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Abstract— This paper proposes a SLAM algorithm based on
FastSLAM 2.0 that maps features representing regions with
a semantic type, topological properties, and an approximative
geometric extent. The resulting maps enable spatial reasoning
on a semantic level and provide abstract information allowing
efficient semantic planning and a convenient interface for
human-machine interaction. We present novel region features
and an algorithm for estimating the feature parameters from
uncertain measurements. In particular, we provide a means of
estimating parameters even if the region feature is considerably
larger than the robot’s sensor range. Finally, we adapt the
FastSLAM 2.0 algorithm to map the proposed features and
show simulation-based results illustrating the capabilities of the
proposed algorithm.

I. INTRODUCTION

For a robot to achieve full autonomy, it needs to be able
to learn its environment and store the acquired knowledge in
an efficient manner. The resulting world model must enable
the robot to efficiently plan and to reliably execute the tasks
given to it. An abstract semantic environment representation
in combination with a semantic navigation framework is
beneficial in several ways. It allows the navigation framework
to plan the robot’s actions in an abstract manner, independent
of the underlying controlling system. In addition, a multi-
level representation of the robot’s pose comprising metric
and semantic information leads to more robust navigation.

In this work, we present a method for building maps
which include metric as well as topological and semantic
information. We propose new environmental features, called
regions, which allow an abstract but rich representation of
the environment. Along with a metric representation using
simple geometric shapes, regions contain topological links to
adjacent regions as well as subregions and further provide a
semantic type. We extend the FastSLAM 2.0 algorithm [1]
to map these features.

In recent years, Simultaneous Localization and Mapping
(SLAM) has received much attention as one of the corner-
stones of robot autonomy. Starting with Smith et al.’s seminal
Kalman filter-based approach to SLAM [2], metric environ-
ment mapping has been an active area of research [3][4].
Purely metric maps, however, do not address all the chal-
lenges pointed out above, and with increasing environment
size also tend to require a large amount of computational
resources or create inconsistent maps [5][6]. To allow effi-
cient planning, a more abstract environment representation

is needed. Topological maps are a useful approach to obtain
such a representation [7][8], but metric information cannot
be discarded as it is required for local navigation, especially
in more complex environments [9][10][11]. An efficient
environment representation will in many respects be similar
to the human cognitive map [12][13] which represents the
environment at different levels of abstraction.

To allow a human to effectively communicate with a robot
to supply it with tasks and retrieve information on its status,
the robot should maintain semantic information. It is much
more convenient for a human to be able to describe a task
using human semantics, such as “Fetch the lunch from the
cafeteria on third floor and deliver it to dining hall 3 on first
floor” [14]. Similarly, a system reporting its status as “I am
in the hallway on the second floor of building 2, next to the
door leading to the kitchen” is much more useful to its user
and is essential to the user’s ability to interact with the robot
without any detailed technical knowledge of the system.
Some works have captured semantic information on the
types of places and objects observed, proposing environment
representations with semantic information and classifying
elements of the environment using range and camera data
[15][16][17].

The remainder of this paper is structured as follows:
Section II describes the proposed region features and the
measurement update for these features. In Section III we
present the region-based FastSLAM algorithm. Section IV
provides experimental validation of the measurement update
process and the FastSLAM implementation.

II. REGION FEATURES

In 2-D space, feature-based SLAM algorithms mostly map
low-level environmental features such as points or lines. This
paper presents a new type of high-level feature providing
much richer, abstract information of the environment. These
region features define regions in the robot’s environment
carrying a specific semantic meaning (e. g., rooms, offices,
hallways, doors, desks, cupboards, etc.) as well as a geomet-
ric layout and topological relations.

A. Design Criteria

The metric description of a region feature should be
capable of modeling regions likely to be found in structured
indoor environments such as those mentioned above. The
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number of required parameters should be as small as possible
to limit complexity and ambiguities. Uncertainty needs to be
captured by a probabilistic model. We favor regions with a
geometric extent over simple topological maps of connected
points due to their ability to express logical, spatial relations
such as being “in front of,” “next to,” or “in the middle
of” a particular region. As a special quality, region features
should be able to handle partial measurements: due to its
limited sensor range, a robot observing a long hallway may
not be able to observe the entire hallway at any point.

The topological description of a region feature should
model same-level links to neighboring regions as well as
hierarchical links to subregions. To model uncertainties, these
links should be associated with a confidence value.

The semantic description of a region should comprise a
semantic type for the region, along with a confidence value
to model uncertainty. We assume that if multiple hypotheses
with regard to a region’s semantic type exist, they will be
modeled by distinct features with similar geometric shape
but a different semantic type. The mapping algorithm should
infer the correct type from a series of measurements.

B. Feature Parameters

Most regions found in a typical indoor environment can be
approximated well by rectangles. We therefore model regions
geometrically as shapes consisting of up to three rectangles
lined up along the horizontal axis. The entire shape may
be rotated arbitrarily. This is powerful enough to represent
most commonly encountered shapes and only requires a
small amount of parameters, leaving little ambiguity. More
complex geometric models would significantly increase the
computational complexity, without providing much benefit
in terms of their representational capabilities. Fig. 1 shows
all the parameters comprising a region feature. An example
region consisting of three rectangles is shown in Fig. 2.

Topological information is stored via lists of links asso-
ciating a neighboring region with a confidence value. We
link individual rectangle edges to neighboring regions. The
semantic type of a region is given as a simple text string,
making the representation independent of any particular set
of predefined types. Again, a confidence value is associated
with the type field.

Fig. 1 shows that certain assumptions are made about the
measurement uncertainty regarding the geometric properties
of region features. In particular, we assume that
• the rotation angle ϕ ,
• the main rectangle’s midpoint position (x,y),
• the main rectangle’s height (w,h),
• the left subrectangle’s width and height (wl ,hl),
• the left subrectangle’s vertical displacement yl ,
• the right subrectangle’s width and height (wr,hr), and
• the right subrectangle’s vertical displacement yr

are pairwise stochastically independent. While this is a
limitation, it makes it possible to factor the error covariance
into several smaller covariance matrices, which simplifies the
update mechanism.

enum EdgeState {open, closed}
enum ExtEdgeState {open, closed, subrect}
class RegionFeature

string type // Semantics
double λtype

double x,y,w,h,ϕ // Geometry
double[2×2] Cxy,Cwh
double Cϕ

EdgeState t,b // Topology
ExtEdgeState l,r
map〈RegionFeature,double〉 children
map〈RegionFeature,double〉 nt ,nb

if l = subrect: // Left subrectangle
double wl ,hl ,yl // Geometry
double[2×2] Cwl hl
double Cyl
EdgeState tl ,bl , ll // Topology
map〈RegionFeature,double〉 nlt ,nlb,nll

else:
map〈RegionFeature,double〉 nl

if r = subrect: // Right subrectangle
double wr,hr,yr // Geometry
double[2×2] Cwrhr
double Cyr
EdgeState tr,br,rr // Topology
map〈RegionFeature,double〉 nrt ,nrb,nrr

else:
map〈RegionFeature,double〉 nr

Fig. 1. The data structure representing a region feature. It comprises metric
information (such as the parameters x,y,w,h along with their covariance
matrices) as well as topological information (such as given by the maps
nt ,nb) and semantic information (given by the type string and the associated
confidence λtype).
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Fig. 2. Regions are comprised geometrically of up to three rectangles,
capable of describing most rooms and objects in structured indoor environ-
ments.

To accommodate partial observations of features, individ-
ual rectangle edges can be marked open to indicate missing
information in that direction. This has a significant effect on
how the measurement update works.

C. Measurement Update

Before the parameters of a region m can be updated using a
corresponding new measurement z, a second correspondence
problem needs to be solved associating the subrectangles of
the two regions. This would be unnecessary if only complete
region measurements were obtained. If partial measurements
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are possible, however, this additional association step be-
comes a necessity. For example, given a mapped region m
consisting of three rectangles (shape “LMR”), a measure-
ment z might only comprise two rectangles (shape “LM”)
with open edges on the left and right. The main rectangle of z
may then correspond to either the main rectangle or the right
subrectangle of m. The best correspondence is determined
by finding the minimum distance between any two rectangle
midpoints from the two features, constrained by the fact that
the regions must be compatible: one region cannot have a
closed edge where the other indicates the presence of a
subrectangle, and the resulting region cannot consist of more
than three rectangles.

1) Geometric Update: The geometric parameters for a
region m, (x[m],y[m],w[m],h[m],ϕ [m]) and for subrectangles
(w[m]

l ,h[m]
l ,y[m]

l ) and (w[m]
r ,h[m]

r ,y[m]
r ) respectively, need to be

treated differently depending on the state of rectangle edges
in the map feature and in the new measurement. We call a
parameter complete if none of the related rectangle edges
are marked open and the feature is thus entirely visible. For
instance, the height parameter for the main rectangle, h[m],
is only complete if neither the top nor the bottom edge of
the main rectangle are open. If some, but not all, related
rectangle edges are marked open, we call the parameter
partially available. If all related edges are marked open,
we call the parameter restricted. This terminology applies
to all parameters except the rotation angle ϕ [m], which is
considered to always be available. The geometric update then
proceeds in the following manner:

1) All partially available or restricted parameters of m
are first expanded so that the region becomes large
enough to explain both the existing data and the new
measurement. If a subrectangle is first observed in z,
it is added to m.

2) All partially available or restricted parameters of z are
expanded in the same manner.

3) A Kalman filter-based update is performed on all
parameters of m for which corresponding complete or
partially available parameters exist in z.

In particular, note that even restricted parameters of the
measurement provide information about m, provided that the
corresponding parameters of m are not yet complete.

The initial expansion step uses the measurement z to
enlarge m in the direction of open edges to make it consistent
with z. Fig. 3 shows the principle. For the individual open
edges of m, expansion terms can be calculated by projecting
the measurement’s corresponding edge midpoints onto the
respective principal axes of m and deriving a length differ-
ence. Assuming correspondence of the main rectangles of m
and z, we get

d[m]
t =

(
−sinϕ [m] cosϕ [m]

)(x[z]− x[m]

y[z]− y[m]

)
+ 1

2 (h[z] cos(ϕ [z]−ϕ
[m])−h[m]) (1)

(x[m],y[m])

(x[z],y[z])

w[m]′
w[m] d[m]

r

h[m]′

h[m]

d[m]
t

w[z]

h[z]

Fig. 3. Expansion of a rectangle with open edges. The map feature m
(white square in the bottom left corner) can be expanded in the direction of
its open edges, i. e. to the top and right, using projections of the measured
region’s edge midpoints, according to (1) and (2). The resulting expanded
rectangle is shown in light gray.

d[m]
r =

(
cosϕ [m] sinϕ [m]

)(x[z]− x[m]

y[z]− y[m]

)
+ 1

2 (w[z] cos(ϕ [z]−ϕ
[m])−w[m]), (2)

and analogous terms for d[m]
b and d[m]

l . According to these
terms, the region m is expanded

• upwards by d[m]
t if t [m] = open and d[m]

t > 0,
• downwards by −d[m]

b if b[m] = open and d[m]
b < 0,

• to the right by d[m]
r if r[m] = open and d[m]

r > 0, and
• to the left by −d[m]

l if l[m] = open and d[m]
l < 0.

Similar terms can be derived for subrectangles and other
rectangle correspondences [18].

The measurement z is expanded in the same manner,
except in one particular case. If the corresponding parameters
in m are complete, then we assume that they are correct
except for the length differences given by those edges that
are closed in both m and z. This is illustrated in Fig. 4.

After expansion, the Kalman filter update is applied to
complete or partially available measurement parameters. As
an example, the update step is illustrated using the main
rectangle’s width and height. The estimated state is thus x =
(w[m],h[m])T . Given a direct observation model

zt = x+δt , δt ∼N (0,Qt), (3)

the state is estimated as

Kt = Σt−1(Σt−1 +Qt)−1 (4)
µt = µt−1 +Kt(zt −µt−1) (5)
Σt = (I−Kt)Σt−1 (6)

with Kt being the Kalman gain, µt the state estimate and Σt
the estimation error covariance.
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w[m]

w[z]

d[z]
r

w[m]

Fig. 4. The partially available width of the measurement z (dashed rect-
angle) is expanded according to the complete width of m (solid rectangle).
The difference d[z]

r , given by comparing the available edges of m and z on
the right, is the only valid piece of information regarding the feature width.
z is expanded to the same width as m, differing only by d[z]

r . The resulting
expanded version of z is shown in light gray.

2) Semantic Update: A measurement z bears a specific
semantic type along with a confidence p(z)∈ [0,1]. Multiple
measurements of the same object with different types may be
present. For the type confidence λ

[m]
type,t of a mapped region

feature m, we use a binary Bayes filter in log-odds form to
perform the update:

λ
[m]
type,t = λ

[m]
type,t−1 + log

p(m |zt)
1− p(m |zt)

− log
p(m)

1− p(m)
. (7)

Here, p(m) represents the a-priori probability for a feature
with the type and dimensions of m. This can simply be
chosen as p(m) = 0.5 or incorporate more sophisticated
prior knowledge. p(m |zt) is the inverse measurement model
describing the probability of m existing, given a set of
relevant measurements

zt = {z[1]
t , . . . ,z[Lt ]

t ,z[Lt+1]
t , . . . ,z[Lt+Mt ]

t }, (8)

where the first Lt measurements support the hypothesis
m, i. e. have the same semantic type, and the remaining
Mt measurements oppose it, i. e. have a different type. All
supporting and opposing evidence is then summed as

pm,zt
supp =

L−1
t ∑

Lt
i=1 p(z[i]t )overlap(z[i]t ,m), Lt>0

0.5, Lt=0
(9)

pm,zt
opp =

M−1
t ∑

Mt
i=1 p(z[Lt +i]

t )overlap(z[Lt +i]
t ,m), Mt>0

0.5, Mt=0
(10)

where
overlap(z,m) = az∩m/az ∈ [0,1] (11)

is the ratio of z’s area intersecting with m. This is then used
to define the inverse measurement model as

p(m |zt) = (1+ exp{pm,zt
opp − pm,zt

supp})−1. (12)

For the update step of the binary Bayes filter, we thus obtain
the simple formula

λ
[m]
type,t = λ

[m]
type,t−1 + pm,zt

supp− pm,zt
opp − log

p(m)
1− p(m)

. (13)

3) Topological Update: Given two mapped region fea-
tures m,n and a set of measurements zt with zm,t ,zn,t ∈ zt
being measurements of the two features, we assume that we
receive a measured confidence p(zm,t→ zn,t) for a topological
link between the measurements. The inverse measurement
model for the topological link m→ n is then calculated as

p(m→ n |zt) =
p∅, zm,t 9 zn,t

p(zm,t → zn,t), zm,t → zn,t
(14)

if both m and n are measured, and

p(m→ n |zt) = 0.5 (15)

otherwise. p∅ is a predefined probability that a link exists
even if both regions were observed, but not the link between
them. The log-odds confidence of the topological link m→ n
is then updated using the binary Bayes filter

λt(m→ n) = λt−1(m→ n)+ log
p(m→ n |zt)

1− p(m→ n |zt)

− log
p(m→ n)

1− p(m→ n)
, (16)

where p(m → n) provides an a-priori probability for a
topological link between regions of the given types.

Hierarchical relations are described by log-odds confi-
dence values λt(m ≺ n) representing the belief that region
m is a subregion of region n. Similar to (16), we get

λt(m≺ n) = λt−1(m≺ n)+ log
p(m≺ n |zt)

1− p(m≺ n |zt)

− log
p(m≺ n)

1− p(m≺ n)
. (17)

The a-priori probability p(m≺ n) could, for instance, indicate
that tables are likely to be found inside rooms, but not vice
versa. We define the inverse measurement model by

p(m≺ n | zt) = overlap(zm,t ,zn,t)min{a2
n,t/a2

m,t ,1} , (18)

taking into account the relative sizes of the two measure-
ments.

Using the three described update methods for geometrical,
semantic, and topological properties of regions, we can
update the map of all regions with a set of measurements.

III. REGION-BASED SLAM

In this section we present a semantic SLAM algorithm
using the features defined above, based on the FastSLAM 2.0
algorithm [1], a SLAM approach based on a Rao-Black-
wellized particle filter, with unknown data association [19].
The Kalman filter update step is replaced by the update
method described in Section II-C. Several steps of the Fast-
SLAM 2.0 algorithm require the calculation of an innovation
term (z− ẑ) expressing the difference between actual and ex-
pected measurements. For a pose estimate x̂ and the expected
measurement ẑ = h(m, x̂), a naı̈ve way of calculating the
difference would use the midpoint and rotational difference
to obtain

z− ẑ = (x[z]− x[ẑ],y[z]− y[ẑ],ϕ [z]−ϕ
[ẑ])T . (19)
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This, however, is incorrect in the presence of partial measure-
ments. Instead, after determining the rectangle association
between z and ẑ, the difference is calculated from the
individual differences in the position of edges closed in both
z and ẑ. The rotational difference is given by

∆ϕ = ϕ
[z]−ϕ

[ẑ]. (20)

ẑ is rotated accordingly to yieldx[ẑ]′

y[ẑ]′

ϕ [ẑ]′

=

cos∆ϕ −sin∆ϕ 0
sin∆ϕ cos∆ϕ 0

0 0 1

 x[ẑ]

y[ẑ]

ϕ [ẑ] +∆ϕ

 . (21)

Writing the difference of the feature midpoints in z’s coor-
dinate system as

dc =
(

cosϕ [z] sinϕ [z]

−sinϕ [z] cosϕ [z]

)(
x[z]− x[ẑ]

y[z]− y[ẑ]

)
, (22)

we can now calculate horizontal and vertical differences be-
tween pairs of closed edges. Assuming again correspondence
of the main rectangles, we obtain for the main rectangle,
• for l[z] 6= open∧ l[ẑ] 6= open: dx = dc,x− (w[z]−w[ẑ])/2
• for r[z] 6= open∧ r[ẑ] 6= open: dx = dc,x +(w[z]−w[ẑ])/2
• for b[z] 6= open∧ t [ẑ] 6= open: dy = dc,y− (h[z]−h[ẑ])/2
• for t [z] 6= open∧b[ẑ] 6= open: dy = dc,y +(h[z]−h[ẑ])/2

Averaging these individual differences gives a position dif-
ference of (d̄x, d̄y)T in the coordinate system of z, from which
we obtain the final difference

(z− ẑ) :=

cosϕ [z] −sinϕ [z] 0
sinϕ [z] cosϕ [z] 0

0 0 1

 d̄x
d̄y
∆ϕ

 (23)

to be used in lieu of (z− ẑ) in the FastSLAM implementation.
Further details can be found in [18].

IV. EXPERIMENTS

A. Update of Region Features

Due to the added complexity of partial measurements, the
update of region features needs to be experimentally verified.
Fig. 5 shows a single region consisting of three rectangles.
In a simulation run, a region estimate is updated using
only partial measurements perturbed by Gaussian noise.
The squared estimate error is plotted, showing an accurate
estimate despite only partial observations.

B. Region-based SLAM

The semantic region-based SLAM algorithm has so far
only been tested in a simulation environment. This envi-
ronment, based on a blueprint of our lab, was manually
annotated with region features. Measurements were then sim-
ulated with a limited sensor range of 8 m and added Gaussian
noise for the region parameters. The used measurement noise
covariance matrices were known to the SLAM algorithm,
but increased by 20% for the simulated error. The entire
course is about 300 m long. Fig. 6 shows the true robot
position compared to the SLAM result, along with part of
the resulting region map.

 1e-04

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0  500  1000  1500  2000  2500  3000  3500
t

Squared measurement error
Estimated error covariance

Fig. 5. Top: A region (solid line) of 18 m length left-to-right, measured
from 3 600 different positions along a path (dashed line), with a sensor
range of 5 m (indicated by gray circle). Bottom: Development of the squared
measurement error and the trace of the estimated error covariance matrix.
Around t = 150, all edges are closed and the mapped feature is complete.

V. CONCLUSIONS AND FUTURE WORK

A semantic SLAM algorithm based on region features
was presented. Given a virtual sensor measuring region
features, it is capable of successfully building a region-based
map including metric, topological, and semantic information.
Geometrical properties of regions can be estimated even
when, due to limited sensor range, only partial measure-
ments are available. Simulation-based tests show that region
parameter estimation works well and that the region-based
FastSLAM algorithm provides good results. The map built in
this semantic mapping process provides a basis for semantic
navigation and planning. This way, a mission control system
can be implemented at an abstract, semantic level, providing
a convenient human-computer interface and allowing seman-
tic mission planning independent of the underlying control
system.

With a definition for region features in place and a SLAM
algorithm using these features written and tested, further
research will involve creating virtual sensors using high-level
feature extraction methods to obtain region features. Features
may be extracted using a variety of sensors such as laser
scanners or stereo camera systems. We plan to couple our
region-based SLAM algorithm with an underlying standard
SLAM approach used to build local metric maps. Regions
may be used to find points at which the start of a new
local map is triggered. Conversely, region features may be
extracted from laser scans aligned using local mapping. We
are also investigating the extraction and mapping of elliptical
and trapezoidal features. The final goal is to use the semantic
mapper proposed here as part of a semantic mapping and
navigation framework [20].
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