
Online Constraint Network Optimization

for Efficient Maximum Likelihood Map Learning

Giorgio Grisetti∗ Dario Lodi Rizzini‡ Cyrill Stachniss∗ Edwin Olson† Wolfram Burgard∗

Abstract— In this paper, we address the problem of incremen-
tally optimizing constraint networks for maximum likelihood
map learning. Our approach allows a robot to efficiently
compute configurations of the network with small errors while
the robot moves through the environment. We apply a variant
of stochastic gradient descent and use a tree-based parame-
terization of the nodes in the network. By integrating adaptive
learning rates in the parameterization of the network, our algo-
rithm can use previously computed solutions to determine the
result of the next optimization run. Additionally, our approach
updates only the parts of the network which are affected by the
newly incorporated measurements and starts the optimization
approach only if the new data reveals inconsistencies with
the network constructed so far. These improvements yield an
efficient solution for this class of online optimization problems.

Our approach has been implemented and tested on simu-
lated and on real data. We present comparisons to recently
proposed online and offline methods that address the problem
of optimizing constraint network. Experiments illustrate that
our approach converges faster to a network configuration with
small errors than the previous approaches.

I. INTRODUCTION

Maps of the environment are needed for a wide range of

robotic applications such as search and rescue, automated

vacuum cleaning, and many other service robotic tasks.

Learning maps has therefore been a major research focus in

the robotics community over the last decades. Learning maps

under uncertainty is often referred to as the simultaneous

localization and mapping (SLAM) problem. In the literature,

a large variety of solutions to this problem can be found.

The approaches mainly differ in the underlying estimation

technique. Typical techniques are Kalman filters, information

filters, particle filters, network based methods which rely on

least-square error minimization techniques.

Solutions to the SLAM problem can be furthermore di-

vided into online an offline methods. Offline methods are

so-called batch algorithms that require all the data to be

available right from the beginning [1], [2], [3]. In contrast to

that, online methods can re-use an already computed solution

and update or refine it. Online methods are needed for

situations in which the robot has to make decisions based on

the model of the environment during mapping. Exploring an

unknown environment, for example, is a task of this category.

Popular online SLAM approaches such as [4], [5] are based

on the Bayes’ filter. Recently, also incremental maximum-

likelihood approaches have been presented as an effective

alternative [6], [7], [8].

∗Department of Computer Science, University of Freiburg, Germany.
†MIT, 77 Massachusetts Ave., Cambridge, MA 02139-4307, USA.
‡Department of Information Engineering, University of Parma, Italy.

trajectory

robot

constraints
matching

Fig. 1. Four snapshots created while incrementally learning a map.

In this paper, we present an efficient online optimization

algorithm which can be used to solve the so-called “graph-

based” or “network-based” formulation of the SLAM prob-

lem. Here, the poses of the robot are modeled by nodes

in a graph and constraints between poses resulting from

observations or from odometry are encoded in the edges

between the nodes. Our method belongs to the same class of

techniques of Olson’s algorithm or MLR [8]. It focuses on

computing the best map and it assumes that the constraints

are given. Techniques like the ATLAS framework [9] or

hierarchical SLAM [10], for example, can be used to obtain

the necessary data associations (constraints). They also apply

a global optimization procedure to compute a consistent

map. One can replace these optimization procedures by our

algorithm and in this way make them more efficient.

Our approach combines the ideas of adaptive learning

rates with a tree-based parameterization of the nodes when

applying stochastic gradient descent. This yields an online

algorithm that can efficiently compute network configura-

tions with low errors. An application example is shown in

Figure 1. It depicts four snapshots of our online approach

during a process of building a map from the ACES dataset.

II. RELATED WORK

A large number of mapping approaches has been presented

in the past and a variety of different estimation techniques

have been used to learn maps. One class of approaches uses

constraint networks to represent the relations between poses

and observations.

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1880



Lu and Milios [1] were the first who used constraint

networks to address the SLAM problem. They proposed a

brute force method that seeks to optimize the whole network

at once. Gutmann and Konolige [11] presented an effective

way for constructing such a network and for detecting loop

closures while running an incremental estimation algorithm.

Frese et al. [8] described a variant of Gauss-Seidel relaxation

called multi-level relaxation (MLR). It applies relaxation at

different resolutions.

Olson et al. [2] were the first who applied a variant

of stochastic gradient descent to compute solutions to this

family of problems. They propose a representation of the

nodes which enables the algorithm to perform efficient

updates. Our previously presented method [3] introduced

the tree parameterization that is also used in this paper.

Subsequently, Olson et al. [6] presented an online variant of

their method using adaptive learning rates. In this paper, we

integrate such learning rates into the tree-based parameteri-

zation which yields a solution to the online SLAM problem

that outperforms the individual methods.

Kaess el al. [7] proposed an on-line version of the smooth-

ing and mapping algorithm for maximum likelihood map

estimation. This approach relies on a QR factorization of

the information matrix and integrates the new measurements

as they are available. Using the QR factorization, the poses

of the nodes in the network can be efficiently retrieved by

back substitution. Additionally they keep the matrices sparse

via occasional variable reordering. Frese [12] proposed the

Treemap algorithm which is able to perform efficient updates

of the estimate by ignoring the weak correlations between

distant locations.

The contribution of this paper is an efficient online ap-

proach for learning maximum likelihood maps. It integrates

adaptive learning rates into a tree-based network optimization

technique using a variant of stochastic gradient descent. Our

approach presents an efficient way of selecting only the part

of the network which is affected by newly incorporated data.

Furthermore, it allows to delay the optimization so that the

network is only updated if needed.

III. STOCHASTIC GRADIENT DESCENT FOR MAXIMUM

LIKELIHOOD MAPPING

Approaches to graph-based SLAM focus on estimating

the most likely configuration of the nodes and are therefore

referred to as maximum-likelihood (ML) techniques [8], [1],

[2]. The approach presented in this paper also belongs to this

class of methods.

The goal of graph-based ML mapping algorithms is to find

the configuration of the nodes that maximizes the likelihood

of the observations. Let x = (x1 · · · xn)T be a vector of

parameters which describes a configuration of the nodes. Let

δji and Ωji be respectively the mean and the information

matrix of an observation of node j seen from node i. Let

fji(x) be a function that computes a zero noise observation

according to the current configuration of the nodes j and i.

Given a constraint between node j and node i, we can

define the error eji introduced by the constraint as

eji(x) = fji(x)− δji (1)

as well as the residual rji = −eji(x). Let C =
{〈j1, i1〉 , . . . , 〈jM , iM 〉} be the set of pairs of indices for

which a constraint δjmim
exists. The goal of a ML approach

is to find the configuration x∗ of the nodes that minimized

the negative log likelihood of the observations. Assuming the

constraints to be independent, this can be written as

x∗ = argmin
x

∑

〈j,i〉∈C

rji(x)T Ωjirji(x). (2)

In the remainder of this section we describe how the general

framework of stochastic gradient descent can be used for

minimizing Eq. (2) and how to construct a parameterization

of the network which increases the convergence speed.

A. Network Optimization using Stochastic Gradient Descent

Olson et al. [2] propose to use a variant of the pre-

conditioned stochastic gradient descent (SGD) to address

the compute the most likely configuration of the network’s

nodes. The approach minimizes Eq. (2) by iteratively se-

lecting a constraint 〈j, i〉 and by moving the nodes of the

network in order to decrease the error introduced by the

selected constraint. Compared to the standard formulation

of gradient descent, the constraints are not optimized as a

whole but individually. The nodes are updated according to

the following equation:

xt+1 = xt + λ ·H−1JT
jiΩjirji (3)

Here x is the set of variables describing the locations of

the poses in the network and H−1 is a preconditioning

matrix. Jji is the Jacobian of fji, Ωji is the information

matrix capturing the uncertainty of the observation, rji is

the residual, and λ is the learning rate which decreases with

the iteration. For a detailed explanation of Eq. (3), we refer

the reader to our previous works [3], [2].

In practice, the algorithm decomposes the overall problem

into many smaller problems by optimizing subsets of nodes,

one subset for each constraint. Whenever time a solution for

one of these subproblems is found, the network is updated

accordingly. Obviously, updating the different constraints one

after each other can have antagonistic effects on the corre-

sponding subsets of variables. To avoid infinitive oscillations,

one uses the learning rate λ to reduce the fraction of the

residual which is used for updating the variables. This makes

the solutions of the different sub-problems to asymptotically

converge towards an equilibrium point that is the solution

reported by the algorithm.

B. Tree Parameterization

The poses p = {p1, . . . , pn} of the nodes define the

configuration of the network. The poses can be described

by a vector of parameters x such that a bidirectional map-

ping between p and x exists. The parameterization defines

the subset of variables that are modified when updating a

constraint. An efficient way of parameterizing the node is to

1881



use a tree. One can construct a spanning tree (not necessarily

a minimum one) from the graph of poses. Given such a tree,

we define the parameterization for a node as

xi = pi − pparent(i), (4)

where pparent(i) refers to the parent of node i in the spanning

tree. As defined in Eq. (4), the tree stores the differences

between poses. This is similar in the spirit to the incremental

representation used in the Olson’s original formulation, in

that the difference in pose positions (in global coordinates)

is used rather than pose-relative coordinates or rigid body

transformations.

To obtain the difference between two arbitrary nodes based

on the tree, one needs to traverse the tree from the first node

upwards to the first common ancestor of both nodes and

then downwards to the second node. The same holds for

computing the error of a constraint. We refer to the nodes

one needs to traverse on the tree as the path of a constraint.

For example, Pji is the path from node i to node j for the

constraint 〈j, i〉. The path can be divided into an ascending

part P
[−]
ji of the path starting from node i and a descending

part P
[+]
ji to node j. We can then compute the residual in

the global frame by

r′ji =
∑

k[−]∈P
[−]
ji

xk[−] −
∑

k[+]∈P
[+]
ji

xk[+] + Riδji. (5)

Here Ri is the homogeneous rotation matrix of the pose pi.

It can be computed according to the structure of the tree

as the product of the individual rotation matrices along the

path to the root. Note that this tree does not replace the

graph as an internal representation. The tree only defines the

parameterization of the nodes.

Let Ω′
ji = RiΩjiR

T
i be the information matrix of a

constraint in the global frame. According to [2], we compute

an approximation of the Jacobian as

J ′
ji =

∑

k[+]∈P
[+]
ji

Ik[+] −
∑

k[−]∈P
[−]
ji

Ik[−] , (6)

with Ik = (0 · · · 0 I
︸︷︷︸

kth element

0 · · · 0). Then, the update

of a constraint turns into

xt+1 = xt + λ|Pji|M
−1Ω′

jir
′
ji, (7)

where |Pji| refers to the number of nodes in Pji. In Eq. (7),

we replaced the preconditioning matrix H−1 with its scaled

approximation M−1 as described in [2]. This prevents from

a computationally expensive matrix inversion.

Let the level of a node be the distance in the tree between

the node itself and the root. We define the top node of a

constraint as the node on the path with the smallest level.

Our parameterization implies that updating a constraint will

never change the configuration of a node with a level smaller

than the level of the top node of the constraint.

In principle, one could apply the technique described in

this section as a batch algorithm to an arbitrarily constructed

spanning tree of the graph. However, our proposed method

uses a spanning tree which can be constructed incrementally,

as described in the next section.

IV. ONLINE NETWORK OPTIMIZATION

The algorithm presented in the previous section is a batch

procedure. At every iteration, the poses of all nodes in the

network are optimized. The fraction of the residual used

in updating every constraint decreases over time with the

learning rate λ, which evolves according to an harmonic

progression. During online optimization, the network is dy-

namically updated to incorporate new movements and obser-

vations. In theory, one could also apply the batch version of

our optimizer to correct the network. This, however, would

require to compute a solution from scratch each time the

robot moves or makes an observation which would obviously

lead to an inefficient algorithm.

In this section we describe an incremental version of our

optimization algorithm, which is suitable for solving on-

line mapping problems. As pointed in [6] an incremental

algorithm should have the following properties:

1) Every time a constraint is added to the network, only

the part of the network which is affected by that

constraint should be optimized. For example, when

exploring new terrain, the effects of the optimization

should not perturb distant parts of the graph.

2) When revisiting a known region of the environment it

is common to re-localize the robot in the previously

built map. One should use the information provided

by the re-localization to compute a better initial guess

for the position of the newly added nodes.

3) To have a consistent network, performing an opti-

mization step after adding each constraint is often

not needed. This happens when the newly added con-

straints are adequately satisfied by the current network

configuration. Having a criterion for deciding when to

perform unnecessary optimizations can save a substan-

tial amount of computation.

In the remainder of this section, we present four im-

provements to the algorithm so that it satisfies the discussed

properties.

A. Incremental Construction of the Tree

When constructing the parameterization tree online, we

can assume that the input is a sequence of poses corre-

sponding to a trajectory of the robot. In this case, subsequent

poses are located closely together and there exist constraints

between subsequent poses resulting from odometry or scan-

matching. Further constraints between arbitrary nodes result

from observations when revisiting a place in the environment.

We proceed as follows: the oldest node is the root of the

tree. When adding a node i to the network, we choose as

its parent the oldest node for which a constraint to the node

i exists. Such a tree can be constructed incrementally since

adding a new node does not require to change the existing

parts of the tree.

The pose pi and parameter xi of a newly added node i is

initialized according to the position of the parent node and

1882



the connecting constraint as

pi = pparent(i) ⊕ δi,parent(i) (8)

xi = pi − pparent(i). (9)

The parent node represents an already explored part of the

environment and the constraint between the new node and the

parent can be regarded as a localization event in an already

constructed map, thus satisfying Property 2. As shown in the

experiments described below, this initialization appears to be

a good heuristic for determining the initial guess of the pose

of a newly added node.

B. Constraint Selection

When adding a constraint 〈j, i〉 to the graph, a subset of

nodes needs to be updated. This set depends on the topology

of the network and can be determined by a variant of breadth

first visit. Let Gj,i be the minimal subgraph that contains the

added constraint and has only one constraint to the rest of

the graph. Then, the nodes that need to be updated are all

nodes of the minimal subtree that contains Gj,i. The precise

formulation on how to efficiently determine this set is given

by Algorithm 1.

Data: 〈j, i〉: the constraint, G: the graph, T : the tree.
Result: Nji: the set of affected nodes, Eji: the affected

constraints.
Queue f = childrenOf(topNode(〈j, i〉));
Eji := edgesToChildren(topNode(〈j, i〉));
foreach 〈a, b〉 ∈ Eji do

〈a, b〉 .mark = true;
end
while f 6= {} do

Node n := first(f);
n.mark := true
foreach 〈a, b〉 ∈ edgesOf(n) do

if 〈a, b〉 .mark = true then
continue;

end
Node m := (a = n)?b : a;
if m = parent(n) or m.mark = true then

continue;
end
〈a, b〉 .mark = true;
Eji := Eji ∪ {〈a, b〉};
if 〈a, b〉 ∈ T then

f := f ∪ {m};
else

f := f ∪ childrenOf(topNode(〈a, b〉));
end

end
f := removeFirst(f);
Nji := Nji ∪ {n};

end
Algorithm 1: Construction of the set of nodes affected by
a constraint. For readability we assume that the frontier f can
contain only the nodes which are not already marked.

Note that the number of nodes in Gj,i does depend only

on the root of the tree and on the overall graph. It contains

all variables which are affected by adding the new costraint

〈i, j〉.

C. Adaptive Learning Rates

Rather than using one learning rate λ for all nodes, the

incremental version of the algorithm uses spatially adaptive

learning rates introduced in [6]. The idea is to assign an

individual learning rate to each node, allowing different parts

of the network to be optimized at different rates. These

learning rates are initialized when a new constraint is added

to the network and they decrease with each iteration of the

algorithm. In the following, we describe how to initialize and

update the learning rates and how to adapt the update of the

network specified in Eq. (7).

a) Initialization of the learning rates: When a new

constraint 〈j, i〉 is added to the network, we need to update

the learning rates for the nodes Nji determined in the

previous section. First, we compute the learning rate λ′
ji for

the newly introduced information. Then, we propagate this

learning rate to the nodes Nji.e

A proper learning rate is determined as follows. Let βji

be the fraction of the residual that would appropriately fuse

the previous estimate and the new constraint. Similar to a

Kalman filter, βji is determined as

βji = Ωji(Ωji + Ωgraph
ji )−1, (10)

where Ωji is the information matrix of the new constraint,

and Ωgraph
ji is an information matrix representing the uncer-

tainty of the constraints in the network. Based on Eq. (10),

we can compute the learning rate λ′
ji of the new constraint

as

λ′
ji = maxrow

(
1

|Pji|
(βji ⊘MΩ′

ji)

)

. (11)

Here ⊘ represents the row by row division (see [6] for further

details). The learning rate of the constraint is then propagated

to all nodes k ∈ Nji as

λk ← max(λk, λ′
ji), (12)

where λk is the learning rate of the node k. According

to Eq. (11) constraints with large residuals result in larger

learning rate increases than constraints with small residuals.

b) Update of the network: When updating the network,

one has to consider the newly introduced learning rates.

During an iteration, we decrease the individual learning

rates of the nodes according to a generalized harmonic

progression [13]:

λk ←
λk

1 + λk

(13)

In this way, one guarantees the strong monotonicity of λk

and thus the convergence of the algorithm to an equilibrium

point.

The learning rates of the nodes cannot be directly used

for updating the poses since Eq. (7) requires a learning rate

for each constraint and not for each node. When updating

the network given the constraint 〈j, i〉, we obtain an average

learning rate λ̃ji from the nodes on Pji as

λ̃ji =
1

|Pji|

∑

k∈Pji

λk. (14)

1883



Then, the constraint update turns into

∆xk = λ̃ji|Pji|M
−1Ω′

jir
′
ji. (15)

D. Scheduling the Network Optimization

When adding a set of constraints 〈j, i〉 ∈ Cnew to a network

without performing an optimization, we can incrementally

compute the error of the network as

enew =
∑

〈j,i〉∈Cold

rT
jiΩjirji +

∑

〈j,i〉∈Cnew

rT
jiΩjirji. (16)

Here enew is the new error and Cold refers to the set of

constraints before the modification.

To avoid unnecessary computation, we perform the opti-

mization only if needed. This is the case when the newly

incorporated information introduced a significant error com-

pared to the error of the network before. We perform an

optimization step if

enew

|Cnew|+ |Cold|
> α max

〈j,i〉∈Cold

rT
jiΩjirji. (17)

Here α is a user-defined factor that allows the designer of

a mapping system to adapt the quality of the incremental

solutions to the needs of the specific application.

If we assume that the network in Cold has already con-

verged, this heuristic triggers an optimization only if a signif-

icant inconsistency is revealed. Furthermore, the optimization

only needs to be performed for a subset of the network and

not for the whole network. The subset is given by

E =
⋃

〈j,i〉∈Cnew

Eji. (18)

Here Eji is the set of constraints to be updated given a new

constraint 〈j, i〉 ∈ Cnew. The sets Eji are computed according

to Algorithm 1. This criterion satisfies Property 3 and leads

to an efficient algorithm for incrementally optimizing the

network of constraints.

V. EXPERIMENTS

This section is designed to evaluate the effectiveness

of the proposed methods to incrementally learn maximum

likelihood maps. We first show that such a technique is

well suited to generate accurate grid maps given laser range

data and odometry from a real robot. Second, we provide

simulation experiments to evaluate the evolution of the error

and provide comparisons to our previously proposed tech-

niques [3], [2], [6]. Finally, we illustrate the computational

advantages resulting from our algorithm.

A. Real World Experiments

To illustrate that our technique can be used to learn maps

from real robot data, we used the freely available ACES

dataset. The motivating example shown in Figure 1 depicts

four different maps computed online by our incremental

mapping technique. During this experiment, we extracted

constraints between consecutive poses by means of pairwise

scan matching. Loop closures were determined by localizing

Fig. 2. Network used in the simulated experiments. Left: initial guess.
Right: ground truth.

 0.001

 1

 1000

 0  5  10  15  20  25  30

er
ro

r 
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

 0.001

 1

 1000

 0  5  10  15  20  25  30

er
ro

r 
p

er
 c

o
n

st
ra

in
t

iteration

Olson Offline
Olson Incremental

Tree Offline
Tree Incremental

Fig. 3. Statistical experiments showing the evolution of the error per
iteration of the algorithm. Top: situation in which the robot is closes a small
loop. Bottom: closure of a large loop. The statistics have been generated
by considering 10 different realizations of the observation noise along the
same path.

the robot in the previously built map by means of a particle

filter.

As can be seen, our approach leads to accurate maps for

real robot data. Similar results were obtained with all datasets

we found online or recorded on our own.

B. Statistical Experiments on the Evolution of the Error

In the these experiments, we moved a virtual robot on

a grid world. An observation is generated each time the

current position of the robot was close to a previously visited

location. The observations are corrupted by a given amount

of Gaussian noise. The network used in this experiment is

depicted in Figure 2.

We compare our approach named Tree Incremental with

its offline variant [3] called Tree Offline which solves the

overall problem from scratch. In addition to that, we compare

it to the offline version without the tree optimization [2]

called Olson Offline as well as its incremental variant [6]

referred to as Olson Incremental. For space reasons, we omit

comparisons to LU decomposition, EKF, and Gauss-Seidel.

The advantages of our method over these other methods is

similar to those previously reported [2].

To allow a fair comparison, we disabled the scheduling of

the optimization of Eq. (17) and we performed 30 iterations

every time 16 constraints were added to the network. During

the very first iterations, the error of all approaches may show

1884



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  1000  2000  3000  4000

ti
m

e

Tree Offline
Tree Incremental

 0

 0.01

 0.02

 0.03

 0.04

 0  1000  2000  3000  4000

er
ro

r/
co

n
st

ra
in

t

constraints

Treemap
Tree Incremental

Fig. 4. Top: runtime comparison of the offline and the incremental
approaches using a tree parameterization. The optimization is performed
only when the error condition specified by Eq. (17) was verified. Bottom:
Comparison of the evolution of the global error between Treemap[12] and
the online version of our approach.

an increase, due to the bigger correction steps which result

from increasing the learning rates.

Figure 3 depicts the evolution of the error for all four

techniques during a mapping experiment. We depicted two

situations. In the first one, the robot closed a small loop.

As can be seen, the introduced error is small and thus our

approach corrects the error within 2 iterations. Both incre-

mental techniques perform better than their offline variants.

The approach proposed in this paper outperforms the other

techniques. The same holds for the second situation in which

the robot was closing a large loop. Note that in most cases,

one iteration of the incremental approach can be carried

out faster, since only a subpart of the network needs to be

updated.

C. Runtime Comparison

Finally, we evaluated our incremental version and its of-

fline variant with respect to the execution time. Both methods

where executed only when needed according to our criterion

specified by Eq. (17). We measured the time needed to run

the individual approach until convergence to the same low

error configuration, or until a maximum number of iterations

(30) was reached. As can be seen in Figure 4(top), the

incremental technique requires significantly less operations

and thus runtime to provide equivalent results in terms of

error. Figure 4(bottom) shows the error plot of a comparison

of our approach and Treemap [12] proposed by Frese. As

shown in the error-plot, in the beginning Treemap performs

slightly better than our algorithm, due to the exact calculation

of the Jacobians. However, when closing large loops Treemap

is more sensitive to angular wraparounds (see increase of

the error at constraint 2400 in Figure 4). This issue is

typically better handled by our iterative procedure. Overall,

we observed that for datasets having a small noise Treemap

provides slightly better estimates, while our approach is

generally more robust to extreme conditions.

VI. CONCLUSION

In this paper, we presented an efficient online solution to

the optimization of constraint networks. It can incrementally

learn maps while the robot moves through the environ-

ment. Our approach optimizes a network of constraints

that represents the spatial relations between the poses of

the robot. It uses a tree-parameterization of the nodes and

applies a variant of gradient descent to compute network

configurations with low errors.

A per-node adaptive learning rate allows the robot to re-

use already computed solutions from previous steps, to up-

date only the parts of the network, which are affected by the

newly incorporated information, and to start the optimization

approach only if the new data causes inconsistencies with the

already computed solution. We tested our approach on real

robot data as well as with simulated datasets. We compared

it to recently presented online and offline methods that also

address the network-based SLAM problem. As we showed

in practical experiments, our approach converges faster to a

configuration with small errors.

ACKNOWLEDGMENT

The authors gratefully thank Udo Frese for providing us

his Treemap implementation. This work has partly been

supported by the DFG under contract number SFB/TR-

8 (A3), by the EC under contract number FP6-IST-34120-

muFly, and FP6-2005-IST-6-RAWSEEDS.

REFERENCES

[1] F. Lu and E. Milios, “Globally consistent range scan alignment for
environment mapping,” Journal of Autonomous Robots, vol. 4, 1997.

[2] E. Olson, J. Leonard, and S. Teller, “Fast iterative optimization of pose
graphs with poor initial estimates,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), 2006, pp. 2262–2269.
[3] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard, “A tree

parameterization for efficiently computing maximum likelihood
maps using gradient descent,” in Proc. of Robotics: Science and

Systems (RSS), Atlanta, GA, USA, 2007. [Online]. Available:
http://www.informatik.uni-freiburg.de/ stachnis/pdf/grisetti07rss.pdf

[4] R. Smith, M. Self, and P. Cheeseman, “Estimating uncertain spatial
realtionships in robotics,” in Autonomous Robot Vehicles, I. Cox and
G. Wilfong, Eds. Springer Verlag, 1990, pp. 167–193.

[5] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping
with unknown data association using FastSLAM,” in Proc. of the IEEE

Int. Conf. on Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[6] E. Olson, J. Leonard, and S. Teller, “Spatially-adaptive learning rates

for online incremental slam,” in Robotics: Science and Systems,
Atlanta, GA, USA, 2007.

[7] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Fast incremental
smoothing and mapping with efficient data association,” in Proc. of

the IEEE Int. Conf. on Robotics & Automation (ICRA), 2007.
[8] U. Frese, P. Larsson, and T. Duckett, “A multilevel relaxation algo-

rithm for simultaneous localisation and mapping,” IEEE Transactions

on Robotics, vol. 21, no. 2, pp. 1–12, 2005.
[9] M. Bosse, P. Newman, J. Leonard, and S. Teller, “An ALTAS

framework for scalable mapping,” in Proc. of the IEEE Int. Conf. on

Robotics & Automation (ICRA), Taipei, Taiwan, 2003.
[10] C. Estrada, J. Neira, and J. Tardós, “Hierachical slam: Real-time

accurate mapping of large environments,” IEEE Transactions on

Robotics, vol. 21, no. 4, pp. 588–596, 2005.
[11] J.-S. Gutmann and K. Konolige, “Incremental mapping of large cyclic

environments,” in Proc. of the IEEE Int. Symposium on Computational

Intelligence in Robotics and Automation (CIRA), Monterey, CA, USA,
1999, pp. 318–325.

[12] U. Frese, “Treemap: An o(logn) algorithm for indoor simultaneous
localization and mapping,” Journal of Autonomous Robots, vol. 21,
no. 2, pp. 103–122, 2006.

[13] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

1885


