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Abstract— This paper provides a novel state vector and
covariance sub-matrix recovery algorithm for a recently de-
veloped submap based exactly sparse Extended Information
Filter (EIF) SLAM algorithm — Sparse Local Submap Joining
Filter (SLSJF). The algorithm achieves exact recovery instead of
approximate recovery. The recovery algorithm is very efficient
because of an incremental Cholesky factorization approach
and a natural reordering of the global state vector. Simulation
results show that the computation cost of the SLSJF is much
lower as compared with the sequential map joining algorithm
using Extended Kalman Filter (EKF). The SLSJF with the
proposed recovery algorithm is also successfully applied to the
Victoria Park data set.

I. INTRODUCTION

In the recent years, sparse representations for solving
Simultaneous Localization and Mapping (SLAM) problems
have attracted special attention since the development of
the Sparse Extended Information Filter (SEIF) by Thrun
et al. [1]. It has been shown that significant computational
advantages can be achieved by exploiting the sparseness of
the information matrix or techniques from sparse graph and
sparse linear algebra ([2]-[5]).

Local submap joining [6][7] provides an efficient way to
build large-scale maps. The idea of local submap joining
is to first build a sequence of small sized local submaps
(e.g. by traditional Extended Kalman Filter (EKF) SLAM
[8]), and then combine the local submaps into a large-scale
global map. A key advantage of local submap joining is that
the computation cost of submap building is constant and
the frequency of the computationally expensive global map
update is significantly reduced [7].

Combining the local submap joining idea with sparse
representation can make SLAM algorithms even more ef-
ficient. A number of such algorithms, for example, the
tree-map algorithm [9], Tectonic SAM [10], and D-SLAM
submap joining [11], are available. However, in the tree-map
algorithm [9] and Tectonic SAM [10], data association is
assumed and thus the recovery of covariance sub-matrix is
not needed. In the algorithm presented in D-SLAM submap
joining [11], the robot pose information in each submap is
not exploited and this results in some information loss.

It is well known that the recovery of state vector and
covariance sub-matrix is one of the most computationally
intensive steps in the EIF SLAM implementation. In [1] and
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[12], efficient approaches for approximately recovering the
covariance sub-matrix are given but the inaccurate covariance
may result in wrong data association [12].

This paper studies the exact state vector and covariance
sub-matrix recovery for a recently developed submap based
sparse EIF SLAM algorithm – Sparse Local Submap Joining
Filter (SLSJF) [13]. The major components of the recovery
algorithm include a natural reordering of the global state
vector and an incremental Cholesky factorization method.
Simulation and experimental results show the effectiveness
of the proposed recovery strategy.

The paper is organized as follows. Section II briefly
describes the SLSJF algorithm. The state and covariance
sub-matrix recovery algorithm is stated in details in Section
III. Section IV provides simulation and experimental results.
Some related work are discussed in Section V and Section
VI concludes the paper.

II. SPARSE LOCAL SUBMAP JOINING FILTER

This section briefly describes the Sparse Local Submap
Joining Filter (SLSJF) [13] algorithm.

A. Overall structure of submap joining

The objective of local submap joining is to combine the
local submaps and obtain a global map containing all the
features. Similar to the sequential submap joining in [6],
SLSJF fuses the local submaps one by one. That is, first
set local submap 1 as the global map, then fuse local map
k (k ≥ 2) into the global map in sequence.

B. Local submap

It is assumed that a consistent local submap can be
constructed by some SLAM algorithm and is expressed by

(X̂L, PL) (1)

where X̂L (here the superscript ‘L’ stands for the “local”
submap) is an estimate of the state vector

XL = (XL
r ,XL

1 , · · · ,XL
n )

= (xL
r , yL

r , φL
r , xL

1 , yL
1 , · · · , xL

n , yL
n ) (2)

and PL is the associated covariance matrix. The state vector
XL contains the final robot pose XL

r and all the local feature
positions XL

1 , · · · ,XL
n (as in traditional EKF SLAM). The

coordinate system of a local submap is defined by the initial
robot pose when the building of the local submap is started,
i.e. the robot starts at the coordinate origin of the local
submap.
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C. Relationship between consecutive submaps

In order to fuse the local maps together into a global map,
some relationship between the submaps must be known.

In the SLSJF stated below, it is assumed that the robot
starts to build local submap k +1 as soon as it finishes local
submap k. So the relationship between submaps is: the robot
end pose in local submap k and the robot start pose in local
submap k + 1 are identical (Fig. 1).

Fig. 1. The relationship between submaps in SLSJF

In the case when the robot moves to a new pose after it
finishes local submap k and then starts to build local submap
k + 1, the relationship between the two local submaps is
described by the robot motion from the robot end pose in
local submap k to the robot start pose in local submap k+1.
This general case is treated in [13].

D. Global map state vector

In SLSJF, the global map state vector contains the position
of all the features and the robot end poses of each local
submaps.

The global map state vector in SLSJF is

XG = (XG
1 , · · · ,XG

n1
,XG

1e,X
G
n1+1, · · · ,XG

n1+n2
,XG

2e, · · ·)
(3)

where XG
1 , · · · ,XG

n1
are the global position of the features in

local submap 1, XG
n1+1, · · · ,XG

n1+n2
are the global position

of those features in local submap 2 but not in local submap
1. XG

ke = (xG
ke, y

G
ke, φ

G
ke) is the global position of the robot

end pose in local submap k (1 ≤ k ≤ p where p is the total
number of local submaps). Here the supscript ‘G’ stands for
the global map; the subscript ‘e’ stands for ‘robot end pose’.
Note that the robot end pose of local map k is the same as
the robot start pose of local map k + 1.

E. Treat submap as an observation

Since a local submap is a consistent estimate of the relative
position from robot start pose to the local features and the
robot end pose (Fig. 1), it can be treated as an observation
— a function of the global state vector (with noise). Suppose
local submap k + 1 is given by (1) and the data association
result is XL

1 ↔ XG
i1, · · · ,XL

n ↔ XG
in. Then the local map

can be regarded as an observation

zmap = X̂L = Hmap(XG) + wmap (4)

where Hmap(XG) is given by
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and wmap is the zero mean Gaussian “observation noise”
whose covariance matrix is Rmap = PL.

F. Global map update

In the SLSJF algorithm, information vector and informa-
tion matrix are used to express the Gaussian distribution of
the global state estimate. Let i(k) represent the information
vector and I(k) be the associated information matrix of the
global map before the fusion of local submap k + 1. The
relationship among the global state vector estimate X̂G(k),
the corresponding covariance matrix P (k), the information
vector, and the information matrix is ([5])

i(k) = P (k)−1X̂G(k), I(k) = P (k)−1. (5)

When the local map k + 1 is to be fused, the initial
value of the global position of new features and robot end
pose are first computed and the corresponding state vector
are enlarged. The dimension of i(k) and I(k) are increased
by simply adding zero elements corresponding to the new
features and robot pose; this results in new expressions for
X̂G(k), i(k) and I(k). Then the observation zmap is used to
update the information vector and the information matrix as
follows:

I(k + 1) = I(k) + ∇HT
mapR

−1
map∇Hmap

i(k + 1) = i(k) + ∇HT
mapR

−1
map[zmap(k + 1)

−Hmap(X̂G(k)) + ∇HmapX̂
G(k)]

(6)

where ∇Hmap is the Jacobian of the function Hmap with
respect to all the states evaluated on the current state estimate
X̂G(k).

G. Exactly sparse information matrix

It is well known that the direct implementation of EIF
in SLAM result in dense (although approximately sparse)
information matrix [1] due to the marginalization of previous
robot poses [3]. The main reason why the information matrix
I(k) in SLSJF is exactly sparse is that there is no marginal-
ization involved in the global state. The only marginalization
performed is done within the local maps where most of the
robot poses are marginalized out.

III. THE STATE VECTOR AND COVARIANCE
SUB-MATRIX RECOVERY ALGORITHM

Although the global map update can be performed effi-
ciently in the information form (6), the state vector is needed
to compute i(k + 1) and to evaluate the Jacobians. Before
fusing submap k+2 to the global map containing submaps 1

1869



to k + 1, data association is necessary to find the features in
local submap k+2 that are already included in the global map
and their corresponding indices in the global state vector.

To perform the data association using Nearest Neighbor
[8] or Joint Compatibility Test [14], the covariance sub-
matrix corresponding to the potentially matched features is
needed.

A. Reorder the global map state vector when necessary

After the update step described in (6), the global state vec-
tor is reordered if the following condition holds. The purpose
of reordering the state vector is to make the state vector
recovery and the covariance sub-matrix recovery process
more efficient. Especially, the reordering aims to (i) reduce
the number of fill-ins in the Cholesky factorization, and,
(ii) make the efficient incremental Cholesky factorization
(Section III-B) more applicable.

Reordering condition: One or more of the features in local
submap k + 1 is not located within the bottom n0 elements
in the global state vector. 1

Reordering strategy: When the global state vector is to
be reordered, the features and robot poses in the global
state vector are divided into two parts. The final robot pose
XG

(k+1)e and the features that are within distance d0
2 from

the robot pose X̂G
(k+1)e are placed in the bottom part of

the state vector and they are ordered by their distances to
X̂G

(k+1)e. The smaller the distance, the closer to the bottom.
All the other features and robot poses are placed in the
upper part of the state vector and they are reordered by
Approximate Minimal Degree (AMD) algorithm [2].

In general, whenever the robot closes a big loop, the
state vector will be reordered. Once the state vector is
reordered, the corresponding information matrix I(k + 1)
and information vector i(k + 1) are reordered accordingly.
They are still denoted as I(k + 1) and i(k + 1).

B. Incremental Cholesky factorization

By (5), the state vector estimate X̂G(k + 1) can be
recovered by solving the sparse linear equation

I(k + 1)X̂G(k + 1) = i(k + 1). (7)

Any column of the covariance matrix can also be obtained by
solving a similar sparse linear equation [12]. Similar to SAM
[2], direct linear equation solver using Cholesky factorization
is applied to solve these sparse linear equations.

The method used to compute the Cholesky factorization
of I(k + 1) depends on whether the global state vector was
reordered in Section III-A or not.

1The threshold n0 needs to be properly chosen in order to make the
algorithm more efficient. A smaller n0 will make the incremental Cholesky
factorization step more efficient but will also increase the total number of
reordering and the complete Cholesky factorization operations (see Section
III-B). As a rule of thumb, n0 can be chosen to be around one tenth of the
dimension of the final global state vector.

2The threshold d0 is related to n0. It also depends on the feature density
of the environment and the guideline is that the dimension of the features
and robot poses that are placed in the bottom part of the state vector is
around n0.

Case (i). If the global state vector was not reordered
in Section III-A, then the two sparse information matrices,
I(k+1) and I(k), are very similar. In this case, the Cholesky
factorization of I(k) is used to construct the Cholesky
factorization of I(k + 1).

In fact, by (6),

I(k + 1) = I(k) +
[

0 0
0 Ω

]
(8)

where the upper-left element in Ω is non-zero. Here Ω is
determined by the term ∇HT

map(Rmap)−1∇Hmap in (6). Its
dimension is less than n0 since otherwise the state vector
would have been reordered.

Suppose the Cholesky factorization of I(k) is Lk (a lower
triangular matrix). Let Lk and I(k) be partitioned according
to (8) as

Lk =
[

L11 0
L21 L22

]
, I(k) =

[
I11 IT

21

I21 I22

]
. (9)

According to (8) and (9), I(k + 1) can be expressed by

I(k + 1) =
[

I11 IT
21

I21 Ĩ22

]
=

[
I11 IT

21

I21 I22 + Ω

]
. (10)

By Lemma 1 in the Appendix of [4], the Cholesky
factorization of I(k + 1) can be obtained by

Lk+1 =
[

L11 0
L21 L̃22

]
(11)

where L̃22 is the Cholesky factorization of a low dimensional
matrix Ω + L22L

T
22 = Ĩ22 − L21L

T
21.

Case (ii). If the global state vector has been reordered in
Section III-A, then the Cholesky factorization of I(k) can not
be used to construct the Cholesky factorization of I(k + 1).
In this case, a direct Cholesky factorization of I(k + 1) is
performed.

Now we can see that the reordering technique described
in Section III-A has a number of advantages:

• The reordering makes the incremental Cholesky factor-
ization described in Case (i) more efficient, since the
dimension of matrix Ω + L22L

T
22 will be less than n0.

• Once a reorder is performed, another reordering will
not happen in the next few steps. This is because the
robot can not move very far away from local submap
k + 1 in the next few steps. No matter which direction
it moves along, it can not observe old features that are
not located in the bottom part of the state vector until
it travels more than distance d0. Thus Case (i) can be
applied in most of the cases.

• Since Approximate Minimal Degree (AMD) algorithm
is applied to the upper part of the state vector, the re-
ordering will significantly reduce fill-ins in the Cholesky
factorization [2]. This makes the linear equation solving
more efficient.

C. Recovery of state vector and covariance sub-matrix

Before fusing submap k + 2, the state vector estimate
X̂G(k + 1) and the covariance sub-matrix need to be re-
covered from I(k + 1) and i(k + 1).
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1) Recover the state vector: Once the Cholesky factor-
ization Lk+1 is obtained in Section III-B, the sparse linear
equation (7) can be solved easily by solving Lk+1Y = i(k+
1) and LT

k+1X̂
G(k+1) = Y because Lk+1L

T
k+1 = I(k+1).

2) Find the potentially matched features: Since the size
of local map k + 2 is small, it is not necessary to compare
the features in local map k +2 with the global map features
which are far away from the “origin” of local submap k +2.

The potentially overlapping local maps are selected by
computing the distances from each local submap origin to
the origin of local submap k+2. The estimate of the origins
are available from the global state vector. Moreover, for
each feature in the potentially overlapping local maps, if its
distance to X̂G

(k+1)e is larger than the radius of local map
k + 2 plus the maximal possible estimation error, it can not
be matched with any feature in local map k + 2.

Furthermore, the (estimated) relative positions from the
potentially matched features to X̂G

(k+1)e are computed. They
are compared with each feature in local map k+2. For each
potentially matched feature, if its Euclidean distance to the
closest feature in local map k + 2 is larger than a threshold,
then it cannot match with any local map feature and will be
removed from the list of potentially matched features.

3) Recover the covariance sub-matrix: The covariance
sub-matrix corresponding to the potentially matched fea-
tures can be obtained by first computing the corresponding
columns of the whole covariance matrix and then deleting
the unnecessary rows. Each column of the covariance matrix
can be obtained similarly as the state vector.

IV. SIMULATION AND EXPERIMENT RESULTS

In this section, simulation and experiment results are given
to illustrate the accuracy and efficiency of the SLSJF with
the proposed recovery algorithm applied.

A. Simulation results

The 150 × 150m2 simulated environment contains 2500
features arranged in uniformly spaced rows and columns.
The robot starts from the left bottom corner of the square
and follows a random trajectory (Fig. 2(a)), revisiting many
features and closing many loops. A sensor with a field of
view of 180 degrees and a range of 6 meters is simulated to
generate relative range and bearing measurements between
the robot and the features. In total, there are 22384 loops
(22384 robot poses) and 138026 observations are made from
the robot to 2318 features.

Five hundred small sized local submaps were built by
EKF SLAM. Each local submap contains around 10 features.
SLSJF is implemented with the proposed recovery strategy
applied. Data association is performed using Nearest Neigh-
bor [8]. Fig. 2(b) shows the global map generated by fusing
all the 500 local submaps using SLSJF. The robot trajectory
can be seen approximately from the 500 robot poses. Fig.
2(a) shows the global map generated by fusing all the 500
local submaps using EKF sequential map joining [6][7].

Close examination shows that the global feature position
estimate using SLSJF and EKF sequential map joining are

both consistent since the feature positions fall within the 2σ
covariance ellipses drawn around the estimates. Also, the
map uncertainty of the two global maps are very similar. Fig.
2(d) shows the errors and 2σ bounds of the estimates of robot
end poses when fusing each local submap. Comparing it
with the robot end poses estimate from EKF sequential map
joining shown in Fig. 2(c), it can be seen that the estimate
from the two different approach are almost identical.

Figure 2(e) shows the non-zero elements of the sparse
information matrix in black. Fig. 2(f) shows the CPU time 1

required for the local submap fusion time using SLSJF and
EKF sequential map joining.

The total time for fusing all the 500 local submaps is 129
seconds for SLSJF and 7240 seconds for EKF sequential map
joining (building the 500 local submaps takes 409 seconds,
it takes traditional EKF SLAM more than 21 hours to finish
the map).

B. Experimental results

The SLSJF was also applied to the popular Victoria Park
data set which was first used in [15]. Neither ground truth
nor sensor noise parameters are available for this data set.
Published results for the vehicle trajectory and uncertainty
estimates vary [3][4][15][18], presumably due to different
parameters used by various researchers. The results in this
section therefore only demonstrate that SLSJF can be applied
to this popular data set.

Two hundred local submaps are built by EKF SLAM using
the data set. Fig. 3(a) shows the global map obtained by
joining 200 local submaps using SLSJF with the proposed
state and covariance sub-matrix recovery algorithm. Data
association is performed using Nearest Neighbor method [8].
Fig. 3(b) shows the CPU time required to fuse each local
maps. The total computation time for joining all the 200
submaps by SLSJF is 22 seconds.

V. RELATED WORK AND DISCUSSIONS

Very recently, it is shown in [16] that the average compu-
tational cost of map joining in each step can be reduced
to O(n) by “Divide and Conquer SLAM”. However, the
algorithm is only compared to EKF SLAM instead of the
more efficient EKF sequential map joining. Moreover, linear
computation cost for data association is impossible unless
some approximation is applied [16].

When the environment has an efficient tree representation
and the hierarchical tree partitioning subalgorithm can find
such a representation, the treemap SLAM algorithm can be
very fast [19]. However, the covariance sub-matrix recovery
and data association was ignored in the treemap SLAM
implementations [9] [19].

The covariance sub-matrix recovery algorithms proposed
in this paper is exact. This is different from the approximate
covariance sub-matrix recovery methods (e.g. [1] [12]) where

1All time measurements in this paper are performed on a laptop computer
with Intel Core 2 Duo T7500 at 2.2GHz, 3GB of RAM and running
Windows, all programs are written in MATLAB.
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(e) Sparse information matrix obtained by SLSJF (443234 non-
zero elements in a 6136 × 6136 matrix)
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Fig. 2. Simulation results by EKF sequential map joining and SLSJF

only an approximate or upper bound of covariance sub-
matrix is computed. The proposed recovery algorithm is sim-
ilar to the exact recovery of covariance sub-matrix proposed
in [18]. The idea of using incremental Cholesky factorization
is motivated by [4]. The incremental Cholesky factorization
has some similarity with the QR factorization update in [18].
However, the QR factorization update in [18] is based on

“Givens rotations”, while the proposed incremental Cholesky
factorization process is based on the “block-partitioned form
of Cholesky factorization”. The major advantages of SLSJF
over iSAM is that the dimension of the state vector in SLSJF
is much lower than that in [18].

The reordering of global state vector is motivated by [4]
and [2][18][17] while the reordering of state vector in [4] is
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Fig. 3. The SLSJF map joining results using Victoria Park data set.

based on distances only and the reordering in [2][18][17]
is based on AMD or Nested Dissection (ND) only. In
SLSJF, the reordering of state vector aims to combine the
advantages of AMD reordering (the number of fill-ins is
reduced) and the advantages of reordering by distance (the
efficient incremental Cholesky factorization procedure can
be applied in most cases).

VI. CONCLUSIONS

This paper provides a novel method to exactly recover
the state vector and covariance sub-matrix for Sparse Local
Submap Joining Filter (SLSJF). There are two critical steps
that make the recovery very efficient. One is the occasion-
ally reordering of the global state vector. The other is an
incremental Cholesky factorization method. The recovery
procedure is applied in SLSJF and simulation results show
that the computational complexity of the SLSJF algorithm is
much less than that of sequential submap joining using EKF.

The SLSJF algorithm can also be applied to bearing-only
or range-only large scale mapping. However, to build con-
sistent local maps using bearing-only or range only sensors
is still not a completely solved problem. The extension of
the SLSJF to 3D SLAM is also an interesting future work.
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