:

τ = τ1 +
(
J2A

−1
)N||

⊕⊕,#A(
ë2

∗ + b2 − J2A
−1τ1

)
(30)

D. Extension to k tasks

This control law can easily be extended to a set of task

(e1,H), ... ek by analogy to the developments done in [15]:

τi = τi−1 +
√

A
(
JiA

−1/2
)N||

⊕⊕
(ëi

∗ + bi − JiA
−1τi−1)

(31)

with τ0 = 0 and Ni
⊕
⊤

= Ni−1
⊕

⊤−
(
JiA

−1
)N||

⊕⊕,#A
JiA

−1.

E. Conclusion

The control law (31) generalizes the use of an unilateral

constraint for an arbitrary set of tasks in the operational

space. The final form is very close to the classical control

law (21). Moreover, very simple computations show that the

control law (31) is equal to (21) when the singular values of

N
||
⊕ are all 0 or 1. Until this point, all the computations have

been realized for any set of tasks. In the following section,

we introduce the specific tasks used in the experiments.

V. APPLICATION TO VISUAL SERVOING

The framework presented above has been experimentally

validated by realizing a visual-servoing task while respecting

the constraints imposed by the joint limits.

A. Visual servoing task

A visual servoing task [6], [4] is based on an error ei =
si − s∗i where si is the current value of the visual features

ei and s∗i their desired value. The interaction matrix Lsi

related to si is defined so that ṡi = Lsiv, where v is the

instantaneous camera velocity. The task Jacobian Ji is thus

Ji = LsiMJq, where Jq is the robot Jacobian at the camera

focal point (ṙ = Jqq̇) and M is relates the variation of the

camera velocity v to camera pose parametrization (v = Mṙ).

The task feature are computed from the image moments.

The target is clearly marked by np points Pi = (xi, yi). The

moment mi,j of the image is defined by mi,j =
∑np

k=1 xi
kyj

k.

A task of dimension 3 has been defined to control the

position of the target and its dimension in the camera field

of view. The two first feature are based on the position of the

center of gravity: (xg, yg) = (m10

m00

, m01

m00

). The third feature

aZ uses the centered moments of order 2 to control the range

between the robot and the target as proposed in [17].

B. Joint limits avoidance

The robot lower and upper joint limits for each joint i
are denoted q̄min

i and q̄max
i . The robot configuration q is

acceptable if, for all i, qi ∈ [q̄min
i , q̄max

i ]. Given n axes, the

joint limits can be expressed by 2×n unilateral constraints:

∀i = 1..n, qi > q̄min
i and qi < q̄max

i (32)

The corresponding unilateral task can be written
(
ejl,Hjl

)
,

where ejl = qN = (qN
i )i=1..n is the normalized joint state

(qN
i = 2

qi−q̄min

i

q̄max

i
−q̄min

i

− 1 ∈ [−1, 1]). The activation matrix Hjl

is defined by its diagonal components:

hi =






1 if ei < −1 or ei > 1
fβ(β − 1 − ei) if ei ∈ [−1,−1 + β]
fβ(β − 1 + ei) if ei ∈ [1 − β, 1]

0 otherwise

(33)

where β is the size of the transition interval, used as a gain

to tune the robot behavior, and fβ is the transition function,

defined to provide a C∞ transition from 0 to 1:

∀x ∈ [0, β], fβ(x) =
1

2

(
1+tanh

(
1

1 − x/β
− β

x

))
(34)

VI. EXPERIMENTS AND RESULTS

A. Experiments in simulation

We consider a 7-DOF PA-10 robot in simulation. The

task to be executed is a 3-DOF positioning of an embedded

camera with respect to a visual target. The joint limits

avoidance is ensured by adding the corresponding task at the

higher-priority position. We finally add at the lowest-priority
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Fig. 1. Positioning the end effector without considering the joint limits.
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Fig. 2. Positioning the joint limits while ensuring the joint limit avoidance
using the non-continuous control law.

level a posture task (to ensure the stability of the robot, all

the DOF have to be constrained).

1) Experiment 1: the target is positioned so that the task is

feasible but overcome temporarily the constraint (see Fig. 1).

The joint limits are avoided by using directly the pseudo-

inverse (see Fig. 2). However, the control law is jerky. The

"entering-leaving" oscillation can be clearly observed on the

joints 1, 2, 6 and 7. Moreover, the robot cannot practically

enter inside the activation buffer but is stuck at the entrance

of the buffer, where the oscillations appear (Fig. 2-top). The

robot is thus limited in practice to a smaller part of its joint

domain. When using the control law (31), the control law

is smooth (see Fig. 3). The joint limits are avoided while

performing the task. No oscillation appears during any part

of the displacement. Moreover, all the joint domain is used.

Finally, we apply a force on fourth body of the robot to

disturb the control law. Since four DOF are available, the

robot can move freely. As shown by Fig. 4, Joint 4 moves

freely. Some other joints follow the motion to maintain the

task completed. At t=11.4, Joint 7 reaches its limits. The

robot thus looses one DOF, which consequently locks Joint 4.

The robot is not compliant in the direction of the external

force anymore. Joint 7 remains in the buffer while the force

is applied on Joint 4. When the force is relaxed, the robot
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Fig. 3. Positioning the joint limits while ensuring the joint limit avoidance
using the continuous control law (31).
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Fig. 4. Motion due to an external force applied on Joint 4, while applying
the 3-DOF positioning task and the joint limits. The force started at time
t=10.2 and ends at t=12.4

posture changes to take Joint 7 out of the activation buffer.

2) Experiment 2: the target is now positioned so that the

required motion is not feasible inside the joint limits. When

the robot reaches an equilibrium, we then move the target

inside the joint-limit boundary to check that the control law

is able to reach the reference position when reachable. We

first try to put the positioning task at the top-priority level. As

expected, the joint limits are then violated (see Fig. 5). The

control law using the pseudo inverse is jerky and could not be

applied on a real robot (see Fig. 6). Control law (31) produces

a smooth behavior (see Fig. 7). The robot stops at the limit of

its joint domain, as close as possible to the desired position.

When the target is moved back inside the reachable domain,

the robot moves freely away from its limits to reach the

desired position.

B. Experiment on the Puma robot

We have then validated our control scheme on a real robot.

As in simulation, a camera is attached to the end effector. The

task to be accomplished is the same than in simulation. As for

the experiment described in 4, an external force is applied on

the third joint of the robot to disturb it during the execution

of the task. The robot first move freely in the direction of

the applied force (Joint 3 moves freely). The wrist (Joint 6)

moves to compensate the motion and execute the task. The

robot start to resist when Joint 6 reaches its limit. Joint 4 can

then be used instead of 6. When both Joints 3 and 4 reaches

the activation buffer, the robot resists to the external force.
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Fig. 5. Avoidance task with low priority. At time t=1, the robot is required
to reach a position out of its joint domain. The goal position is set back in
the joint domain at t = 8.
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Fig. 6. Oscillation while using the pseudo-inverse.

VII. CONCLUSION

In this paper, we have proposed an original scheme to

compute a generic control law from a hierarchic set of both

unilateral constraints and bilateral tasks. This scheme ensures

that the unilateral constraints will be respected whatever

the actions of the tasks. The proposed scheme is generic

and could be applied for a various set of tasks, constraints

and robots. We have demonstrate the validity by applying it

on different types of robot with a common visual servoing

scheme while insuring the respect of the joint limits.
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