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Abstract— To be acceptable to human drivers, the motion
of an intelligent robotic wheelchair must be more than just
collision-free: it must be graceful. We define graceful motion
as being safe, comfortable, fast and intuitive.

In this paper, we quantify these properties of graceful motion,
providing formal evaluation criteria. We propose a method for
graceful motion and present implementation results for the task
of driving through a narrow doorway, evaluated on a simulated
model of the wheelchair.

We use B-splines to specify an intuitive path to a goal,
and then describe path-following control law for a differential-
drive wheeled vehicle to follow that path within velocity and
acceleration bounds.

Existing methods typically respond to tight clearances with
very slow motion which is not graceful. Our results show that,
starting from a set of representative poses, the wheelchair passes
through the door at near maximum speed, staying close to the
mid-line of the doorway. The velocity of the wheelchair reflects
the curvature of the path rather than the closeness of the door
edges, so it can move smoothly, safely, and quickly through the
doorway.

Thus, this paper makes two contributions - first it introduces
the concept of graceful motion and provides quantitative
measures for the same, and second, it proposes a method for
graceful motion and demonstrates it on a specific task.

I. INTRODUCTION

An intelligent wheelchair that navigates safely through

the environment without requiring constant control from its

human driver can reduce driving-stress and increase mobility

of a disabled person [1], [2]. The ability of the wheelchair to

gracefully perform common navigation tasks such as going

through a door, going up and down ramps, and turning sharp

corners is an important factor in ensuring the comfort of the

human driver.

To be graceful, motion must be visibly safe, comfortable,

fast, and intuitive. Safety means that motion is collision free,

maintains sufficient clearances from obstacles and has low

jerk. Jerk is rate of change of acceleration and a high jerk

implies that the forces acting on the wheelchair have changed

rapidly. High jerk can not only make the motion uncomfort-

able but also unsafe for people with specific conditions such

as spinal cord injuries.

Comfort means that the wheelchair maintains sufficient

clearances from its surroundings, its velocity and acceler-

ations are smooth and bounded and do not oscillate, and it

has low jerk. While some bounds are necessarily imposed by

physical limitations of motion and by wheelchair hardware,

others can be determined by the driver. For example, some

people might consider lower velocities than that prescribed

by the above limitations as comfortable and prefer to set

lower velocity bounds.

Fast motion means that the wheelchair moves as fast as

permitted by its velocity bounds and the curvature of the

path. Thus, when the wheelchair passes through spaces with

tight clearances such as doorways, it does not move slowly

because it is between two obstacles. Rather, it moves at near

maximum speed allowed by the curvature of the path.

Intuitive motion means that the paths taken by the

wheelchair appear natural to the driver. The notion of a

natural path is subjective: for example, consider the task of

driving a wheelchair through a narrow doorway when the

wheelchair is facing away from the door. While one person

may like to first turn to face the door and then drive toward it,

another may prefer to start driving and turn while moving.

In all cases, the path should be so defined that it allows

the criteria for safety and comfort to be met. For example,

a discontinuous curvature curve does not allow smoothly

varying angular velocity and cannot be used to specify an

intuitive path.

While a significant amount of work has been done on

mobile robot navigation, little attention has been paid to

graceful navigation. Navigation methods that have been

primarily developed for collision avoidance include the dy-

namic window approach [3], the curvature-velocity method

[4] and the nearness diagram method [5]. These methods

compute velocities at each time step to optimize an objective

function that embodies various performance measures such

as distance from obstacles and progress toward the goal.

These methods are completely reactive: the velocities

chosen at each time step determine an arc that the robot

will follow in that time step. Since there is no look-ahead,

the velocities are decided based only on the current time

step. This makes it impossible for the robot to reach a

goal that requires a drastic change in velocities in the next

step without violating the acceleration constraints. Reactive

methods typically reduce the velocity of the robot when

approaching an obstacle, so motion through a space with

tight clearances, such as a doorway, is very slow.

Like reactive methods, safety is our most important con-

cern. Our method is to plan a smooth collision-free route

with low curvature in the tightest part allowing the robot
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to navigate tightly constrained spaces as fast as comfortably

possible (since lower curvature implies higher velocity), and

then use a control law to drive the robot on that path

while obeying the velocity and acceleration bounds. Using

a pre-planned path allows the robot to take advantage of

the knowledge of the future to adjust its velocities in the

present. For example, once it is known that the path will turn

sharply in the future, the robot can slow down in anticipation

and make the sharp turn comfortably. In this paper, we use

splines to specify an intuitive path. The paths are described

by manually specifying control points for the spline curves

and no planning algorithms are used since our purpose here

is to demonstrate the ability to follow a given path gracefully.

However, there exists a vast body of literature on robot

motion planning [6], [7], [8], [9], some of which can be

adapted to generate collision-free paths whose curvatures

have continuous first and second derivatives so that it is

possible to move gracefully along these paths.

II. PATH FOLLOWING CONTROL LAW

A path following control law was first proposed in [10]

and later improved upon in [11]. The proposed law is

guaranteed to converge to a given path and produces smooth

motion. However, this law does not impose any bounds

on velocities or accelerations. We build upon this law by

formulating a constrained optimization problem to determine

the parameters used in the control law such that the resulting

velocities are smooth and vary smoothly, resulting in graceful

motion.

A path following control law has two objectives: first, it

should reduce the distance between the robot and the path

to zero, and second, it should drive the angle between the

robot’s forward velocity vector and the tangent to the path

to zero. The notion of “distance from the path” is not well-

defined here. The simplest definition would be to define the

distance as the perpendicular distance from the robot to the

path. However, this results in singularities in the kinematic

equations when the distance of the robot from the path is

equal to the radius of curvature [10].

To overcome this difficulty, “distance from the path” can

be defined as the distance of the robot from a virtual target

on the path and virtual target dynamics can be specified so

that it is not the nearest point to the robot on the path [11].

A. Kinematic Model of the Intelligent Wheelchair

The intelligent wheelchair consists of two independently

driven parallel rear wheels, two free castor wheels at the

front and one free castor wheel at the back for stability. Let

(x, y) be the midpoint of the two rear wheels and θm be the

orientation of its main axis in a world frame as shown in

Figure 1.

The kinematic model of the wheelchair is the unicycle

model and in the world frame {W} it is given by


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Fig. 1. The World frame {W}, Serret-Frenet frame {F} and the
unicycle model

where v and ωm are the linear and angular velocities in the

world frame respectively.

For deriving the path following control law, it is useful

to think of the kinematic model of the robot in the Serret-

Frenet frame {F} attached to the virtual target as shown in

Figure 1. The position of the virtual target (Px(s), Py(s))
is specified by the arc-length s along the curve. The x axis

of the frame is along the tangent to the path at that point.

Let the orientation of the robot in the Serret-Frenet frame

be θ. Then, the pose of the robot in this frame is (s1, y1, θ).
Each of these coordinates represents the error that must be

reduced to zero.

B. Kinematic Model in the Serret-Frenet Frame

Let θc be the angle of the tangent vector to the path at s in

the world frame {W}. Let θm be the orientation of the robot

in the world frame. Then, the angle θ in the Serret-Frenet

frame is given by

θ = θm − θc (2)

We would like to define θ such that it is the smallest angle

between the robot’s axis and the path, hence we bound θ to

[−π, π]. Let cs be the curvature of the path at arc-length s.

Then, we have

θ̇c = csṡ (3)

The kinematic model of the robot in the Serret-Frenet frame

is [11]

ṡ1 = −ṡ(1 − csy1) + v cos θ

ẏ1 = −csṡs1 + v sin θ

θ̇ = ωm − csṡ

(4)

C. Control Law using Kinematic Model

It has been shown in [11] that the robot converges to the

path if ṡ and θ̇ are defined as

ṡ = v cos θ + k1s1

θ̇ = δ̇ − γy1v
sin θ − sin δ

θ − δ
− k2(θ − δ)

(5)
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where k1 and k2 are positive constants, and the shaping

function δ(y1, v) satisfies

1) δ(0, v) = 0
2) y1v sin(δ(y1, v)) ≤ 0 ∀y ∀v

3) limt→∞ v(t) 6= 0.

Condition (1) states that the shaping function is zero when

the robot is on the path (y1 = 0), so the robot’s main axis

must be tangent to the path. Condition (2) adjusts the sign of

the shaping function such that the robot always turns toward

the path, no matter which side of the path it is on and what

direction it is moving in. For example, for positive v, if y1

is negative, condition (2) implies that sin(δ(y1, v)) is non-

negative and hence δ(y1, v) ∈ [0, π]. Condition (3) ensures

that the robot does not come to a stop.

D. A Shaping Function

We use a modified version of the shaping function pro-

posed in Lapierre et al. [11].

δ = −θa tanh(kδy1) (6)

under the assumption that v ≥ 0 and 0 ≤ θa ≤ π, and kδ is

a positive constant. Differentiating Equation 6, we get

δ̇ = −θakδ ẏ1(1 − tanh2(kδy1)) (7)

E. A Closer Look at the Control Law

From Equations 2, 5 and 7 we get the control law for

angular velocity as

ωm = −θakδ ẏ1(1 − tanh2(kδy1)) − γy1v
sin θ − sin δ

θ − δ

− k2(θ − δ) + csṡ

(8)

To understand the control law, assume that the constant k1

in Equations 5 is zero and that the linear velocity follows

a given profile vd(t). Suppose that the robot is on the path

(s1 = 0, y1 = 0) and is tangent to the path such that θ = 0. In

this case, only the last term is non-zero and the law reduces

to ωm = csv. This merely adjusts the angular velocity such

that the robot stays on the path. Next, suppose that the robot

is on the path (s1 = 0, y1 = 0) but not tangent to the path

(θ 6= 0). The first term is now a function of θ (substitute ẏ1

from equations 4) and the second term is zero. The first and

third terms rotate the robot so that it becomes tangent to the

path while the fourth term makes it move forward along or

parallel to the path.

Now, suppose that the robot is not on the path but parallel

to it such that θ = 0. The third term is now zero. If the

first two terms were not present, the robot will merely move

along a curve parallel to the path as there is nothing pushing

it back to the path. These terms ensure that the robot moves

back to the path. Finally, when the robot is not on the path,

all the terms serve to make it converge to the path.

III. CONTROL LAW AND PATHS FOR GRACEFUL MOTION

The control law described in the previous section assumes

that the linear velocity v follows a desired velocity profile

vd(t) and imposes no bounds on velocities and accelera-

tions. Notice that in Equation 8, we have the freedom to

choose two parameters, namely the linear velocity v and

the constant k2, provided that both of them are positive. To

determine these parameters at each time step we formulate

an optimization problem where the objective is to optimize a

function f(v, k2) subject to constraints imposed by bounds

on velocities and accelerations.

A. Formulating the Optimization Problem

Assume that initially the robot is on the path and tangent

to the path. Define an optimization problem to maximize the

linear velocity v as follows

Maximize

f(v, k2) = v

subject to

ǫ ≤ k2

0 ≤ v ≤ vmax,

amin△t + v̂ ≤ v ≤ amax△t + v̂

ωmin ≤ ωm ≤ ωmax

αmin△t + ω̂m ≤ ωm ≤ αmax△t + ω̂m

αmin ≤csv̇ + gsv
2 ≤ αmax

(9)

where ωm is given by Equation 8 and can be written as

a function of v and k2, given values of s1, y1, θ and

the constants k1, kδ , θa and γ (using Equations 4). The

quantities with a hat are the values from the previous

time step, vmax, ωmax, amax and αmax are constants that

represent the maximum permissible values of linear velocity,

angular velocity, linear acceleration and angular acceleration

respectively (similarly the minimum permissible values), gs

is the derivative of the curvature with respect to s, and ǫ is

a small positive constant.

The first constraint represents the fact that k2 is a positive

constant. The next four constraints represent the bounds on

velocities and accelerations and do not take into account the

fact that the curvature of the path may be changing. These

constraints are local and unable to change the velocities in

anticipation of an impending change in curvature.

The final constraint takes into account the rate of change

of curvature and thus introduces a kind of look-ahead in

the system, allowing it to reduce its linear velocity before

an impending sharp turn or to speed-up if the curvature is

decreasing. This constraint is an approximation, it is derived

assuming that the robot is on the path at that time step. Then,

as explained in the previous section, the control law becomes

ωm = csv (10)

Taking the derivative we get

ω̇m = csv̇ + gsv
2 (11)

Imposing bounds on ω̇m then gives us the final constraint.
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B. Defining Paths as Spline Curves

We discussed a control law that allows the robot to track

any given path in two dimensions with bounded velocities

and accelerations, provided its arc-length parametrization

is available. An easy and computationally cheap way of

specifying a path in two and three dimensional space is by

defining a spline curve. Splines allow lower degree curves

as compared to polynomial interpolation to be fitted to data,

and have been widely used in motion planning and computer

graphics to specify smooth paths [12], [13]. We choose a

particular class of splines called non periodic B-splines for

specifying paths.

A B-spline is a piecewise polynomial curve that approx-

imate a set of points. It is a parametric curve of the form

[14]

p(u) =

n
∑

i=0

pi Ni,k(u) (12)

where u is the parameter, pi are the control points, Ni,k are

the blending functions, and k−1 is the degree of each piece

of the curve. The control points determine the characteristic

polygon of the curve. Each vertex pi of the characteristic

polynomial is weighted by a blending function Ni,k. The

piecewise curves can be up to Ck−2 continuous at the joints.

The blending functions for a non periodic B-spline are

defined such that for any value of the parameter u, all but k

blending functions are zero. Thus, the shape of any segment

of the curve is determined by only k control points. In

addition, the blending functions are defined such that the

curve passes through the first and last control points.

A B-spline curve has certain properties that make it

suitable for defining an intuitive-looking path in cartesian

space. First, it is variation diminishing, that is, it lies within

the convex hull formed by the control points and does not

oscillate wildly. Second, more control points can be added to

change the shape of the curve without changing the degree

of the curve. Third, control points only influence the shape

of the curve locally, thus allowing us to define the shape of

the curve in greater detail in special regions, such as corners

and sharp turns, without changing the entire curve.

To ensure velocity continuity, we require that the curvature

be continuous. For acceleration continuity, we require that

the derivative of the curvature be continuous [15]. This in

turn requires third order parametric continuity with respect

to the parameter u. Hence, we choose quintic B-splines for

specifying paths.

IV. PASS-THROUGH-DOOR TASK

The location of the wheelchair is specified by a pose, that

is, a position and an orientation. The pass-through-door task

is defined qualitatively as follows: start from rest on one side

of the door, go through the door and reach a specified pose

on the other side of the door with graceful motion (as defined

in the introduction). It is assumed that the wheelchair passes

through the goal on its way to some other target, hence it is

in motion at the goal pose, that is, it does not stop at the goal

pose. We assume that the world is static, that is, there are no

D

A

DOOR

B

C

G

Fig. 2. Pass-Through-Door task

moving obstacles. Thus, the only objects that the wheelchair

needs to avoid are the walls and the door edges. We also

assume that the robot has a local map available to it and

knows where it is relative to the door, even when it is not

facing the door.

V. IMPLEMENTATION DETAILS

In this section, we discuss implementation results on a

simulated system. We model the robot by Equation 1 along

with the equations v̇ = a and ω̇ = α where a and α are

the linear and angular accelerations respectively. We assume

that the accelerations are constant for each time step. The

robot model receives velocity and acceleration commands

at the beginning of each time step and outputs the robot

pose at the end of that time step. The controller takes the

current position of the robot as input and generates velocity

commands. The cycle time is 10 Hz, that is, the motion

commands are generated every 0.1 seconds and sent to the

robot model. Physically, we assume that the robot is circular

in shape.

A. Parameter Values

The radius of the wheelchair is r = 0.335 m and the width

of the doorway is 2.5r = 0.8375 m. Thus, the maximum

clearance between the robot and the door when the robot is

at the center of the door is 8.37 cm. The constants in the

control laws are chosen as k1 = 0.001, kδ = 5.0 and γ =
1.0. It was determined experimentally that an approach angle

θa = π yields good convergence to the path. The bounds on

the velocities are set as v ∈ (0, 1.0) m/s, ωm ∈ (−0.78, 0.78)
rad/s, v̇ ∈ (−2.0, 2.0) m/s2 and ω̇m ∈ (−1.56, 1.56) rad/s2.

B. Control points of the B-spline for the pass-through-

doorway task

The world frame is centered at the door with the

positive X axis pointing to the right and the positive

Y axis pointing toward the goal. Let (xi, yi) be the

initial position of the wheelchair. The wheelchair must

reach a goal on the other side of the door approximately

on the mid line of the doorway. Hence, define the fi-

nal position as (0, 3r). We define the control points as

〈(xi, yi), (0,−3r), (0,−2r), (0, 0), (0, 1.5r), (0, 7r)〉. These
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(a) Actual trajectory of the robot
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(b) Desired and actual path of the robot
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(c) Linear and angular velocities and curvature
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(d) Linear and angular accelerations and curvature

Fig. 3. Motion of the robot as it executes the pass-through-doorway task. The robot starts on one side of the door, very near the wall and makes a sharp
turn to go out of the door. Each circular trace in Figure 3(a) shows the pose of the robot at a time step. The time steps are evenly spaced, so the robot
is moving slower in places where the traces are closer together. Notice that the traces are closer together at the sharp turn and farther apart while going
through the door. This shows that the robot passes through the doorway without slowing down.

control points define a path that is almost a straight line

through the middle of the door, thus allowing the robot to

pass straight through the center of the doorway. The curve

defined by these points also enables a robot close to a wall

near the door to first drive away from the wall toward the

mid-line of the doorway and then go out the door as shown

in Figure 3(a).

VI. EXPERIMENTS AND EVALUATION

We tested our system for various representative starting

poses of the robot and evaluated the behavior against the

performance criteria formulated in the introduction. Figure

3 shows a case where the wheelchair is next to the wall

very near the door and faces away from the door. This case

is tricky because it involves moving along a high curvature

(7 m−1) curve to go through the door. Figure 3(a) shows the

cartesian trajectory of the robot and Figure 3(b) show the

planned and actual paths. The velocities are shown in Figure

3(c). The path chosen requires the robot to constantly turn

anti-clockwise to align itself with the path, hence the angular

velocity is positive. Notice how the linear velocity drops at

higher curvature values to enable the wheelchair to make

the turn and is maximum on other parts of the curve. Notice

also that the linear velocity starts to drop smoothly before

arriving at the maximum curvature point. Analogously, in

Figure 3(d), there is a large negative linear acceleration to

slow down the wheelchair before the high curvature region

and then a positive acceleration to speed it up after the turn.

Two other trajectories of the robot and their corresponding

velocity and acceleration curves are shown in Figure 4. The

trajectory in Figure 4(a) has a very low curvature and once

the robot has accelerated, it continues to move forward at

its maximum linear velocity. In Figure 4(b), the robot moves

forward with the maximum linear velocity possible. In the

higher curvature part of the curve, the angular velocity rises

to its maximum value so that the robot can continue moving

as fast as possible while staying on the curve. Notice that in
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(a) A representative trajectory of the robot (b) Another representative trajectory of the robot
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(c) Linear and angular velocities for the trajectory of Figure 4(a)

0 1 2 3 4 5
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t

v
(t

) 
(m

/s
),

 ω
m

(t
) 

(r
a

d
/s

)

v
ω

m

0

0.2

0.4

0.6

0.8

1

1.2

1.4

c
s
(t

) 
(m

-1
)

Curvature 

(d) Linear and angular velocities for the trajectory of Figure 4(b)
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(e) Linear and angular accelerations for the trajectory of Figure 4(a)
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(f) Linear and angular velocities for the trajectory of Figure 4(b)

Fig. 4. Motion of the robot along two representative paths as it executes the pass-through-doorway task.

all the cases shown above the robot’s linear velocity increases

to its maximum value as the curvature of the path decreases

after the high curvature regions.

A. Evaluation Results

To evaluate for safety, we define minimum distance from

the door and minimum distance from walls. If the minimum

distance is greater than zero, the motion is collision-free.

3937



TABLE I

EVALUATION RESULTS

Fig Min Max Min Max Min
Door Vels Vels Accs Accs

Dist (m/s, (m/s, (m/s2, (m/s2,

(cm) rad/s) rad/s) rad/s2) rad/s2)

3(a) 6.48 (1, 0.78) (0, 0) (2, 1.56) (-1.58, -1.36)

4(a) 8.09 (1, 0.01) (0, -0.31) (2, 0.35) (0, -0.64)

4(b) 4.66 (1, 0.78) (0, 0) (2, 1.51) (-1.85, -1.56)

We have not implemented the bounds on jerk yet, hence we

do not evaluate for those. For comfort, we check to see if

the velocity and acceleration are within bounds. We define

a minimum clearance of 2 cm from the door and walls as

comfortable. To check for presence of oscillations, we do

a simple visual evaluation since the number of samples is

small. For a larger number of samples, a signal analysis to

determine characteristic frequencies can be done.

The evaluation results for the three cases discussed above

are shown in Table I. The results show that there are no

collisions (safe), the velocity and acceleration bounds are

not exceeded and there is sufficient clearance from the walls

and the door (comfortable). The velocities change smoothly

while the accelerations do not change very smoothly in the

case of Figure 3(a). This means that there are large jerks in

the motion: this is to be expected since we did not impose

any jerk bounds in our formulation. Figures 3 and 4 show that

the wheelchair does not slow down while passing through the

door: instead it moves with its maximum possible velocity

(fast).

VII. DISCUSSION

One issue worth considering is the importance of using

the control law of Equation 8. The curves in Figures 3 and

4 show that the velocities obey the relation ωm = vcs. One

might ask whether it is sufficient to use the above control

law rather than the one in Equation 8. The answer is that the

relation above works well if the system is continuous time,

that is, it is possible to instantaneously change the velocity

of the robot so that it always stays on the curve. However,

this is not the case for a real robot: the velocities can be

sent to the robot only at discrete intervals, and hence the

robot does not stay on the path at all instants. The law of

Equation 8 drives the robot back to the path, whereas the

simple control law ωm = vcs does not. This is illustrated by

reducing the update rate from once per 0.1 seconds to once

per 0.3 seconds. The law of Equation 8 lets the robot follow

the path very closely while ωm = vcs does not.

Another issue is that while the solution converged for a

large number of initial poses, it failed to converge for some

time steps for some initial poses. One possible reason for

non-convergence is that the last constraint in Equations 9 is

approximate and should be replaced by the exact constraint

derived from Equation 8.

VIII. CONCLUSIONS AND FUTURE WORK

This paper introduced the notion of graceful motion for

a robotic wheelchair - motion that is safe, smooth, fast, and

intuitive. We formulated some quantitative measures to char-

acterize graceful motion, presented an approach for graceful

navigation and implemented the approach on a specific task.

Our results showed that the wheelchair satisfied the criteria

for graceful motion. Future work consists of developing

robust methods to learn to move gracefully that generalize to

various tasks and environments and demonstrate results on

the wheelchair.
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