
  

  

Abstract—A simple continuous output feedback 
proportional-derivative (PD) plus desired gravity compensation 
controller is proposed to solve the global finite-time regulation of 
robot manipulators with position measurements only. The global 
finite-time convergence is proved by using Lyapunov theory and 
finite-time stability theory. Simulations preformed on a two 
degrees-of-freedom (DOF) manipulator demonstrate the 
expected properties of the proposed approach. 

I. INTRODUCTION 
Conventionally, most of the existing results on regulation of 

robot manipulators is achieved asymptotically [1]-[13]. 
Asymptotic stability implies that the system trajectories 
converge to the equilibrium as time goes to infinity. It is now 
known that finite-time stabilization offers an effective 
alternative, which yields, in some senses, fast response, 
high-precision and disturbance rejection properties [14]-[24]. 
In particular, for robot manipulators, Barambones and 
Etxebarria [21] formulated a terminal sliding-mode adaptive 
control scheme for zero trajectory-tracking error in finite time. 
Gruyitch & Kokosy [22] designed a sliding-mode controller to 
guarantee the robust global stability and attraction with a finite 
time. Parra-Vega, Rodriguez-Angeles, and Hirzinger [23] 
proposed a dynamic sliding controller to implement the 
perfect tracking defined as the performance of zero tracking 
errors of position and force in finite time. Yu, Yu, Shirinzadeh, 
and Man [24] proposed a continuous finite-time tracking 
controller for robot manipulators by using a new form of 
terminal sliding modes and showed the faster and 
high-precision tracking. 

While these controllers for robot manipulators are simple, 
elegant, and intuitively appealing, a major drawback remains 
for these schemes, i.e. the requirement of measurements of 
both position and velocity. Velocity measurement increases 
cost and imposes constraints on the achievable bandwidth. To 
remove the requirement of the velocity measurements, several 
control techniques that asymptotic stabilize arbitrary positions 
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of robotic manipulators can be found in the literature 
[25]-[28]. To the best of our knowledge, the only previous 
work which targets at the finite-time output feedback 
regulation is given in [17]. Specially, Hong, Xu, and Huang 
[17] formulated a nonsmooth PD plus gravity compensation 
scheme and achieved a local finite-time result, in which a 
model-based observer is employed to remove the requirement 
of velocity measurements. As pointed by Gunawardana and 
Ghorbel [29] and Kasac et al. [10], it is often difficult to 
explicitly characterize the domain of attraction that could be 
much smaller than the robot workspace. This means that a 
global result is always more useful for both theoretical 
analysis and practical implementation. 

In this paper the global continuous finite-time output 
feedback regulation of robot manipulators is addressed, which 
aims at designing a simple output feedback PD plus gravity 
compensation control law with the position measurements 
only, such that the position of the robot can be regulate into a 
desired position in finite time. Compared with the only 
finite-time output feedback regulator proposed by Hong et al. 
[17], the advantage of the developed approach is twofold. The 
simple model-free “dirty derivative” method is used to give 
the velocity estimation. The global finite-time stability of the 
closed-loop system is achieved, and thus it is readily 
implemented. 

The reminder of this paper is organized as follows. The 
robot manipulator model and properties are presented in 
Section 2. Some preliminaries on the finite-time stability are 
reviewed in Section 3. Our main results are presented in 
Section 4, where we formulated a simple continuous output 
feedback nonsmooth PD plus gravity compensation controller 
and showed the global finite-time stability by using 
Lyapunov’s direct method and the finite-time stability theory. 
An illustrative example preformed on a two-DOF robot 
manipulator is included in Section 5 to show the better 
performance of the proposed controller. Finally, some 
concluding remarks are presented in Section 6. 

II. ROBOT MANIPULATOR MODEL AND PROPERTIES  
In the absence of disturbances, the dynamics of an n -DOF 

robot manipulator can be written as [1], [30] 
τ=+++ )(),()( qGqDqqqCqqM &&&&&                  (1) 

where nqqq ℜ∈&&&,,  denote the link position, velocity, and 

acceleration, respectively, nnqM ×ℜ∈)(  represents the 

symmetric inertia matrix, nnqqC ×ℜ∈),( &  denotes the 

centrifugal-Coriolis matrix, nnD ×ℜ∈  stands for the matrix 
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composed of damping friction coefficients for each joint, 
nqqUqG ℜ∈∂∂= /)()(  is a gravitational force, )(qU  is the 

potential energy due to gravitational force, and nℜ∈τ  
denotes the torque input vector. 

By recalling the robot manipulators considered, the 
following properties can be established [1], [9], [30]. 

Property 1: The matrix D  is a diagonal positive definite 
matrix. 

Property 2: The matrix )(qM  is positive definite and 
bounded by 

Mm MqMM ≤≤< )(0                               (2) 
where mM  and MM  are some positive constants. 

Property 3: The matrix ),( qqC &  is defined using Christoffel 

symbols, and ),(2)( qqCqM && −  is skew-symmetric, i.e. 

( ) nT qqCqM ℜ∈∀=− ζζζ ,0),(2)( &&                     (3) 

where )(qM&  is the time derivative of the inertia matrix 
)(qM . 

Property 4: The matrix ),( qqC &  satisfies the following 
relationship: 

nqCqC ℜ∈∀= υξξυυξ ,,),(),(                  (4) 
and is bounded by 

n
Mm qqqCqqqCqC ℜ∈∀≤≤< &&&&& ,,),(0 22        (5) 

where mC  and MC  are some positive constants. 
Property 5: There exists a positive definite diagonal matrix 
A  such that the following two inequalities, with specified 

constant 0>a , are satisfied simultaneously for any fixed dq  
and any q  

2

2
1)()()( qaqAqqGqqUqU T

d
T

d ∆≥∆∆+∆−−      (6) 

2)]()([ qaqAqqGqGq T
d

T ∆≥∆∆+−∆              (7) 

where dqqq −=∆  denotes the position error, and q  and dq  
denote the actual and desired coordinates, respectively. 

Throughout this paper, we use the notation )(Amλ  and 
)(AMλ  to indicate the smallest and largest eigenvalues, 

respectively, of a symmetric positive definite bounded matrix 
)(xA , for any nx ℜ∈ . The norm of a vector nx ℜ∈  is 

defined as xxx T=  and that of a matrix A  is defined as 

the corresponding induced norm )( AAA T
Mλ= , and I  

denotes an identity matrix of the appropriate dimension. 

III. PRELIMINARIES 
We begin the review of the concepts of finite-time stability 

and stabilization of nonlinear systems following the treatment 
in [14], [17]. 

Consider the system 

nff ℜ∈=== ζζζζζ ,)0(,0)0(),( 0
&          (8) 

with nUf ℜ→0:  continuous on an open neighborhood 0U  
of the origin. Suppose that system (8) possesses unique 
solutions in forward time for all initial conditions. 

Definition 1: The equilibrium 0=ζ  of system (8) is 
(locally) finite-time stable if it is Lyapunov stable and 
finite-time convergent in a neighborhood 0UU ⊂  of the 
origin. The finite-time convergence means the existence of a 
function { } ),0(0\: ∞→UT , such that, 

nU ℜ⊂∈∀ 0ζ , the solution of (8) denoted by 
0)( 0 =ζts  with 0ζ  as the initial condition is defined, and 

{ }0\)( 0 Ust ∈ζ  for ))(,0[ 0ζTt ∈ , and 
0)(lim 0)( 0

=→ ζζ tTt s  with 0)( 0 =ζts  for )( 0ζTt > . When 
nU ℜ= , we obtain the concept of global finite-time stability. 

Definition 2: Let n
nrr ℜ∈),,( 1 K  with niri ,,1,0 K=> . 

Let ℜ→ℜnV :  be a continuous function. V  is said to be 
homogeneous of degree 0>σ  with respect to  ),,( 1 nrr K , if, 
for any given 0>ε , 

n
n

rr VV n ℜ∈∀= ζζεζεζε σ ),(),,( 1
1 K              (9) 

Definition 3: Let T
nffff ))(,),(()( 1 ζζζ K=  be a 

continuous vector field. )(ζf  is said to be homogeneous of 
degree ℜ∈κ  with respect to ),,( 1 nrr K , if, for any given 

0>ε , 
n

i
r

n
rr

i niff in ℜ∈∀== + ζζεζεζε κ ,,,1),(),,( 1
1 KK  (10) 

System (8) is said to be homogeneous if )(ζf  is 
homogeneous. 

Some of the results on finite-time stability of a nonlinear 
system in [17] that will be used in this paper are summarized 
by the following two lemmas. 

Lemma 1: Consider the following system 
nffff ℜ∈==+= ζζζζ ,0)0(ˆ,0)0(),(ˆ)(&    (11) 

where )(ζf  is a continuous homogeneous vector field of 
degree 0<κ  with respect to ),,( 1 nrr K . Assume 0=ζ  is 

an asymptotically stable equilibrium of the system )(ζζ f=& . 
Then 0=ζ  is a locally finite-time stable equilibrium of the 
system (11) if 

0,,,1,0),,(ˆ
1lim

0

1

≠∀==+→
ζ

ε
ζεζε

κε
nif

i

n

r
n

rr
i K

K    (12) 

Lemma 2: Global asymptotic stability and local finite-time 
stability of the closed-loop system imply global finite-time 
stability. 

IV. CONTROL DESIGN 

A. Control Formulation 
To aid the subsequent control design and analysis, we 
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define the vectors nℜ∈⋅⋅ α)(Sig),(Tanh  and the diagonal 

matrix nn×ℜ∈⋅)(Sech  as follows: 

[ ]Tn )(tanh,),(tanh)(Tanh 1 ξξξ L=                   (13) 

[ ]Tnn )(sgn,),(sgn)(Sig 11 ξξξξξ ααα L=               (14) 

( ))(sech,),(sechdiag)(Sech 1 nξξξ L=                   (15) 

where [ ] nT
n ℜ∈= ξξξ ,,1 L , 10 << α , )(tanh ⋅  and 

)(sech ⋅  being the standard hyperbolic tangent and secant 
functions, respectively, )(sgn ⋅  being the standard signum 
function, and )(diag ⋅  denotes a diagonal matrix with zeros 
everywhere except for the main diagonal. Based on the 
definition of (13)-(15), it can easily be shown that the 
following expressions hold: 

)(Tanh)(Tanh)(Sig)(Tanh ξξξξ α TT ≥                (16) 

)(tanh21
ii ξξ α ≥+                                 (17) 

1))(Sech( 2 =ξλM                                  (18) 
The proposed output feedback nonsmooth PD plus desired 

gravity compensation controller is formulated as 
υτ α

dpd KqKqG −∆−= )(Sig)(                      (19) 

qBA && +−= υυ                                        (20) 
where pK  and dK  are positive definite constant diagonal 

proportional and derivative matrices, respectively, 10 << α , 
and A  and B  are positive definite filter gains. 

Substituting (19) into (1), the closed-loop dynamics 
becomes 

0)(Sig

)()(),()(

=+∆+

−+++

υα
dp

d

KqK

qGqGqDqqqCqqM &&&&&
         (21) 

whose origin [ ] nTTTT qq 30 ℜ∈=∆ υ&  is the unique 
equilibrium. 

B. Stability Analysis 
Theorem 1: With the proposed output feedback PD plus 

desired gravity compensation controller (19) and (20), the 
closed-loop system (21) is globally finite-time stable, 
provided that the control gains are chosen as follows: 

( )IMCnD MM +> 0λ                                   (22) 

)(2 0
1

dMd KABK λλ>−                                  (23) 

IMK Mp
2
0)1(2 λα +>                                     (24) 

2
1

1

)(Tanh

1
1

2
1)()()(

qa

qkqGqqUqU
n

i
ipid

T
d

∆>

∑ ∆
+

+∆−−
=

+α

α    (25) 

( )
2)(Tanh)(

2
1

)(Sig)(Tanh)()()(Tanh

qKa

qKqqGqGq

dM

p
T

d
T

∆⎟
⎠
⎞

⎜
⎝
⎛ +>

∆∆+−∆

λ

α

  (26) 

where pik  denotes the thi  diagonal elements of matrix pK , 

and 0λ  and a  are small positive constants. 
Note that the inequalities (25) and (26) correspond to 

inequalities (6) and (7) of Property 5, respectively, and the 
existence of such a matrix pK  is confirmed by the same 

argument given in proposing (6) and (7), and (16) [1], [28]. 
Proof: The proof proceeds in the following two steps. First, 

the global asymptotic stability is proved based on Lyapunov’s 
direct method and LaSalle’s invariance principle. Second the 
local finite-time stability is shown using Lemma 1 and Lemma 
2 is involved to guarantee the global finite-time stability. 

1) Global asymptotic stability: To this end, we propose 
the following Lyapunov-like function candidate 

∑ ∆++

∑ ∆
+

+∆−−

+∆+=

=

−

=

+

n

i
iid

n

i
ipid

T
d

TT

qdBK

qkqGqqU

qUqqMqqqMqV

1
0

1

1

1

0

))(ln(cosh
2
1

1
1)()(

)()()(Tanh)(
2
1

λυυ

α

λ

α

&&&

     (27) 

where id  denotes the thi  diagonal elements of matrix D . 
We first consider the following 

∑ ∆⎥
⎦

⎤
⎢
⎣

⎡
−

+
≥

∆∆−∑ ∆
+

≥

∑ ∆
+

+∆∆−

∆+∆+=

∆+∑ ∆
+

+

=

=

+

=

+

=

+

n

i
iM

pi

Tn

i
ipi

n

i
ipi

T

T

Tn

i
ipi

T

qM
k

qqMqqk

qkqqMq

qqqMqq

qqMqqkqqMq

1

22
0

2
0

1

1

1

12
0

00

0
1

1

)(tanh
)1(2

)(Tanh)()(Tanh
)1(2

1
)1(2

1)(Tanh)()(Tanh

))(Tanh2)(())(Tanh2(
4
1

)()(Tanh
)1(2

1)(
4
1

λ
α

λ
α

α
λ

λλ

λ
α

α

α

α

&&

&&&

 (28) 

where (2) of Property 2 and (17) have been used. 
Substituting (28) into (27), we have 

∑ ∆+∑ ∆
+

+

+∆−−+

∑ ∆⎥
⎦

⎤
⎢
⎣

⎡
−

+
+=

==

+

−

=

n

i
ii

n

i
ipi

dd
T

d

n

i
iM

piT

qdqk

BKqGqqUqU

qM
k

qqMqV

1
0

1

1

1

1

22
0

))(ln(cosh
)1(2

1
2
1)()()(

)(tanh
)1(2

)(
2
1

λ
α

υυ

λ
α

α

&&

    (29) 

From (29), (24) and (25), we get 

0
2
1)(Tanh

))(ln(cosh)(
4
1

12

1
0

>+∆+

∑ ∆+≥

−

=

υυ

λ

BKqa

qdqqMqV

d

n

i
ii

T &&

          (30) 

for [ ] 0≠∆
TTTT qq υ& . 

Hence, we can conclude that V  is a positive definite 
Lyapunov function with respect to υ,, qq &∆ . 

Differentiating V  with respect to time, we have 
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qDqBK

qKqqGqqGq

qqMqqqMq

qqMqqqqMqqqMqV

T
d

T

p
T

d
TT

TT

TTT

&&

&&&

&&&&

&&&&&&&&&

∆∆++

∆∆+∆−+

∆+∆+

∆∆++=

− )(Tanh

)(Sig)()(

)()(Tanh)()(Tanh

)())((Sech)()(
2
1

0
1

00

2
0

λυυ

λλ

λ

α
 

(31) 
Substituting qqM &&)(  from (21) and (20) into (31), and 

using (3) of Property 3, it follows that 

[ ]
( )[

]α

λ

λ

υλυυ

)(Sig)(Tanh

)()()(Tanh

)())(Sech(),()(Tanh

)(Tanh

0

2
0

0
1

qKq

qGqGq

qqMqqqqqCq

KqqDqABKV

p
T

d
T

TTT
d

TT
d

T

∆∆+

−∆−

∆∆+∆+

∆−−−= −

&&&&

&&&

  (32) 

Using (4) and (5) of Property 4 and (18), the fourth term of 
the right-hand side of (32) can be upper bounded by 

[ ]
2

0

2
0

)(

)())(Sech(),()(Tanh

qMCn

qqMqqqqqCq

MM

TTT

&

&&&&

+≤

∆∆+∆

λ

λ
  (33) 

Note that the derivation of the first term of (33) we utilized 
nq ≤∆ )(Tanh  according to (13) and 1)(tanh ≤∆ iq . 

Substituting (26) and (33) into (32), we have 

( )

( )
( )[ ]qIMCnDq

qaIKABK

qKaqDq

qMCnKqABKV

MM
T

dMd
T

dM
T

MMd
T

d
T

&&

&&

&&

+−−

∆−−−≤

∆⎟
⎠
⎞

⎜
⎝
⎛ +−−

++∆−−≤

−

−

0

2
00

1

2
0

2
00

1

)(Tanh)(2
2
1

)(Tanh)(
2
1

)(Tanh

λ

λυλλυ

λλ

λυλυυ

(34) 

where the triangle inequality )(
2
1 2

2
2
121 aaaa +≤  has been 

used with )(Tanh1 qa ∆=  and υ=2a . 

From (22) and (23), we conclude that 0<V& . In fact, 
0=V&  means 0)(Tanh =∆q , 0=q& , and 0=υ . From the 

property of hyperbolic tangent function, we have 0=∆q . 
Therefore, by Lyapunov’s direct method [31], we have the 
global asymptotic stability about the point 
( )0,0,0 ===∆ υqq & . 

2) Local finite-time stability: Following the idea 
presented in [17], the local finite-time stability is proved using 
Lemma 1. To this end, let qx ∆=1 , qxx && == 12 , υ=3x , and 

TTTT xxxx ),,( 321= . The state equation of the closed-loop 
system is 

[
]

⎪
⎪

⎩

⎪
⎪

⎨

⎧

+−=

++−++

+++−=

=
−

233

311

22211
1

2

21

)(Sig)()(

),()(

BxAxx

xKxKqGqxG

DxxxqxCqxMx

xx

dpdd

dd

&

&

&

α
   (35) 

Clearly, 0=x  is the equilibrium of (35). It can be seen that 
the closed-loop system is not homogeneous. To use Lemma 1, 
we rewrite (35) as follows: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

+=

+−=

=
−

)(ˆ
)(ˆ)(Sig)(

323

21
1

2

21

xfBxx

xfxKqMx

xx

pd

&

&

&

α              (36) 

with 
[

] α)(Sig),(~)(

)(),()(ˆ

1132

12211
1

2

xKqxMxKDxqG

qxGxxqxCqxMf

pddd

ddd

−++−

++++−= −

  (37) 

33̂ Axf −=                                  (38) 
and 

)()(),(~ 1
1

1
1 ddd qMqxMqxM −− −+=          (39) 

It can be easily verified that the following system 

⎪
⎩

⎪
⎨

⎧

=

−=

=
−

23

1
1

2

21

)(Sig)(

Bxx

xKqMx

xx

pd

&

&

&

α                   (40) 

is homogeneous of degree 0
1
1

<
+
−

=
α
ακ  for 10 << α  with 

respect to ),,,,,,,,,,,( 332312222111211 nnn rrrrrrrrr KKK  
with )1(211 +== αrr i , 122 == rr i , and 133 rrr i == . Note 

that 0)0( =f  and 0)0(ˆ =f  from (40), and (37) and (38), 
respectively. 

Next we will involve Lemma 1 to show the local finite-time 
stability of the closed-loop system (35). To this end, first note 
that, since )( 1

1
dqxM +−  and ),( 21 xqxC d+  are smooth and 

0<κ  [17], we have 

[
]

[ ]
0

limlim)0,()(

)()(

),()(
lim

23

312

221

2

1

0
3

0
2

1

312

221
1

1

0

=

−+−=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

+−+++

+
+

−

−−

→

−

→

−

+

−

→

rr
ddd

r
ddd

rr

rr
d

r
r

d
r

xKxDqCqM

xKqGqxGxD

xxqxCqxM

κ

ε

κ

ε

κ

ε

εε

εεε

εεε
ε
ε

(41) 
Note that the derivation of (41) we have utilized the fact 

that 0
1

)1(2
23 >

+
−

=−−
α

ακ rr  for 10 << α . 

Applying the mean value theorem to each entry of 
),(~

1 dqxM , it follows that [17] 

)()()(),(~
111 1

1
1

1
r

dd
r

d
r qMqxMqxM εοεε =−+= −−   (42) 

As a result, we have 

0)(lim)(lim

)(Sig),(~
lim

2

00

11

0

21

2

11

=−=−=

−

−

→

−−

→

+→

κ

ε

κ

ε

κ

α

ε

εοεο
ε

εε

rr

r

r
pd

r xKqxM

         (43) 

Thus, for any fixed nTTTT xxxx 3
321 ),,( ℜ∈= , we get 
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0),,(ˆ
lim

2

321
3212

0
=+

→
r

rrr xxxf
κε ε

εεε                        (44) 

Similarly, we have 

0lim

lim
),,(ˆ

lim

0
3

3

0

3213

0 3

3

3

321

=−=

−=

−

→

+→+→

κ

ε

κεκε

ε
ε
ε

ε
εεε

Ax

xAxxxf
r

r

r

rrr

       (45) 

Therefore, according to Lemma 1, we have the local 
finite-time stability of the closed-loop system. 

Finally, by invoking Lemma 2, we get the global finite-time 
stability. This completes the proof.                                        ■ 

Remark 1: Condition (22) in Theorem 1 is not excessively 
restrictive and limitative, due to the fact that the small positive 
constant 0λ  does not use in the control law formulation. This 
implies that 0λ  always exists and can be selected as so small. 

Remark 2: Although a nonsmooth term appeared in the 
closed-loop system, it can be conclude that the uniqueness of 
the solution of the class of robot systems with revolute joints 
can be guaranteed from the global asymptotic stability proof. 
However, the uniqueness of the solution for the robot systems 
with primatic joints remains to be verified. 

Remark 3: The above results still hold true when the desired 
gravity compensation is replaced by the real gravity 
compensation, i.e. the control law becomes 

υτ α
dp KqKqG −∆−= )(Sig)(                        (46) 

V. SIMULATIONS 
Simulations on a two-DOF robot manipulator were 

conducted to illustrate the effectiveness of the proposed 
simple finite-time output controller. The entries to model the 
robot manipulator are, respectively [32] 

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

⎥
⎦

⎤
⎢
⎣

⎡ −−
=

⎥
⎦

⎤
⎢
⎣

⎡
+

++
=

)sin(
)sin()sin(

0)sin(
)sin()sin(2

)cos(
)cos()cos(2

215

21514

122

222222

3223

223221

qq
qqq

G

qq
qqqq

C

q
qq

M

θ
θθ

θ
θθ

θθθ
θθθθ

&

&&            (47) 

Furthermore, a Coulomb friction is also considered in the 
simulations. To keep the notation used for model (1), it is 
defined ),(diag 76 θθ=D , and 
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⎦
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where the parameters in the simulations are given in SI units 
and summarized in Table I. 

Inserting(47) into (2) and (5), the upper bounds required to 
determine the parameters of the controller is obtained as 

22 mkg336.0,mkg533.2)( ⋅=⋅= MM CMλ      (49) 

The final desired positions were )rad(
2

,
4

T

dq ⎥⎦
⎤

⎢⎣
⎡=

ππ . The 

sampling period was ms1=T . All the initial parameters were 
set as zero. The gains for the proposed nonsmooth PD plus 
gravity compensation were chosen in accordance with 
stability conditions (22)-(26) as: )100,250(diag=pK , 

)15,75(diag=dK , )80,130(diag=A , and 
)60,110(diag=B , with 5.0=α  (Finite PD) and 1=α  (PD), 

respectively. 
 

TABLE I PARAMETERS OF THE ROBOT MANIPULATOR 

Notation Value Notation Value 

1θ  2.351 6θ  2.288 

2θ  0.084 7θ  0.175 

3θ  0.102 

4θ  38.465 
8θ  

7.170 if 01 >q&  and 
8.049 if 01 <q&  

5θ  1.825 9θ  1.724 

 
Note that the proposed controller with 1=α  will be 

returned to the conventional PD plus desired gravity 
compensation. Figs. 1 and 2 illustrate the position errors and 
requested input torques of the proposed output feedback 
approach with the conventional linear PD plus gravity 
compensation scheme. It can be seen that the robot targeted at 
the final desired position correctly, and after a transient due to 
errors in initial condition, the position errors tend 
asymptotically to zero. Furthermore, the fast response of the 
proposed output feedback controller is achieved in 
comparison with the conventional linear PD plus desired 
control scheme. 
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Fig. 1. Position errors. 

3387



  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

0

100

200

300
Input torques of first link

Time [sec]

In
pu

t t
or

qu
es

 [N
m

]

PD       
Finite PD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-50

0

50

100

150

200
Input torques of second link

Time [sec]

In
pu

t t
or

qu
es

 [N
m

]

PD       
Finite PD

 
Fig. 2. Input torques. 

VI. CONCLUSION 
We have proven the global output feedback finite-time 

regulation of robot manipulators with nonsmooth but 
continuous PD plus gravity compensation scheme in 
agreement with Lyapunov’s direct method and finite-time 
stability theory. The developed approach offers an alternative 
approach for improving the design of the robot regulator, and 
also solves the global finite-time output feedback control 
problem for a large class of nonlinear systems with the sole 
position measurements. The simulations performed on a 
two-DOF robot manipulator demonstrated the fast response of 
the proposed controller over the conventional linear PD plus 
scheme. 
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