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Abstract— Recent work has demonstrated the benefits of
adopting a fully probabilistic SLAM approach in sequential
motion and structure estimation from an image sequence.
Unlike standard Structure from Motion (SFM) methods, this
‘monocular SLAM’ approach is able to achieve drift-free esti-
mation with high frame-rate real-time operation, particularly
benefitting from highly efficient active feature search, map
management and mismatch rejection.

A consistent thread in this research on real-time monocular
SLAM has been to reduce the assumptions required. In this
paper we move towards the logical conclusion of this direction
by implementing a fully Bayesian Interacting Multiple Models
(IMM) framework which can switch automatically between
parameter sets in a dimensionless formulation of monocular
SLAM. Remarkably, our approach of full sequential probability
propagation means that there is no need for penalty terms to
achieve the Occam property of favouring simpler models — this
arises automatically. We successfully tackle the known stiffness
in on-the-fly monocular SLAM start up without known patterns
in the scene. The search regions for matches are also reduced in
size with respect to single model EKF increasing the rejection
of spurious matches. We demonstrate our method with results
on a complex real image sequence with varied motion.

I. INTRODUCTION

A. Real-time sequential SFM estimation from sequences

Camera motion and scene structure estimation from an

image sequence of a previously unknown scene has most

often been performed as an off-line optimisation procedure

(e.g. [9]), but with increasing computing power there have

been several successful recent real-time algorithms. Real-

time operation requires sequential processing with bounded

computational requirements per frame, and there have been

two key paradigms for achieving this. Firstly, algorithms

which we can generically describe as visual odometry ap-

proaches sequentially determine motion and structure by

concatenating estimates from sliding windows of two or

more time-steps (e.g. [15], [17]) to produce arbitrarily long

trajectories with constant-time processing cost. While this

approach, which ‘forgets’ about the past, leads to motion

estimates which drift over time, the rates of drift can be made

extremely low if a great number of features are matched from

frame to frame.

The second main approach is to use probabilistic filtering

to recursively estimate a full probability density over the

current camera pose and the positions of features — adopting

the core Simulaneous Localisation and Mapping (SLAM)

approach of the mobile robotics literature. If the number of
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features is restricted, and camera motion limited to a certain

volume, this leads to systems which also have constant-time

computation and can run in real-time to build consistent maps

and estimate motions without drift. Successful monocular

SLAM examples have used the Extended Kalman Filter (e.g.

[7]) or Rao-Blackwellized particle filtering ([8]).

In this paper we follow the probabilistic filtering approach,

which is preferable in the very common scenario of loopy,

repeated motion within a restricted area, and specifically

use a full-covariance EKF to estimate the locations of

the camera and features. Maintaining an always-up-to-date

full PDF over motion and structure estimates has several

attractive advantages. In particular, it allows prediction of

measurements for highly efficient active image search and

to confirm match hypotheses (data association), and also

intelligent incremental map management [6].

Our goal in this paper is to provide a framework within

which the approach of fully sequential probability propa-

gation can be applied to any image sequence. This has so

far not been possible because sequential filtering algorithms

depend on assumptions and parameters which determine their

behaviour. The system of Davison in [7] assumed camera

motion of certain dynamics (in terms of expected linear

and angular accelerations), a scene with a maximum feature

depth of around 5m and some known scene information in

the form of an initialisation target.

There has been significant recent work on removing the

restrictions of Davison’s original EKF algorithm. One impor-

tant research direction was to permit the probabilistic use of

low-parallax features, either recently initialised or at extreme

scene depths. Davison’s feature initialisation scheme using

an auxiliary particle filter was improved on by Solà et al.

[19] with a mixture of Gaussians method, and then by Eade

and Drummond [8] and Montiel, Civera and Davison [14],

[3], [4] with a new inverse depth parameterisation which can

seamlessly cope with features at any depth, and is able to

work without any known initial pattern in the scene. Follow-

ing this thread of work is the approach of Civera et al. [2]

who have formulated a completely dimensionless monocular

SLAM algorithm. Using an inverse depth parameterisation,

they removed metric and time scales from the SLAM state

vector and tuning parameters from the filter to formulate the

whole problem in terms of dimensionless values interpretable

as quantities in image space. When such monocular SLAM

algorithms are applied to real image sequences, it is worth

noting the valuable role that Joint Compatibility testing [16]

can play in rejecting spurious matches that might otherwise

ruin the whole estimation (as shown by Clemente et al. in

[5]).
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B. IMM monocular SLAM

Image sequence processing relies on camera motion mod-

els to robustly identify point matches. Off-line methods

rely on geometrical models relating two or three images to

compute matches. In [20] it is shown how different models

should to be used at different parts of a general sequence

to avoid degenerate geometries. This geometrical model

selection has been extended to segment different motion

models between image pairs or triplets [18], [11], [21].

In contrast to these two or three-view geometrical models,

the probabilistic motion models used in SLAM are well

suited to modelling long sequences of close images instead

of discrete sets of images. However a single probabilistic

model can similarly only deal with sequences which follow

the prescribed model or processing will fail. In this work

we extend the monocular SLAM method to deal with more

than one probabilistic motion model, expanding the range of

sequences compatible with the priors represented by a set of

tuning parameters. We use a sequential Bayesian approach

to model selection.

Thanks to Bayesian probability propagation, monocular

SLAM with a general translating camera can deal with low

parallax motions — such as rotations — provided that the

camera re-observes map features whose locations are well-

estimated as a result of parallax observed previously in the

sequence, and so model switching is not a must in some

cases where it would be in the off-line approaches. However,

when monocular SLAM is initialised on-the-fly without a

known scene pattern, model selection is an issue. If the

camera initially undergoes a low parallax motion, no reliable

estimation is possible. Any measurement noise may be

considered parallax by the filter producing inconsistent depth

estimates. We tackle this problem with model selection.

Multiple model methods are well known in maneuvering

target tracking. An excellent and recent survey of this can

be found in [13]. In our paper, we adapt to the SLAM

problem the most widespread of those methods, Interacting

Multiple Models (IMM), initially proposed by Blom in [1].

The IMM estimator is a suboptimal hybrid filter — that is,

it estimates the continuous values of a proccess, and the

discrete probabilities of a set of models — whose main

features are: 1) It assumes that the system can jump between

the members of a set of models, which is the case of

our monocular SLAM estimation, and 2) It offers the best

compromise between complexity and performance.

Thanks to the use of multiple models, the range of images

that can be processed with a single system tuning is enlarged.

We work with a bank of 7 models: one model of a stationary

camera, three models of pure rotation motion (constant angu-

lar velocity) with different angular acceleration covariances,

and three general translation + rotation models (constant

velocity, constant angular velocity) with different angular

and linear acceleration covariances. Via the Bayesian model

selection of IMM, the system prefers simpler (less general)

models where they fit the data. As a result, the search regions

for the predicted image features are smaller than with a single

model EKF. These reduced search regions increase mismatch

rejection and reduce the processing cost of image search.

Additionally, the computed probabilities per model allow the

segmentation of a sequence into different models.

Section II discusses and formulates sequential Bayesian

model selection. The Interacting Multiple Model approach

to Bayesian model selection is detailed in III. Some details

about the use of IMM in the SLAM problem are given in

Section IV. Section V verifies the method using real imagery

and shows how it deals with sequence bootstrap. Finally

Section VI summarises the paper’s conclusions.

II. BAYESIAN MODEL SELECTION FOR

SEQUENCES

In standard single-model monocular SLAM algorithms,

Bayes’ rule combines at every step past estimation informa-

tion with current image data. Given the background infor-

mation I and the image data at current step D, the posterior

probability density function for the set of parameters θ

defining our model M is updated via Bayes’ formula:

p(θ|DMI) = p(θ|MI)
p(D|θMI)

p(D|MI)
. (1)

In this paper we consider cases where a single model M is

not sufficient to cover all of the sequences we would like to

track. Taking full advantage of the fully probabilistic estima-

tion that our SLAM approach is performing, we formulate

our multiple model problem in a Bayesian framework.

Consider, as Jaynes does in Chapter 20 of his book [10], a

discrete set of models M = {M1, . . . ,Mr} — rather than a

single one — which might feasibly describe the assumptions

of a sequential SFM process. We start by assigning initial

scalar probabilities P (M1|I), . . . , P (Mr|I) which represent

prior belief about the different models based on background

information I , and which are normalised to add up to one.

If no prior information exists, these probabilities may well

be assigned initially equal.

At each new image, where we acquire image measure-

ments data D, we update the probability of each model

according to Bayes’ rule:

P (M j |DI) = P (M j |I)
P (D|M jI)

P (D|I)
(2)

In this expression, the first term is the probability of the

model being correct given only the prior information. In

the fraction, the numerator is the likelihood of obtaining the

data given that the model is correct. The denominator is the

normalizing constant, computation of which can be avoided

when the posterior probabilities of a mutually-exclusive set

of models are all computed, or alternatively cancels out when

the ratio of posterior probabilities of different models is

calculated.

So, what is the likelihood P (D|M jI) of the data given a

model in a monocular SLAM system? It is simply the joint

likelihood of all of the feature measurements in an image:

P (D|MI) =
1

√

2π |S|
exp

(

−
1

2
ν⊤

S
−1ν

)

, (3)
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where

ν = z − h(x̂k|k−1) , (4)

S = H
(

FPk|k−1F
⊤ + GQG

⊤
)

H
⊤ + R . (5)

F = ∂f

∂x
, B = ∂f

∂w
, H = ∂h

∂x
and G = ∂h

∂u
are the Jacobians

for the EKF.

We should note, as Jaynes explains with great clarity, that

in this correctly formulated Bayesian approach to model

selection there is no need for ad-hoc terms like Minimum

Description Length which penalise ‘complex’ models and

favour simple ones. The ‘Occam principle’ of selecting the

simplest model which is able to capture the detail of the

data and avoiding overfitting is taken care of automatically

by correctly normalising our comparison of different models.

The big difference between our approach and the common

two-view model selection methods (e.g. [11], [21], [18])

which require penalty terms is that our concept of a model is

probabilistic at its core, not just geometric (like homography,

affine, . . . ). For our use in sequential probabilistic tracking, a

model must actually define a probability distribution during

a transition. This is what makes it possible to calculate

proper likelihoods for the models themselves, independent

of parameters.

The formulation above allows us to obtain posterior prob-

abilities for our models in one frame, but we are interested

in propagating these probabilities through a sequence. This

is achieved by defining a vector of model probabilities — a

‘state vector’ for models or set of mixing weights:

µk|k =
(

µ1

k|k . . . µr

k|k

)⊤

. (6)

We fill µk|k with the prior model probabilities

P (M1|I), . . . , P (Mr|I) before processing the first image,

and after processing use the values of µk|k as the priors for

each model in Equation 2 and then replace these values with

the posterior values calculated.

A final step is needed in between processing images,

which is to apply a mixing operator to account for possible

transitions between models. With a homogeneous Markov

assumption that the probability of transition from one model

to any other is constant at any inter-frame interval, this is

achieved by:

µk|k−1 = πµk−1|k−1 , (7)

where π is a square matrix of transition probabilities where

each row must be normalised. In the typical case that the

dominant tendancy is sustained periods of motion with one

model, this matrix will have large terms on the diagonal. If

the models are ordered with some sense of proximity, the

matrix will tend to have large values close to the diagonal

and small ones far away.

The sequential process of calculating model probabilities

therefore evolves as a loop of mixing and update steps and

at motion transitions in the sequence evidence will accrue

over several frames.

REINITIALIZATION

FILTER

k−1 k−1X
(m)

DISCRETE PART

CONTINUOUS PART

PREDICTION UPDATE

k kµk k−1µ

k−1 k−1X
(1)

PREDICTION

PREDICTION

UPDATE

UPDATEX k k−1

(1)

(m)
X k k−1

X
(1)

k k

k kX
(m)

X k kESTIMATE

FUSION

FILTER BANK

MODEL m BASED FILTER

MODEL 1 BASED FILTER

z

z

z

Fig. 1. Interacting Multiple Model algorithm scheme

1. Filter reinitialization (for i = 1, 2, ..., r):
Predicted model probability:

µi
k|k−1

= P{M i
k|z

k−1} =
∑

j
πjiµ

j

k−1

Mixing weight:

µ
j|i
k−1

= P{M j

k−1
|M i

k, zk−1} = πjiµ
j

k−1
/µi

k|k−1

Mixing estimate:

x̄
i
k−1|k−1

= E[xk−1|m
i
k, zk−1] =

∑

j
x

j

k−1|k−1
µ

j|i
k−1

Mixing covariance:

P̄ i
k−1|k−1

=
∑

j
(P j

k−1|k−1
+

+(x̄i
k−1|k−1

− x̂
j

k−1|k−1
)(x̄i

k−1|k−1
− x̂

j

k−1|k−1
)⊤)µ

j|i
k−1

2. EKF bank filtering (for i = 1, 2, ..., r):

Prediction: x̂
i
k|k−1

, P i
k|k−1

,h(xi
k|k−1

), Si
k

Measurement: zk

Update: x̂
i
k|k, P i

k|k

3. Model probability update (for i = 1, 2, ..., r):

Model likelihood: Li
k = N (νi

k; 0, Si
k)

Model probability: µi
k =

µi
k|k−1

Li
k

∑

j
µ

j

k|k−1
L

j

k

4. Estimate fusion
Overall state:

x̂k|k =
∑

i
x̂

i
k|kµi

k

Overall covariance:

Pk|k =
∑

i

(

P i
k|k + (x̂k|k − x̂

i
k|k)(x̂k|k − x̂

i
k|k)⊤

)

µi
k

Fig. 2. Interacting Multiple Model algorithm

III. INTERACTING MULTIPLE MODEL

IMM is presented in the tracking literature as a hybrid

estimation scheme, well suited to estimating the continuous

state of a system that can switch between several behaviour

modes. This hybrid system is then composed of a continuous

part (the state) and a discrete part (the behaviour modes). The

continuous part of such a system is defined by its state and

measurement equations:

ẋ (t) = f (x (t) ,M (t) ,w (t) , t) (8)

z (t) = h (x (t) ,M (t) ,v (t) , t) (9)

where the dynamics of the process and the measurements

depend not only on the state x (t) and the process and
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measurement noise w (t) and v (t) at time t, but also on

the model M (t) that governs the system at time t. The

probability of each of those models being effective at time

t is coded in the discrete probability vector µk−1|k−1, as

explained in section II.

Figure 1 shows graphically the structure of the IMM

estimator. The whole algorithm is detailed in Figure 2. The

central part of the algorithm consists of a bank of r filters

running in parallel, each one under a different model. An

overall estimation for the state can be obtained as a sum of

the a posteriori estimation of every filter weighted with the

discrete a posteriori model probabilities.

A key aspect of the IMM algorithm is the reinitialisation of

the filter before the parallel computation of the filter bank at

every step. This mixing of the estimations allows individual

poor estimates caused by model mismatch to recombine with

estimates from better models, so that the whole filter bank

benefits from the better estimates.

IV. INTERACTING MULTIPLE MODEL

MONOCULAR SLAM ALGORITHM

Given the tracking-oriented IMM algorithm, some aspects

have to be taken into account before applying it to our

particular monocular SLAM problem.

1) Active search ellipses: In the multiple model tracking

literature, little attention is given to the matching

(data association) proccess, which is crucial in SLAM

algorithms. If matching is mentioned, as in [12], it is

said that the most general model, that is, the model

with the largest covariance, is used to compute the

measurement covariance for gating correspondences —

the implication is ‘always to expect the worst’.

In monocular SLAM, most of the time this weakest

search region is unnecesary large, increasing both the

computational cost and the risk of obtaining a false

match. A more realistic search region can be defined by

the combination of the individual filters weighted by

their discrete probabilities. The only assumption that

has to be made is that motion changes are smooth,

a reasonable assumption when dealing with image

sequences. The form of the image search regions is

therefore determined by the following equations:

x̂k|k−1 =
∑

i

x̂
i
k|k−1

µi
k|k−1

(10)

Pk|k−1 =
∑

i

(P i
k|k−1

+ (x̂k|k−1 − x̂
i
k|k−1

)(11)

(x̂k|k−1 − x̂
i
k|k−1

)⊤)µi
k|k−1

(12)

hk|k−1 = h(xk|k−1) (13)

Sk = HkPk|k−1H
⊤
k + Rk (14)

2) Map management: As detailed in [6], map manage-

ment strategies for deleting bad features and adding

new ones are convenient in monocular SLAM. We

are also using inverse depth to cartesian conversion

[3] in order to reduce the computational cost of the

algorithm.

V. EXPERIMENTAL RESULTS

A 1374 frame sequence was recorded with a 320 × 240
wide-angle camera at 30fps. The camera makes a motion

consisting of the following sequence of essential movements:

stationary → pure rotation → general motion (translation

and rotation) → pure rotation → stationary. The sequence

has been processed using the dimensionless inverse depth

formulation of [2] and two different types of motion mod-

elling. Firstly, IMM EKF formulation with a bank of seven

models: stationary camera, rotating camera (three angular

acceleration levels with standard deviation 0.1, 0.5 and 1

pixels), and general motion (with 3 acceleration levels for

both linear and angular components with standard deviations

of 0.1, 0.5 and 1 pixels). Secondly, as a base reference,

a single model for general motion with acceleration noise

standard deviation of 1 pixel, both angular and linear. Both

formulations are fed the same starting image feature detec-

tions. On analysing the results the advantages of the IMM

over single model monocular SLAM become clear. Results

of the comparative experiments can be better observed in the

accompanying video.

A. Consistent start up even with rotation

As was said in the introduction, single model EKF SLAM

leads to inconsistent mapping if the camera initially under-

goes low parallax motion. In the analysed sequence, we have

an extreme case of this as the camera is either stationary or

rotating for more than 600 frames. Figure 3 compares the

estimation results with a single model EKF and our IMM

algorithm at step 600, when the camera has performed non-

translational motion. Features are plotted as arrows if (as

should be the case) no finite depth has been estimated after

the no parallax motion. It can be observed that, for the single

model case, all features have collapsed to narrow, false, depth

estimates while in the IMM case all of the features have no

depth estimation.

B. Low risk of spurious matches due to small search regions

It can be noticed in Figure 4 that although high process

noise models are necessary in order to retain tracking features

during high accelerations, these models are scarcely used for

any length of time. In hand-held camera sequences, constant

velocity motions are much more common than accelerated

ones. This is reflected by the model probabilities, as we

see that the highest probabilities are given to the lower

acceleration noise models on most frames.

When using a single model estimation, we are forced to

choose the most general model in order to maintain tracking

under high acceleration. As process noise directly influences

search region size, we are forced to maintain large search

regions, unnecessary most of the time. As a consequence,

the risk of obtaining false matches grows. As IMM selects at

any time the most probable motion model, preferring simpler

models, it adjust the search region to the real motion at any

time, resulting in considerably reduced ellipses and lowering

the risk of mismatches.
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Fig. 3. (a, left) frame 600 and (a, right) 3D top view of the IMM
estimation at this frame. The camera has been either stationary or rotating
until this frame. It can be seen in Fig. 4 that rotation and still camera
models have high probability throughout this early part of the sequence.
IMM, correctly, has not estimated any feature depth –features whose depths
have not been estimated (their depth uncertainties, stored in inverse depth
formulation, encompass infinity) are plotted as arrows–. (b), frame and top-
viewed estimation with single-model monocular SLAM. The over-general
model has led to narrow, false depth estimates. When the camera translates
this inconsistent map leads to false matches that cause the estimation to fail,
as seen in (d) at frame 927 of the sequence. On the other hand, (c) shows
the correct map estimation performed by the IMM algorithm.

In Figure 5 the large factor of reduction in the size of

search ellipses can be observed. Subfigure (a) shows a detail

of a feature search region at frame 100, at the top using

IMM and at the bottom using a single model. Search regions

in subfigure (b) correspond to the same feature at frame

656, when camera starts translating and high acceleration

is detected. Notice that the IMM ellipse slightly enlarges

in adapting to this motion change, but continues to be

smaller than the single-model one. Finally, (c) exhibits the

consequences of having unnecessary big search regions: false

correspondences happen. Due to mismatches like this one,

the estimation in this experiment fails catastrophically.

C. Camera motion model identification

The IMM not only achieves better performance in pro-

cessing the sequence, but also provides a tool to segment

Fig. 4. Posterior model probabilities along the sequence. Each model is
represented by its acceleration noise standard deviation[σa, σα] expressed
in pixels, following the notation in [2]. Notice that the probability for the
most general model (σa = 1pxl, σα = 1pxl) is always under 0.01. The
stationary camera model (a) and low acceleration noise models (b) and (c)
are assigned the highest probabilities in most of the frames. In spite of being
rarely selected, the high acceleration noise models are important to keep the
features track at the frames where motion change occurs (small spikes are
visible at these points).

Fig. 5. (a), IMM (top) and single-model (bottom) feature search ellipse
when the camera is rotating. (b), the same feature IMM and single-model
search regions when the camera begins to translate. (c), mismatch in the
single-model case caused by an unnecesary large ellipse that does not occur
in the IMM estimation. Several mismatches like this one in the highly
repetitive texture of the brick wall eventually lead to full tracking failure.
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the sequence according to the dominant motion model. It is

worth noting that this segmentation is based on sequence

criteria as opposed to a classical pairwise motion model

selection in geometrical vision.

In Figure 4 and in the accompanying video, it can be

seen that when there is a predominant model (stationary,

rotating or general motion), the corresponding probability µi

reaches a value close to 1, while the other model probabilities

goes down close to zero — the IMM acts as a discrete

selector here rather than a mixer. Only when there is a

change between motion models are there periods with no

clear dominant model and this is where the IMM proves its

worth.

It has to be noted that models with lower acceleration

noise are preferred unless the camera really undergoes a

high acceleration motion. In fact the model with the highest

acceleration has negligible probability indicating that it is

not necessary for processing the current sequence. Although

this unused model does require a computational overhead,

its presence does not affect the accuracy of the solution nor

jeopardize the matching by the size of the search regions for

the predicted features — since its weight is always close to

zero it is simply weighted out of all the calculations.

D. Computational cost considerations

Although the main advantage of the algorithm is its good

tracking performance, clearly outperforming standard single

model SLAM on complex sequences, it is also remarkable

that the computational cost does not grow excessively. The

cost of the IMM algorithm is essentially proportionally to

the number of models since all filtering operations must be

duplicated for each model. This is offset somewhat, as shown

in section V-B, by the fact that the search region ellipses are

reduced in size in the IMM formulation and this makes the

image processing work of feature matching cheaper.

VI. CONCLUSIONS AND FUTURE WORK

We have shown experimentally the advantages of the IMM

filter when applied to monocular SLAM. We are able to

track sequences containing periods with no movement, and

pure rotation and general motion at various dynamic levels,

the system adapting automatically. In particular, while single

model monocular SLAM is weak when bootstrapped with

low parallax motions (still or rotating camera), the IMM

formulation copes admirably by recognising the motion type.

The IMM formulation requires a computational overhead,

but has extra benefits in producing smaller acceptance re-

gions for the predicted measurements, improving outlier

rejection, and being able to act as an automatic segmentation

and labelling tool by identifying motion boundaries.

This is our first step in the promising direction of Bayesian

multiple modelling for monocular SLAM. An immediate

next step is to validate empirically the real-time performance

of the IMM with an efficient C++ version where performance

limits can be more thoroughly tested. Also, and extending the

Bayesian approach, the currently fixed transition probabilities

between models could be learned and changed dynamically.
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