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Abstract— In this paper, we introduce an approach to active
camera control for visual SLAM. Features, detected by a
biologically motivated attention system, are tracked over several
frames to determine stable landmarks. Matching of features to
database entries enables global loop closing. The focus of this
paper is the active camera control module, which supports the
system with three behaviours: i) A tracking behaviour tracks
promising landmarks and prevents them from leaving the field
of view. ii) A redetection behaviour directs the camera actively
to regions where landmarks are expected and thus supports
loop closing. iii) Finally, an exploration behaviour investigates
regions without landmarks and enables a more uniform dis-
tribution of landmarks. Several real-world experiments show
that the active camera control outperforms the passive system
considerably.

I. INTRODUCTION

SLAM (Simultaneous localization and mapping) has been

a topic of significant interest in the robotic community

over the last decade [1], [2], [3]. While being considered

widely solved for small indoor environments based on laser

range finders, current topics of active research include visual

SLAM, based only on camera data [4], [5], [6], [7], [8].

The use of cameras holds advantages as well as challenges

and difficulties: on the one hand, cameras are low-cost, low-

power and lightweight sensors which may be used in many

applications where laser scanners are too expensive or too

heavy. In addition, the rich visual information allows the

use of more complex feature models for position estimation

and recognition. On the other hand, the high amount of

data in images challenges real-time processing: choosing the

relevant data for processing and storing is crucial. Second,

depth estimation is difficult when performing bearing-only

SLAM with a single camera without manual initialization.

And third, different appearances of the same scene under illu-

mination and viewpoint changes make tracking and matching

a challenge.

A key competence in visual SLAM is to choose useful

landmarks which are easy to track, stable over several frames,

and easily re-detectable when returning to a previously

visited location. This loop closing is one of the important

problems in SLAM since it decreases accumulated errors.

Furthermore, there should be a limited amount of landmarks

since the complexity of SLAM typically is a function of the
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number of landmarks in the map. Additionally, landmarks

should be well distributed over the environment.

Current approaches for landmark selection include arti-

ficial landmarks [9], Harris corners [5], maximally stable

extremal regions (MSERs) [10], or a combination of attention

regions with Harris corners [11]. In this paper we show

that attention regions alone can be used as landmarks which

simplifies and speeds up the system.

The focus of this paper is the extension of the SLAM sys-

tem to active camera control. The strategy consists of three

behaviours: a tracking behaviour identifies the most promis-

ing landmarks and prevents them from leaving the field of

view. A redetection behaviour actively searches for expected

landmarks to support loop-closing. Finally, an exploration

behaviour investigates regions with no landmarks, leading to

a more uniform landmark distribution. The advantage of the

active gaze control is to obtain more informative landmarks

with a better baseline, a faster loop closing, and a better

distribution of landmarks in the environment.

The idea of active sensing is not new: Control of sensors

in general is a mature discipline that dates back several

decades. In vision, the concept was first introduced by Bajcsy

[12], and made popular by Active Vision [13] and Active

Perception [14]. In terms of sensing for active localization,

Maximum Information Systems are an early demonstration

of sensing and localization [15]. Active motion to increase

recognition performance and active exploration was intro-

duced in [16]. More recent work has demonstrated the use

of similar methods for exploration and mapping [17]. Active

exploration by moving the robot to cover space was presented

in [18] and in [19] the uncertainty of the robot pose and

feature locations were also taken into account.

In the field of visual SLAM, most approaches use cameras

mounted statically on a robot. Probably the most advanced

work in the field of active camera control for visual SLAM

is presented by Davison and colleagues. In [20], [21],

they present a robotic system which chooses landmarks for

tracking which best improve the position knowledge of the

system. In more recent work [7], [22], they apply their visual

SLAM approach to a hand-held camera. Active movements

are done by the user, according to instructions from user-

interface [7], or they use the active approach to choose the

best landmarks from the current scene without controlling

the camera [22].

The contributions of this paper are first, presenting a

landmark selection scheme based on a biologically motivated

attention system, second, a precision-based matching proce-

dure, and finally, an active gaze control strategy to obtain

a better baseline for landmark estimations, a faster loop
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Fig. 1. The active visual SLAM system

closing, and a more uniform distribution of landmarks in

the environment. Experimental results are presented to show

the performance of the system.

In the following, we first give an overview over the whole

SLAM architecture (sec. II), then we describe the modules of

the system in detail (sec. III–sec. VII). Finally, we illustrate

in sec. VIII the operation of the method on a real robot and

show the advantages of active camera control.

II. SYSTEM OVERVIEW

The visual SLAM architecture is displayed in Fig. 1. The

main components are a robot which provides camera images

and odometry information, a feature detector which finds

regions of interest (ROIs) in the images, a feature tracker

which tracks ROIs over several frames and builds landmarks,

a triangulator which identifies useful landmarks, a SLAM

module which builds a map of the environment, a loop closer

which matches current ROIs to the database and, as main part

of the current paper, a gaze control module which determines

where to direct the camera to.

When a new frame from the camera is available, it is

provided to the feature detector, which finds ROIs based on

a visual attention system. Next, the features are provided to

the feature tracker which stores the last n frames, performs

matching of ROIs in these frames and creates landmarks. The

purpose of this buffer is to identify features which are stable

over several frames and have enough parallax information for

3D initialization. These computations are performed by the

triangulator. Selected landmarks are stored in a database and

provided to the EKF-based SLAM module which computes

an estimate of the position of landmarks and integrates the

position estimate into the map. Details about the robot and

the SLAM architecture can be found in [5].

The task of the loop closer is to detect if a scene has

been seen before. Therefore, the features from the current

frame are compared with the features from the landmarks in

the database. The gaze control module actively controls the

camera. It decides whether to track currently seen landmarks,

to actively look for predicted landmarks, or to explore unseen

areas. It computes a new camera position which is provided

to the robot.

Fig. 2. The visual attention system VOCUS detects regions of interest
(ROIs) in images based on the features intensity, orientation, and color.

III. FEATURE DETECTION

The detection of regions of interest (ROIs) is performed

with the attention system VOCUS (Visual Object detection

with a CompUtational attention System) [23], [24]. VOCUS

is based on concepts of the human visual system, namely on

the ability to quickly focus on salient regions of interest. It is

grounded on psychological work like the feature integration

theory [25] and neurobiological findings [26]. The system

consists of a bottom-up part which computes saliency purely

based on the content of the current image and a top-down

part which considers pre-knowledge and target information

to perform visual search. Here, we consider only the bottom-

up part of VOCUS, a first approach for integrating top-down

processes into the SLAM system is described in [27].

The saliency is computed for 3 features: intensity, color,

and orientations. For each feature, the contrast of a region to

its background is computed by center-surround mechanisms

[23]. For each feature, several feature types are determined,

e.g. bright-dark (on-off) as well as dark-bright (off-on) con-

trasts for the feature intensity. Before the features are fused

into a single saliency map, they are weighted according to

their uniqueness: a feature which occurs seldomly in a scene

is assigned a higher saliency than a frequently occurring

feature. This is a mechanism which enables humans to

instantly detect outliers like a black sheep in a white herd.

From the saliency map, the brightest regions are extracted as

regions of interest (ROIs).

For each ROI, a feature vector ~v with 13 entries is deter-

mined, which describes how much each feature contributes

to the ROI. (cf. Fig. 3). The last three entries describe the

combination of the feature types, i.e., the value for intensity

determines the combination of on-off and off-on intensities

(cf. [23]).

Additionally to ~v, a SIFT descriptor is determined for each

ROI [28]. It is a 4 × 4 × 8 = 128 dimensional descriptor

vector which results from placing a 4×4 grid on a point and

calculating a pixel gradient magnitude at 45◦ intervals for
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Feature vector ~v

intensity on-off 0.11
intensity off-on 7.92
orientation 0

◦ 2.36
orientation 45

◦ 6.82
orientation 90

◦ 7.32
orientation 135

◦ 8.48
color green 5.32
color blue 2.97
color red 0.73
color yellow 0.19
intensity 4.99
orientation 5.70
color 2.52

Fig. 3. Left: image with region of interest (ROI). Right: feature vector ~v for
ROI. The values of ~v show that the region is dark on a bright background
(intensity off-on), that the vertical orientation is stronger than the horizontal
one, and that generally intensity and orientation are more important than
color.

each of the grid cells. Usually, SIFT descriptors are computed

for corner features such as Harris corners [29] or intensity

extrema in scale space [28]. Here, we calculate one descriptor

for each ROI. The center of the ROI provides the position

and the size of the ROI determines the size of the descriptor

grid. The grid should be larger than the ROI to allow catching

information about the surround but should also be not too

large to stay within the image borders. We chose a grid size

of 1.5 times the maximum of width and height of the ROI.

IV. FEATURE MATCHING

Feature matching is performed in two of the visual SLAM

modules: in the feature tracker and in the loop closer. In

the feature tracker, features are matched between consecutive

frames to build landmarks and to enable structure from mo-

tion computations. In the loop closer, matching is performed

between features from the current frame and features from

the database to detect if this scene has been seen before.

Matching of interest regions is usually based on a similar-

ity comparison depending on the distance d(ξ1, ξ2) between

two descriptors ξi (different descriptor types may be used,

or a combination of them. This will be discussed later).

If d is below a threshold, the regions are considered to

match. However, thresholding on a distance is a bit tricky.

Setting the threshold is unintuitive and requires experience

with the system. Furthermore, small changes on the threshold

might have unexpected effects on the detection quality since

the dependence of distance and matching precision is not

linear. Therefore, we suggest a slightly modified thresholding

approach. We learn from training data how the matching

precision depends on the descriptor distance threshold. This

enables to directly set a threshold for the matching precision

and let the system calculate the required corresponding

distance threshold automatically.

For a large amount of image data, we gathered statistics re-

garding the distribution of the matching precision depending

on the descriptor threshold. For t distinct distance threshold

values, we compute the precision p as

p(θj) =
c(θj)

c(θj) + f(θj)
, ∀ j ∈ {1..t} (1)

where c(θj) and f(θj) denote the number of correct and

false matches for a given descriptor distance threshold θj .

Hereby, the correct and false matches are classified manually

to obtain ground truth. The distribution is one-dimensional

if a single descriptor type is used and multi-dimensional for

several different descriptor types.

Matching is now performed depending on a threshold

on the precision instead directly on the descriptor distance.

Here, we use a precision threshold of 0.98: if the estimated

precision is above the threshold, the ROIs are considered to

match. We chose a high threshold because an EKF SLAM

system is sensitive to outliers.

The presented approach has several advantages over the

usual thresholding. First, it is possible to choose an intuitive

threshold like “98% matching precision”. Second, linear

changes on the threshold result in linear changes on the

matching precision. Finally, for every match a precision value

is obtained. Since this corresponds to a probability estima-

tion, this value can be directly used by other components

of the system to treat a match according to the probability

estimate that it is correct. For example, a SLAM subsystem

which can deal with more uncertain associations could use

these values. We consider the exploitation of this value for

future work.

As mentioned above, different descriptor types can be

used. We investigated two approaches. The first uses a com-

bination of an attentional descriptor and the SIFT descriptor.

The attentional descriptor is the previously introduced vector

~v. The distance dA(~v1, ~v2) between two attention vectors

is calculated according to an equation similar to the Eu-

clidean distance, details in [11]. The distance dS of two

SIFT descriptors is calculated as their Euclidean distance.

To determine the two-dimensional distribution of matching

precision depending on dA and dS , 378 correct matches and

535 false matches were classified manually. The experiments

in this paper were based on this method.

Recently, we investigated a second method: matching

based on only the SIFT descriptor. This resulted even in

slightly better matching results, i.e., for the same amount

of false detections more correct matches were found. While

surprising at first, this can be explained as follows: a region

may be described by two descriptor types, the perfect de-

scriptor δ1 and the weaker descriptor δ2. δ1 detects all correct

matches and rejects all possible false matches. Combining δ1

with δ2 cannot improve the process, it can only reduce the

detection rate by rejecting correct matches. Corresponding

experiments will be published in [30].

V. FEATURE TRACKING

In the feature tracker, landmarks are built from ROIs

by tracking the ROIs over several frames. That means, a

landmarks is a list of tracked ROIs and the length of a

landmark is the number of elements in the list, which is

equivalent to the number of frames the ROI was detected in.
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To compute the landmarks, we store the last n frames in

a buffer (here: n = 30). This buffer enables to determine

which landmarks are stable over time and therefore good

candidates for the map. The output from the buffer is thus

delayed by n frames but in return quality assessment can be

utilized before using the data.

The matching of ROIs is performed not only between

consecutive frames, but allows for gaps of several (here: 2)

frames where a ROI is not found. We call frames which are at

most 3 frames behind the current frame close frames. Since

a scene usually does not change strongly between such close

frames, it is possible to determine the approximate position

of a feature in the current frame from its position in the last

frame and the motion of the robot. This position estimation

makes the tracking more stable.

The procedure to create landmarks is the following: when

a new frame comes into the buffer, each of its ROIs is

matched to all existing landmarks of close frames. If the

matching is successful, the new ROI is appended to the end

of the best matching landmark. Additionally, the ROIs that

did not match any existing landmark are matched to the

unmatched ROIs of the previous frame. If two ROIs match,

a new landmark is created consisting of these two ROIs. At

the end of the buffer, we consider the length of the resulting

landmarks and filter out too short ones (here ≤ 5).

The final quality check for a tentative landmark that is

long enough but has not yet been added to the map data is

made by the triangulator. It attempts to find an estimate for

the location of the landmark. In the triangulation process,

also outliers are detected and removed from the landmark.

By outlier we mean bearings that fall far away from the

estimated landmark location. These could be the result of

mismatches or a poorly localized landmark.

VI. LOOP CLOSING

In the loop closing module, it is detected if the robot has

seen the current scene before. This is done by matching the

ROIs from the current frame to landmarks from the database.

It is possible to use position prediction of landmarks to

determine which landmarks could be visible and thus prune

the search space, but since this prediction is usually not

precise when uncertainty grows after driving for a while, we

detect loop closing without using the SLAM pose estimate

as in [31]. That means, we match to all landmarks from the

database. Since our system usually focuses on few landmarks

(e.g. 57 for a 162 m2 environment) it is possible to search

the whole database in each iteration. However, for larger

environments it would be necessary to perform global loop

closing less frequently and distribute the search over several

iterations.

A ROI r1 is said to match to a landmark L, if there are

at least j (here: j = 3) ROIs ri, i ∈ 1..j in L for which

(i) the size difference of r1 and ri is small enough, (ii) the

probability for a match (based on the attention vector and

SIFT descriptor similarities) is > 98% and (iii) if there is no

other ROI from the current frame with a higher matching

probability to ri. To prune the search space, the feature
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Fig. 4. Left: The three camera behaviours Redetection, Tracking, Explo-

ration. Right: The usefulness function ϕ(α).

vectors of r1 and ri have to pass a similarity threshold before

the match probability is computed in (ii).

When a match is detected, the coordinates of the matched

ROI in the current frame are fed to the SLAM system,

to update the coordinates of the corresponding landmark.

Additionally, the ROI is appended to the landmark in the

database.

VII. ACTIVE GAZE CONTROL

The active gaze control module controls the camera ac-

cording to three behaviours:

• Redetection of landmarks to close loops

• Tracking of landmarks

• Exploration of unknown areas

The strategy to decide which behaviour to choose is as

follows: Redetection has the highest priority, but it is only

chosen if there is an expected landmark in the possible field

of view (def. see below). If there is no expected landmark

for redetection, the tracking behaviour is activated. Tracking

should only be performed if more landmarks are desired

in this area. As soon as a certain amount of landmarks

is obtained in the field of view, the exploration behaviour

is activated. In this behaviour, the camera is moved to an

area without landmarks. Most times, the system alternates

between tracking and exploration, the redetection behaviour

is only activated every once in a while (see sec. VII-A

and cf. Fig. 5). An overview over the decision process

is displayed in Fig. 4. In the following, we describe the

respective behaviours in detail.

A. Redetection of landmarks

In redetection mode, the camera is directed to expected

landmarks. Expected landmarks

(a) are in the potential field of view of the camera,

(b) have low-enough uncertainties in the expected posi-

tions relative to the camera,

(c) have not been seen recently,

(d) had no matching attempt recently.

To (a): The potential field of view of the camera is

set to ± 90◦ horizontally and 7m distance. This prevents

considering landmarks which are too far away, since these are
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Fig. 5. The pan angle as a function of time. The camera behaviour alternates
between tracking and exploration.

probably not visible although they are in the right direction:

obstacles like walls are likely to block the view. In the

current implementation, there is no way to know whether the

landmarks are in the same room, therefore landmarks from

different rooms might be considered. Of course, the restric-

tion to a certain distance is only a rough estimate which

is also dependent on the current environment. This model

causes problems primarily in environments where the robot

is actually able to detect landmarks that are further away than

7m which means that not all available information is used.

In smaller areas there is a slight increase in computational

cost as more landmarks than necessary are considered.

To (b): Landmarks with a high pose uncertainty in pan-

or tilt-direction relative to the camera are not considered as

expected landmarks, because matching is likely to fail when

directing the camera there. The uncertainty is considered as

too high, if it exceeds the image size, i.e. if the uncertainty

of the landmark in pan-direction, projected to the image

plane, is larger than the width of the image, the landmark

is too uncertain. Note that these are actually the most useful

landmarks to redetect, but on the other hand the matching is

likely to fail. Passive matching attempts for these landmarks

are permanently done in the loop closer, only the active

redetection is prevented.

To (c): The redetection behaviour focuses on landmarks

which have not been visible for a while (here: 30 frames)

to prevent switching the camera position constantly. The

longer a landmark had not been visible, the more useful its

redetection.

To (d): If an expected landmark has been focused for some

frames and is still not redetected, it is likely that it will not

be redetectable in the near future. Therefore, the redetection

of these landmarks is blocked for a while (here: 30 frames).

This behaviour prevents the system from repeatedly directing

the camera at undetectable landmarks and allows the system

to continue with tracking and exploration, once it checked

all expected landmarks in the possible field of view.

If there are several expected landmarks, the longest land-

mark is chosen because the probability for a match is high.

Then, the camera is moved to focus this landmark and

pointed there for several (here 8) frames, until it is matched.

Note that redetection and matching are two independent

mechanisms: active redetection only controls the camera,

matching is permanently done in the loop closer, also if there

is no expected landmark.

If no match is found after 8 frames, the system blocks

this landmark and chooses the next expected landmark or

continues with tracking or exploration.

B. Tracking of landmarks

Tracking a landmark means to follow it with the camera

so that it stays longer within the field of view. This enables

better triangulation results. This behaviour is activated if the

preconditions for redetection do not apply.

First, one of the ROIs in the current frame has to be chosen

for tracking. There are several aspects which make a land-

mark useful for tracking. First, the length of a landmark is

an important factor for its usefulness since longer landmarks

are more likely to be triangulated soon. Second, an important

factor is the horizontal angle of the landmark: points in

the direction of motion result in a very small baseline over

several frames and hence often in poor triangulations. Points

at the side usually give much better triangulation results, but

on the other hand they are more likely to move outside the

image borders soon so that tracking is lost.

Therefore, the usefulness of a landmark is determined by

first considering the length of the landmark and, second,

the angle of the landmark in the potential field of view.

The length of the landmarks is considered by sorting out

landmarks below a certain size (here: 5). The usefulness of

the angle α of a ROI is determined by the following function:

ϕ(α) = (k1 (1.0+cos(4α−π)))+k2 (1.0+cos(2α))) (2)

where k1 = 5 and k2 = 1. The function is displayed in

Fig. 4 (right). It has the highest weight for points at α = 45◦

and α = −45◦ and has minima at α = 0◦ and α = ± 90◦.

Since points which are at the border of the field of view are

likely to move out of view very soon, they are considered

even worse than points in the center. Notice that we cannot

actively control the robot motion, only the camera’s, which

would otherwise allow us to make sure that points on the

border stay in the image. The exact shape of the function is

not crucial, functions with similar shape should do as well.

The usefulness of a landmark L is determined by:

U(L) = ϕ(α)
√

l (3)

where l is the length of the landmark.

After determining the most useful landmark for tracking,

the camera is directed into the direction of the landmark. The

camera is moved slowly (here 0.1 radians per step), since this

changes the appearance of the ROI less than large camera

movements resulting in a higher matching rate and prevents

to loose other currently visible landmarks.

The tracking ends when the landmark is not visible any

more (because it left the field of view or because the
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# LMs mapped # correct matches # false matches
pass. act. pass. act. pass. act.

experiment 1 a (after 1st loop) 9 21 0 5 0 0
experiment 1 a (after 2nd loop) 15 27 5 16 1 0
experiment 1 b (after 1st loop) 10 22 1 11 0 0
experiment 1 b (after 2nd loop) 16 28 8 18 1 0
experiment 2 26 57 0 21 0 4

TABLE I

LEFT: ROBOT PATH FOR EXPERIMENT 1. RIGHT: COMPARISON OF NUMBER OF MAPPED LANDMARKS AND OF CORRECT AND FALSE MATCHES FOR

PASSIVE AND FOR ACTIVE CAMERA MODE.

matching failed) or when the landmark was successfully

triangulated. If there is no other useful landmark to track or

there are already enough landmarks detected in this region,

the exploration behaviour is activated.

C. Exploration of unknown areas

As soon as there are enough (≥ 5) landmarks in the field

of view, the exploration behaviour is started, i.e., the camera

is directed to an area within the possible field of view without

landmarks. We favor regions with no landmarks over regions

with few landmarks since few landmarks are a hint that we

already looked there and did not find more landmarks.

We proceed as follows: the possible field of view is divided

in two parts, one on each side of the current field of view.

Each of these regions is divided into parts which correspond

to the size of the field of view. Then one field after the

other is checked until one without landmarks is found. The

order in which fields are checked is as follows: if the camera

is currently pointing to the right, we start by investigating

the field directly on the left of the camera and vice versa.

This enables a broader distribution of detected landmarks

in the environment. If there is no landmark, the camera is

moved there. Otherwise we switch to the opposite side and

investigate the areas there. If no area without landmarks is

found, the camera is set to the initial position.

To enable building of landmarks over several frames, we

let the camera focus one region for a while (here 10 frames).

As soon as a landmark for tracking is found, the system

will automatically switch behaviour and start tracking it

(cf. Fig. 5).

VIII. EXPERIMENTS AND RESULTS

In this section, we compare the passive and the active

camera mode of the visual SLAM system. We show that

with active camera control, more landmarks are mapped with

a better distribution in the environment and more database

matches are obtained (experiment 1). Finally, we show a case

in which a loop closing is not detected in passive mode but

is in active mode (experiment 2).

In experiment 1, the robot drove two loops on the path

displayed in Tab. I, left. To show the repeatability of the

results, the experiment was carried out twice: experiment

1a was performed during the day and experiment 1b during

night, with different lightning conditions. Each sequence

consists of ∼1200 images (320 × 240). We monitored the

number of landmarks which were mapped and the number

of correct and false matches after 1 and after 2 loops. The

results are shown in Tab. I. Col. 2 and 3 show that in active

mode, considerably more landmarks are mapped than in

passive mode, usually about twice as many. This results from

the exploration mode: areas are investigated in active mode

which are not visible to the camera in passive mode. Thus,

a better distribution of landmarks can be achieved. Col. 4–7

show the number of matches in loop closing situations. We

count only matches which appeared at most 30 frames after

the landmark had been visible for the last time. Matches

to landmarks which have been visible more recently are

also used to update the map data, but are not counted here

since we want to focus on matches with a higher impact

on uncertainty reduction. The table shows that the number

of matches also increases considerably in active mode. This

is due to first, having more landmarks in the database,

second, actively directing the camera to expected landmarks

(redetection), and third, directing the camera by chance to

previously visible landmarks (exploration).

The result of experiment 1 is that by active camera control,

more landmarks are mapped with a better distribution in

the environment and more landmark matches. However, in

this experiment, the robot pose uncertainty is similar in both

cases. It drops slightly earlier in active mode if the camera

is directed to an expected landmark while the loop is not

yet closed completely, but since exactly the same path is

repeated, the system is also able to close the loops in passive

mode.

In experiment 2, we show a case where loop closing is

not possible in passive but in active mode. Here, the robot

drove the path of an eight, as displayed in Fig. 6, once in

passive and once in active mode. 1803 (passive) resp. 1788

(active) images were processed during the path. Although

the first door is passed three times, the robot does not face

exactly the same area in these three cases and is not able

to close a loop in passive mode (in the last part of the

path, no landmarks where detected during the first run, so

no matching is possible). In Fig. 6 (b), the resulting map is

displayed. It can be seen that the final robot pose is wrong by

about 3m since the robot was not able to correct its pose by

loop closing. On the other hand, in active mode the camera

is directed to regions which had been seen before and the

robot closes loops first after the first circle and again after the

second circle (cf. Fig. 8, left). Fig. 6 (c) shows the resulting

map, with matches displayed as larger, red dots. The number
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(a) Robot path in experiment 2 (b) Resulting map, passive (c) Resulting map, active
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Fig. 6. Experiment 2: comparison of passive and active camera control. Green, small dots are landmarks (b,c), red, large dots are database matches (c).
(d): the robot pose uncertainty computed as the trace of Prr (covariance of robot pose) for passive and active camera mode. A video showing the trajectory
of the robot in active camera mode is available on the CD proceedings of ICRA 2008.

−5 0 5 10

−6

−4

−2

0

2

4

6

8

Trajectory of the robot

x

y

SLAM
odom

−5 0 5 10

−6

−4

−2

0

2

4

6

8

Trajectory of the robot

x

y

SLAM
odom

Fig. 7. Trajectory of robot path estimated from odometry (blue, dashed)
and SLAM (red, solid) for passive (left) and active (right) camera mode.

of matches is shown in the last row of Tab. I: 21 correct and

4 false matches. Most false matches result from confusing

some of the lamps with identical appearance (cf. Fig. 8,

right). Considering the geometric arrangement of landmarks

would help to prevent such false matches. Also visible from

Fig. 6 (b) and (c) is that the final robot pose is much more

accurate in active than in passive mode. This can also be seen

in Fig. 7, in which the trajectory of the robot, estimated once

directly from odometry and once from SLAM, is displayed

for passive and for active camera mode. When comparing

it with the path in Fig. 6 (a), it can be seen that first, the

SLAM estimation is much more accurate than the odometry

estimate and second, that the actively estimated SLAM path

is more accurate than the passive one.

In Fig. 6 (d), the robot pose uncertainty, computed as

the trace of Prr (covariance of robot pose) is displayed

for passive and for active mode. It shows clearly how the

two loop closing situations in active mode reduce the pose

uncertainty (at meter 21 and meter 44), resulting at the end

of the sequence in a value which is about 80% lower than

the uncertainty in passive mode.

IX. CONCLUSION

This paper presents an active visual SLAM system based

on attentional landmarks. The attention regions provide

useful landmarks for visual SLAM since they provide a

Fig. 8. Left: correct loop closing match. Right: false match.

way to immediately, that means already when the features

are computed, determine which regions in an image are

useful. This results in few landmarks compared to corner-like

features what is helpful for an EKF-based SLAM system that

scales with the number of landmarks. The precision-based

matching procedure provides a powerful way to achieve a

certain detection rate. Another advantage of this approach is

that it directly provides a probability value that a match is

correct. With a different SLAM subsystem than the current

one, one that can deal with more uncertain associations, these

matching probability could be used.

The system seems to generalize well to new environments:

system development and all parameter tuning was performed

in environment 1, testing the system in environment 2

in another building was only done after the system was

complete. As shown, good performance was obtained here.

However, it would be interesting to investigate how robust the

system behaves in completely different environments such as

outdoor environments. This is subject to future work.

The computation of the attention regions is relatively fast

(∼50 ms/frame) since it is based on integral images [32]. The
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rest of the system allows real-time performance. Currently,

it runs on average at ∼ 90 ms/frame on a Pentium IV 2 GHz

machine. Since the code is not yet optimized, a higher frame

rate should be easily achievable by standard optimizations.

The main contribution of the paper is the active gaze

control module with the behaviours tracking, redetection, and

exploration. Experimental results showed that about twice as

many landmarks are mapped in active camera mode and at

least twice as many database matches are obtained, usually

much more. In some cases, loop closing is only possible by

actively controlling the camera.

Needless to say, much could be done to further improve the

system. False detections could be eliminated by considering

the spatial organization of several landmarks. Extending

the system to larger environments could be achieved by

removing landmarks which are not redetected to keep the

number of landmarks low, and by using hierarchical maps

as in [22], in which many local maps are built which do not

exceed a certain size.
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