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Abstract— This paper identifies various scale factor biases
commonly introduced into monocular SLAM implementations
as a result of the true scale factor of the map not being
observable. A way to make the scale factor observable and
remove any scale biases via the use of an inertial measurement
unit (IMU) is presented and implemented. Results show that
with an IMU the true scale of the map becomes observable
over time and the use of a square root information filter allows
the effect of initial scale biases to be removed completely from
the solution resulting in an unbiased solution no matter what
the initial scale assumptions are.

I. INTRODUCTION

One problem with using a single camera for SLAM is that

due to its projective nature the scale of the environment in

which it operates is not observable. There have been many

successful implementations of monocular SLAM such as [1]

where a set of initial base landmarks at a known location

are used to make the map scale observable and constrain

the estimate of the camera location and orientation until

new landmarks can be initialized, and [2] where initially

know landmarks are not required as an undelayed landmark

initialization technique is used. Despite the success of these

implementations problems with scale observability and con-

sistency still remain.

In [2] even though no initial landmark locations are known

and no other sensors are used to provide map scale informa-

tion a full map and camera trajectory is recovered which is

counter intuitive as the scale should not be observable. The

scale information for this implementation comes from two

false sources. These will be referred to as sources of scale

bias as even when true scale information is available they

bias the scale of the map.

These two sources of scale bias are:

1) The assumption of the variance of the camera’s accel-

eration.

2) The initial range estimate to landmarks.

The assumption of the camera’s acceleration variance is

a byproduct of using a constant velocity model with no

observations of the platform’s true acceleration. The initial

range estimate to landmarks is part of the undelayed inverse

depth landmark initialization technique presented in [3] and

used in [2]. An initial range guess is assigned to landmarks

to use for linearization purposes and to make the solution

full rank even though this information is not available at

the time of initialization, or ever in [2]. The assumption
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of the camera’s acceleration variance is also present in the

implementation given in [1].

Problems are also caused when two different sources of

scale bias are used and provide conflicting information about

the scale of the map or if a single source of scale bias

provides conflicting information about the scale in different

parts of the map. An example of this is where an initial

range estimate is used and in one region of the map the

majority of the features are very close to the camera resulting

in a map scale that is larger than the true scale and then

the camera moves to another area where the majority of

the features are far away from the camera resulting in a

map scale that is smaller than the true scale. This situation

will produce a map that has different scales in different

regions. Also if the constant velocity model acceleration

variance assumption suggests a different scale to the initial

landmark range assumption, larger than expected observation

innovations will result as well as suboptimal or overconfident

updates.

In [4] the authors used a low cost inertial measurement unit

(IMU) with monocular SLAM to remove the acceleration

variance assumption and attempt to make the true map scale

observable. However the initial range estimate bias remained

along with the linerizations made based on those initial

estimates. In most cases the initial range bias estimate will

be the dominant source of scale bias especially when low

cost IMUs are used.

This paper presents a technique that allows monocular

SLAM with a single camera and a low cost IMU to be

performed where true map scale becomes observable and

any scale biases are removed. A square root implementation

of a delayed state information filter [5] that has been adapted

for use with a 6 degree of freedom (6DoF) inertial process

model is used to allow initial range estimates to be removed

and observations relinearized once sufficient information has

been obtained about a landmark’s true range.

II. METHODOLOGY

A. Inertial Measurement Units and Inertial Process Models

An IMU is a useful sensor for navigation and SLAM as

it provides information about the motion of the platform it

is attached to that is independent of the characteristics of

the platform and does not require any external infrastructure

or information. The IMU measures the linear acceleration

and rotation rates of the platform which can be integrated to

provide estimates of orientation, velocity and position with

respect to an inertial frame
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The disadvantage of IMUs, especially low cost units are

that the measurements obtained contain biases that must

be estimated and removed before integration. The presence

of noise in the measurements coupled with the integration

to provide orientation, velocity and position estimates also

results in the estimates drifting over time and external obser-

vations must be used to constrain this drift. Initial orientation,

position and velocity estimates are also required as a starting

point for integration.

B. Square Root Information Smoothing

The representation of the SLAM problem in information

space rather than the more common state space has received

some interest recently [5][6][7][8]. The information form of

a Gaussian distribution is often called the canonical form

and can be represented by an information matrix, Y, and

information vector, y, that can be derived from the mean, x,

and covariance, P of the state space distribution by:

Y = P−1 y = Yx (1)

Of particular interest to this application is the delayed state

(smoothing) square root information form presented in [5] as

it allows observations to be stored separately in the square

root information matrix, A, where:

Y = A′A (2)

and process model predictions and landmark observations are

simply included as extra independent rows of the square root

information matrix.

C. State Parameterization

It is common in inertial SLAM to parameterize the vehicle

state as a position, velocity and attitude ([9]) as these values

are required to perform the integration of inertial observa-

tions. Since a delayed state filter is being used in this case all

past positions are maintained in the filter which makes the

velocity component of the vehicle state redundant as it can

be recovered from two subsequent positions. Therefore the

vehicle state has been reparameterized to contain only the

position and attitude estimates of the IMU as can be seen in

(3).
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This reparameterization is also required to keep the infor-

mation matrix full rank and therefore allow an unconstrained

solve to be used to recover an estimate of the state means.

Reducing the number of elements in the information vector

reduces the computational complexity as well.

D. Prediction and the Process Model

Normal information smoothing prediction is derived from

the Kalman filter prediction equations and is performed as:
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(4)

The first matrix in (4) contains the old information matrix.

The Yvtvt
term relates to the the last two vehicle positions

that are used in the prediction, and the Ymm term relates

to all other past vehicle positions and all the landmarks.

The second matrix contains the terms relating to the new

predicted position and the previous positions that this new

position was calculated from. It can be seen that there are

only off diagonal terms between the new current position and

the last vehicle position and all the terms for the previous

vehicle positions and landmark terms are left unchanged.

This results in a constant time prediction in contrast to

the cubic time required for prediction in the information

filtering approach, due to the required marginalising out of

old position states, and the linear time required for Kalman

filter predictions, due to the required updating of the cross-

covariance terms between the new vehicle position states and

all the landmark states in the filter.

It can be seen from the above equation that
(

GQG′
)−1

,

which is the increase in vehicle position uncertainty due

to the process model noise, is required to be invertible.

Reparameterization of the vehicle state from standard models

may be necessary to satisfy this requirement.

The prediction equations for the square root form of

information smoothing can be easily derived from (4) as:
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(5)

Equation (5) shows the advantage of this particular square

root form in keeping predictions (and as will be seen later,

observations as well) separate from each other which allows

for easy relinearization at a later time. The very sparse

nature of the information matrix also leads to computational

advantages.

During a prediction, elements relating to the new vehicle

position states are appended to the top of the information

vector, y, and the elements relating to the last two vehicle

positions, which the new position has non-zero off diagonal

terms with in the new information vector are updated. This

process can be seen in (6) below:

yt+1 =





0

yvt
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 +





I′

−F′

0





(

GQG′
)−1

(0 − (f (xt) − Fxt))

(6)

The (f(xt) − Fxt) term in the equation represents the

linearization error for the process model. As the vehicle
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state has been reparameterized to remove the vehicle velocity

estimates the process model used has to be modified from

the standard inertial process model ([9]) to the second order

Markov model shown in (7).

f(xt) =

[

post+1

attt+1

]

=

[

post +
(

post+post−1

dt
+ (Cn

b (fb + accn
bias) + g) dt

)

dt

attt + En
b (ωb + gyrobias) dt

]

(7)

Where dt is the time between predictions, fb is the ac-

celerometer observations, ωb is the gyro observations, Cn
b

is the rotation matrix from the IMU body frame to the

navigation frame and En
b is the rotation rate transformation

matrix between the body frame and the navigation frame.

This results in process model Jacobian matrices of

F = f(xt)
dx

=

[

2I
dCn

b
fb

datt
dt2 −I 0 . . . Cn

b fbdt2 0

0 I +
dEn

b
ωb

datt
dt 0 0 . . . 0 En

b dt

]

(8)

and

G =
f (xt)

du
=

[

Cn
b dt2 0

0 En
b dt

]

(9)

E. Undelayed Feature Initalisation and the Observation

Model

A simple pin-hole camera model is used after undistortion

is performed on the images, this provides an azimuth and

elevation bearing of observed landmarks which is used in

the filter.

The inverse depth undelayed initialization technique pre-

sented in [3] is used as this application is in an unstructured

environment where there are no initially know landmarks to

start from and as the IMU is low cost, landmarks need to be

used as soon as possible after first observation to constrain

the drift of the IMU predictions. Therefore the landmarks

are stored as azimuth, elevation and inverse range from the

camera’s position on first observation, the position states for

the camera at this time do not need to be stored with the

feature states as they are already present in the smoother, so

only an index is stored externally to indicate which position

the feature was first observed from.

Incorporating landmark observations into the square root

information smoother is done in a similar way to performing

a prediction. An observation update on a standard form

information matrix in an information smoother, as presented

in [6], is performed as:

Yt|t = Yt|t−1 + H′R−1H (10)

where H is the observation model Jacobian and R is the

sensor observation noise covariance matrix. From this the

square root information matrix observation update can be

derived from (10) as:

At|t =

[

At|t−1

v−1H

]

(11)

where:

v′v = R

As can be seen from (11) the observation update of the

square root information matrix only involves appending an

additional row to the matrix which keeps this observation

separate from all other operations allowing it to be easily

modified at a later time if desired.

The information vector, y, can be updated as in a normal

information smoother as:

yt|t = yt|t−1 + H′R−1 (zt − (h (xt) − Hxt)) (12)

where z is the observation and (h(xt) − Hxt) is the lin-

earization error of the observation function.

The initial range estimate from the first observation of a

landmark is simply treated as an observation of the range to

the landmark and processed as any other observation.

F. State Recovery

An estimate of the state means is required as a lin-

earization point for the observation and prediction functions

and this is performed incrementally using preconditioned

conjugate gradients. This technique is efficient as a fairly

accurate estimate of all the state means is available at all

times from the previous iteration of the smoother allowing

for sufficient convergence in a small number of iterations.

G. Removing Initial Range Estimates and Relinearizeing

After sufficient accelerations have been observed so that

the scale of the map becomes observable it is possible to

remove some or all of the initial range estimates of landmarks

to remove the biasing effect they have on the final solution. In

the particular square root information form used this simply

involves removing the row of the square root information

matrix, A, corresponding to this initial range estimate for a

landmark, no other operations need to be performed.

After removing an initial range estimate or just as the filter

runs and more information is obtained a more accurate esti-

mate of landmark and past camera locations is obtained. This

allows more accurate linearization points to be calculated and

therefore it is beneficial to reperform the linearization of past

observation and prediction functions at this time and resolve

for state means if they are required.

III. EXPERIMENTAL SETUP

A. Hardware

The hardware used in this experiment is a Fire-i grayscale

OEM firewire camera and a MicroStrain 3DM-GX1 inertial

measurement unit. These sensors are mounted together on

a fire fighting helmet so that they can be used to map the

motion of the person wearing it.
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Fig. 1. Sample images taken from the data set used to generate the presented results. Images were acquired at 7.5 fps and features were extracted using
a Harris corner detector and matched using optical flow. The feature id numbers and feature motion from the previous image is shown.

B. Experiment

As a low cost IMU is being used and it is desirable for

scale to become observable as soon as possible to test the

algorithm, a trajectory that consists of repeated side to side

motion of the camera over a range of about 1 meter while

looking in the same direction was used. This trajectory allows

regular repeated periods of linear acceleration, as well as

establishing a base line for landmarks quickly so that both

scale and range to landmarks is observable. Sample images

from the dataset used can be seen in Fig. 1.

Feature extraction is performed by using a Harris corner

detector and matching is done by optical flow as covariance

information is not easily obtainable when information filters

are used. This feature matching technique is also independent

of the filter estimate so that a bad filter estimate will not

result in continually incorrect data associations. While more

complex feature extraction and matching algorithms could

be beneficial to this implementation, such as correlation

matching or SIFT features, this approach works sufficiently

well on the datasets used and as feature matching is not the

focus of this paper optical flow was deemed sufficient for

our purposes.

Images were acquired at 7.5 frames per second as this

was sufficient for this experiment and the feature matching

method used. The IMU was run at approximately 152

samples per second.

This filter is implemented as a square root information

filter as described in section II, this form was chosen to allow

removal of initial range estimates and relineraization. A naive

implementation is used and therefore real time performance

is not achieved but the authors believe with the many

optimization techniques available this will be achievable in

the future.

IV. RESULTS

A. Initial Result

The information smoother was run as described over 64

images (approximately 8.5 seconds) with an initial estimated

range to new landmarks of 1 meter. As in this dataset

the camera was held 1 meter from the desk shown this

initial range estimate is approximately correct for the features

observed.
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Fig. 2. Estimated camera path with a 1m initial range estimate before and
after removal of initial range estimates and relinearization. The current time
solution is the solution available when the camera is at that location, this is
the same as the extended Kalman filter solution as only past information is
used and no relinearization is performed.

The three different estimated camera trajectories produced

by the filter on this dataset can be seen in Fig. 2. These dif-

ferent camera trajectory estimates are produced in different

stages of the filters estimate and they are:

1) The current time solution (CTS).

2) The final solution before relinearization and initial

range guess removal (FSBR).

3) The final solution after relinearization and initial range

guess removal (FSAR).

The current time solution (CTS) of the camera position

is the estimated camera position when the camera was at

that location and therefore it only uses information gathered

from observations before that point in time. As this estimate

only uses past information and relinearization has not yet

been performed it is the same as the estimate obtained from

an extended Kalman filter (EKF). The final solution before

relinearization and initial range guess removal (FSBR) is the

estimate of the cameras path using all information gathered

over the entire run but before removal of the initial range

estimates and relinearization is performed. The final solution

after relinearization and initial guess range removal (FSAR)

is the estimate of the cameras path using all information

gathered over the entire run after the initial range estimates

have been removed and relinearisation of all observation and
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Fig. 3. Estimated landmark locations and camera path with a 1m initial
range estimate after removal of initial range estimate and relinearization.

prediction functions has occurred so that no scale biasing

information remains in the solution. This is the result of

interest in this paper.

It can be seen from Fig. 2 that the FSAR is very similar

to the FSBR. This is because the initial range estimates are

fairly close to the true ranges to landmarks in this case but

this will not be the case if the initial range estimates are far

from the true ranges as will be seen in the next subsection.

The CTS of the camera trajectory differs much more from

the final smoothed estimate especially in the beginning when

the range to the landmarks as well as the IMU orientation

and biases are not well known, this is where the bulk of the

linearization errors will occur. It can be seen in the beginning

of the run that the estimated direction of motion for the

camera is actually in the wrong direction. This can have

disastrous consequences for range initialization and feature

matching if the filter estimates are used for assessing data

association. The initial wrong direction for the estimated

motion is a result of the IMU biases and a very coarse initial

estimate of the IMU orientation.

A full map is produced with estimates of the locations

of observed landmarks. The final map estimate along with

the estimated camera trajectory after removal of initial range

estimates and relinearization can be seen in Fig. 3. It can be

seen from this graph that the majority of the landmarks have

a final range estimate the is approximately 1 meter from the

camera’s trajectory which is expected for this dataset.

B. Removing Initial Range Estimates and Relinearizing

Fig. 4 shows an example of what happens if the initial

range estimate to features is significantly different from the

truth. This CTS result also shows what can be expected

if two different sources of false scale bias give conflicting

scale information, as in this case for the CTS estimate the

accelerometers and the initial range guesses give different

estimates of the map and trajectory scale.

It can be seen that the CTS estimate of the camera

location is very unstable as a result of the IMU and feature

observations giving conflicting information about the motion
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Fig. 4. Estimated camera path with a 10m initial range estimate before and
after removal of initial range estimates and relinearization. The current time
solution is the solution available when the camera is at that location, this is
the same as the extended Kalman filter solution as only past information is
used and no relinearization is performed.
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Fig. 5. Comparison of the final estimated trajectory after removal of initial
range estimates and relinearization for initial range estimates of 1m and
10m. It can be seen from this figure that the solutions are almost identical
and therefore independent of the initial range estimates used.

of the camera. Even the FSBR in this example shows a

trajectory that is significantly different from the truth in

both scale and relative motion. However, once the initial

range estimates are removed and the whole trajectory is

relinearized it can be seen that the FSAR solution converges

to something resembling the true path of the camera in both

scale and relative motion and this is directly comparable to

the FSAR solution for initial range estimates of 1m as can

be seen in Fig. 5. This is as expected as with the IMU and

the removal of the initial range estimates and relinearizaton

the solution no longer contains any heuristic scale biasing

information and should converge to the same solution no

matter what the initial range estimate was.

C. Scale Observability and Numerical Conditioning

As the camera is a projective sensor and cannot observe

scale, the only source of scale information available to the

smoother is from linear accelerations sensed by the IMU. As

a low cost IMU was used for this experiment the scale may
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only be weakly observable. The trajectory used was selected

as it will give the best possible chance of the scale being

observable.

If the absolute range to landmarks and therefore the map

and trajectory scale was not observable, when the initial

range estimates are removed the information matrix would

become singular as it would not contain enough information

to determine all the means in the state vector. We can use

the condition number of the final information matrix as a

measure of how close the matrix is to being singular which

can indicate how well observed the scale of the map and

trajectory is.

Fig. 6 shows a comparison of the condition numbers of

the information matrices before and after removal of the

initial range estimates for different lengths of time that the

smoother was running. From this figure we can see how the

condition number of the information matrices without the

initial range estimates for only a few processed images is

higher, indicating that they are close to being singular and

therefore the scale of the map is only weakly observable.

As the number of processed images increases the condition

number of this information matrix decreases as the scale

becomes more and more observable. The flattening out of

the condition numbers at the end is considered to be a result

of the fact that optical flow was used for data association

in this example and if features were lost they are discarded

and new ones obtained, if the same features were tracked

throughout the entire run then it would be expected that this

condition number would continue to decrease. A different

feature matching algorithm, such as the ones discussed in

section III, could be used to achieve this.

The condition number for the information matrices con-

taining the initial range information can be seen to be sig-

nificantly lower than the equivalent matrices without initial

range estimates, which is as expected as they contain false

information about the range to features making it appear that

the map scale is observable even though it may not be. If a

higher quality IMU was used the condition numbers for the

case without the initial range estimates would be closer to

the case with initial range estimates as the true scale would

be more observable. In fact for the dataset used the average

accelerations experienced are close to or below the noise

floor of the IMU so it does not add much to the process

model prediction accuracy. A constant velocity model may

even make more accurate predictions in this case, however

the IMU is still able to make the true map scale observable

over a number of observations.

V. CONCLUSIONS

When performing SLAM with a single camera as the only

sensor, implicit biasing of the scale of the map through

assumptions of acceleration noise in the constant velocity

model and/or explicit biasing from initial landmark range

estimates can have a detrimental effect on the quality of the

solution, especially when the scale assumptions are wrong.

Using an IMU in conjunction with the camera allows the

true camera accelerations to be observed. Even if a low cost
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Fig. 6. Condition number of the information matrix with and without
the initial range estimates for different numbers of images processed. This
number can be used as a measure of the observability of the solution and
it can be seen from the figure that the scale of the map without initial
range estimates becomes more and more observable over time as more
accelerations are observed.

IMU is used this will avoid the biasing of the map scale from

assuming an acceleration variance, even if its quality is too

low to add to the accuracy of the process model predictions.

Furthermore over time as linear accelerations are observed

and combined with the visual feature observations the true

scale of the map will become observable, resulting in a

feature map and vehicle trajectory estimate that is free from

heuristic assumptions about scale.

This paper has presented a method that allows a low cost

IMU to be used in monocular SLAM where scale biases are

removed from the solution and the true map scale becomes

observable.
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