

Abstract— While learning and evolution have been
effectively applied to single task performance, multiple task
performance still lacks methods that demonstrated to be both
reliable and efficient. This paper introduces a new method for
multiple task performance based on multiobjective
evolutionary algorithms, where each task is considered as a
separate objective function. In order to verify the effectiveness,
the proposed method is applied to evolve neural controllers for
the Cyber Rodent robot that has to switch properly between
two distinctly different tasks: (1) protecting another moving
robot by following it closely and (2) collecting objects scattered
in the environment. Furthermore, the tasks and neural
complexity are analyzed by including the neural structure as a
separate objective function. The simulation and experimental
results using the Cyber Rodent robot show that the
multiobjective-based evolutionary method can be applied
effectively for generating neural networks which enable the
robot to perform multiple tasks, simultaneously.

I. INTRODUCTION
ESEARCH on intelligent agents has mainly focused on
evolution or learning of individual perceptual-motor

and cognitive tasks. Nevertheless, intelligent agents
operating in everyday life environments often are required to
perform multiple tasks simultaneously or in rapid alternation,
which can be a challenge even for humans and primates.

Several approaches have been proposed to address the
problem of multiple task robot performance. The standard
methodology in machine learning has been to break large
problems into small, independent sub-problems, learn the
sub-problems separately, and then recombine the learned
pieces [1]. In [2], a different methodology has been used in
which all the tasks are learned at the same time. Thrun et al.
[3] presented a task-clustering algorithm that clustered the
learning tasks into classes of mutually related tasks. In this
approach, when the agent faced a new learning task, it first
determined the most related task cluster then exploited
information from this task cluster only. However, in all these
approaches the tasks considered were similar with each
other. Learning sequences of multiple decision tasks [4] or
changing the agent behavior based on the environmental
conditions [5] have also been undertaken.

In addition to learning, the evolution of neural controllers
is well known for providing a family of naturally-inspired
algorithms which can successfully address a wide range of

robot behavior learning problems [6], [7]. In evolutionary
robotics, different constraints and objectives are typically
handled as weighted components of the fitness function [8],
[9], thus applying a Single Objective Evolutionary
Algorithm (SOEA). For example, Floreano evolved neural
controllers for Khepera robots to perform straight movement
while avoiding obstacles [8]. The average rotation speed,
absolute difference between the right and left wheels, and
proximity sensor readings are all included in a single fitness
function. Cliff co-evolved pursuer and evader in a simulated
environment [9]. While the fitness score of the evader was
simply the length of time it lasted before being hit by the
pursuer, the fitness score for the pursuer was more
complicated. The pursuer received fitness points for
approaching the evader and bonus for hitting the evader. The
bonus was dependant on the timing of the collisions. As the
authors noted, they had to try many weight coefficients
before they arrived at a successful combination.

This article presents a novel approach for multiple task
robot performance based on Multiobjective Evolutionary
Algorithms (MOEAs) [10]. Unlike previous methods, in the
experiments presented here, each task is considered as a
separate objective function. The Nondominated Sorting
Genetic Algorithm (NSGA) is used to generate the Pareto
set of neural networks that tradeoff between the separate
task performance. MOEAs have been successfully applied
to evolve neural networks in which the architectural
complexity and performance are co-optimized [11].

In this work, for the first time a MOEA is applied to
evolve neural controllers for multiple task robot
performance. The specific questions we ask in this study are
whether: 1) MOEAs can successfully generate neural
controllers for multiple task performance. 2) The evolved
neural controllers optimized by MOEA in a simulated
environment perform well in the step of real hardware
implementation. 3) MOEAs can generate efficient neural
controllers and provide information about the complexity of
the tasks and environment. In order to answer these
questions, in the experiments reported here, we consider the
evolution of neural controllers for the Cyber Rodent (CR)
robot that has to perform two different tasks: 1) protecting
another robot by following it closely while it moves and 2)
collecting objects scattered in the environment.

Evolution of Efficient Neural Controllers for Robot Multiple Task
Performance – A Multiobjective Approach

Genci Capi

University of Toyama
Gofuku Campus, 3190 Gofuku, Toyama, 930-8555, Japan

e-mail: capi@eng.u-toyama.ac.jp

R

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 2195

In the proposed method, we evolve one single neural
controller for multiple task performance, considering
information relevant to each task as the sensory input of the
neural controller. As the number of tasks increases,
additional sensory information related to each task must be
considered, resulting in complex neural networks. This
makes the evolution process difficult. In addition, the
hardware implementation of evolved neural controllers may
result in poor performance due to the increased error in the
sensory data. In order to further investigate if the MOEA can
also generate efficient neural controllers for multiple task
performance, the structure of the neural network is included
as a separate objective function.

II. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM

A. Multiobjective Optimization Problem
In multiobjective optimization problems there are many

(possibly conflicting) objectives to be optimized,
simultaneously. Therefore, there is no longer a single
optimal solution but rather a whole set of possible solutions
of equivalent quality. Consider without loss of generality the
following multiobjective maximization problem with m
decision variables, x parameters and n objectives:

)),......(
),...,,......(()(

1

11

mn

m

xxf
xxfxfy ==

 (1)

where Xxxx m ∈=),......(1 , Yyyy n ∈=),......(1 and where
x is called decision parameter vector, X parameter space, y
objective vector and Y objective space. A decision vector

Xa ∈ is said to dominate a decision vector Xb ∈ if:

)()(:},....,1{
)()(:},....,1{

bfafnj
bfafni

jj

ii

>∈∃
∧≥∈∀ (2)

The decision vector a is called Pareto-optimal if and only
if a is nondominated regarding the whole parameter space X.
Pareto-optimal parameter vectors cannot be improved in any
objective without causing degradation in at least one of the
other objectives. They represent in that sense globally
optimal solutions. Note that a Pareto-optimal set does not
necessarily contain all Pareto optimal solutions in X. The set
of objective vectors corresponding to a set of Pareto-optimal
parameter vectors is called "Pareto-optimal front".

In extending the ideas of SOEAs to multiobjective cases,
two major problems must be addressed: how to accomplish
fitness assignment and selection in order to guide the search
towards the Pareto-optimal set; how to maintain a diverse
population in order to prevent premature convergence and
achieve a well distributed, wide spread trade-off front.
Different approaches to relate the fitness function to the
objective function can be classified with regard to the first
issue. The second problem is usually solved by introducing
elitism and intermediate recombination.

Fig. 1. Environment.

III. MULTIOBJECTIVE EVOLUTION OF NEURAL
CONTROLLERS

A. Tasks and Environment
The CR robot has to learn to perform two different tasks:

protecting another moving robot by following it closely; and
collecting objects scattered in the environment (Fig. 1). The
entire environment is a rectangle of 4m x 3.5m surrounded
by walls. There are 15 green colored objects scattered in the
environment. The individual life time of each agent is 700
time steps, where each time step lasts 0.1s. During this time
the red color protected robot follows a rectangular trajectory
with a constant velocity of 0.1m/s; at the end the protected
robot returns to its initial position.

B. Neural Architecture
We implemented a feed-forward neural controller with 11,

4 and 2 units in the input, hidden and output layers,
respectively. The inputs of the neural controller are the angle
(Aobj), distance (Dobj) and color (Cobj) of the nearest object,
the angle (Arob) and color (Crob) of the protected robot, the
readings of five proximity sensors (PSi) and the distance
sensor (DS) in the front of the CR robot. The egocentric
angle to the protected robot or nearest object varies from 0 to
1 where 0 corresponds to 45o to the right and 1 is 45o to the
left. The value of these neurons becomes -1 when the
protected robot becomes invisible or there is no object in the
visual field. The proximity sensors can measure up to 0.25m,
while the distance sensor varies from 0.1m to 0.8m. The
proximity and distance sensor reading varies from 0 to 1,
where 0 means no obstacle and 1 means touching the
obstacle.

Random noise, uniformly distributed in the range of +/-
5% of sensor readings, has been added to the angle of the
nearest object, the angle of the moving robot, the distance
sensor, and the five proximity sensors. Because the distance
to the nearest object during the experiments is determined
based on the number of pixels, the random noise in
simulations is considered in the range of +/- 10%. Based on
the characteristics of the CR robot visual sensor, in
simulations, the visual distance to the nearest object is
limited to 1.2m.

CR robot

Protected robot

Scattered object

2196

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 5 10 15

f2

f1
Gen 1

Gen 30

Gen 100

Fig. 2. Nondominated optimal solutions of different generations.

The hidden and output units use sigmoid activation

function:

ixi
e

y
−+

=
1

1 (3)

where the incoming activation for node i is:

jj jii ywx ∑= (4)

and j ranges over nodes with weights into node i.
The output units directly control the right and left wheel

angular velocities where 0 corresponds to no motion and 1
corresponds to full-speed forward rotation. The left and right
wheel angular velocities, rightω and leftω , are calculated as:

leftleft

rightright

y

y

*

*

max

max

ωω
ωω

=

=
 (5)

where maxω is the maximum angular velocity and yright and
yleft are the neuron outputs. The maximum forward velocity
is considered to be 0.5 m/s.

C. Evolution
For any evolutionary computation technique, a

chromosome representation is needed to describe each
individual in the population. The genome of every
individual of the population encodes the weight connections
of the neural controller. The genome length is 52 and the
connection weights range from -10 to 10. For the protecting
task, the target distance dt between the CR robot and the
protected robot is considered 0.3m. In order to minimize the
difference between the target and real distance, dr, the fitness,
f1, is considered as follows:

∑
=

−=
st

i

i
r

i
t ddf

max_

1
1 (6)

where max_st is the maximum number of steps.
The fitness of the object collecting task, f2, is simply the

number of objects collected during its individual lifetime. If
an individual happens to hit the protected agent or the wall,

the trial is terminated and a low fitness is assigned.
Therefore, such individuals will have a low probability to
survive. The following genetic parameters are used:
Nger=100, Npop=50, σshared=0.4.

IV. RESULTS

A. MOEA Results
In this section, we first discuss the best solutions obtained

from the MOEA in terms of multiple task performance. All
the simulations were performed on a Pentium 4 3.2GHz
computer.

Fig. 2 shows the nondominated optimal front for
generations 1, 30, and 100, averaged for five different runs
of MOEA. During the first 30 generations there is a great
improvement of the quality and distribution of
nondominated optimal solutions. The nondominated optimal
front of 100 generation has a clear tradeoff between the two
objective functions. Therefore, we can choose whether to
select a neural network that controls the CR robot to perform
as follows: only the robot protecting task (Box 1); only the
object collecting task (Box 5); or both the robot protecting
and object collecting tasks by flexibly switching between
them (Box 2, Box 3, Box 4).

The Box 3 neural networks induce the CR robot to
simultaneously perform both tasks with the same priority, as
shown in Fig. 3(a). The CR robot, while follows the
protected robot, captured eight of the objects scattered in the
environment. Fig. 3(b) shows that all sensory units are
activated during the CR movement. The proximity and
distance sensors help the CR robot to not hit the protected
robot, even while it moves very close and perpendicular to
the moving direction of the protected robot (around 150 and
575 steps). The Hinton diagram of the Box 3 neural
controller shows that Dobj has strong weight connections
with hidden units [Fig. 3(c)]. This leads us to the conclusion
that the CR robot switches between two tasks based on the
activation of the Dobj unit.

A. Hardware Experiments
We implemented the evolved optimal neural controllers on
the real hardware of the CR robot, which is a two-wheel
driven mobile robot. A video capture of the CR robot
controlled by Box 3 neural network is shown in Fig. 4. The
protected robot has a red cover with a rectangular shape in
order to be detected by the visual and proximity sensors. Fig.
4 shows that the CR robot protected the moving robot, while
also switching to the object collection task.
However, there are two main differences between the
simulated and real robot performance. First, the distance to
the nearest object utilized by the CR robot to switch from the
protecting to the object collecting task was longer in the real
environment.

Box1

Box2 Box3 Box4

Box5

x105

2197

 (a)

This is because in some situations more than one object

entered into the visual field of the CR robot, resulting in an
increase in the pixel number. The other difference, observed
during the performance of the protecting task, was the
relative position between the CR and the protected robot. In
the hardware implementation, the CR robot moves further
ahead relative to the protected robot.

The reason is that in the simulated environment, the angle
to the protected robot is calculated relative to its center. On
the other hand, in the real hardware experiments, the angle is
calculated based on the position of the red blob in the visual
sensor. Therefore, during the experiments, even if the center
of the protected robot is out of the visual field, half of the
front of the robot is still visible. However, despite these
differences, the CR still performed the multiple tasks well.

 (c)

Fig. 4. Video capture of the CR robot during the experiment.

-1
1

0
1

0
1

-1
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0 200 500 700
0
1

Fig. 3. CR multiple tasks performance (Box3). (a) CR trajectory. (b) Unit activation. (c) Hinton diagram of connection weights.

Initial CR
robot position

time step

(b)

Aobj

Dobj

Cobj

Arob

Crob

PS1

PS2

PS3

PS4

PS5

DS

H2

H3

H4

H1

Rmotor

Lmotor

Aobj Dobj Cobj Arob Crob PS1 PS2 PS3 PS4 PS5 DS Rmotor Lmotor

Negative
connection

Positive
connection

1 2

3 4

5 6

2198

V. NEURAL AND TASK COMPLEXITY
The previous experiments demonstrated that our approach
can effectively be applied to evolve neural controllers for
multiple tasks execution. However, as the number of tasks
increases, additional sensory units related to each task have
to be considered. This results in large neural controllers and
a long genome, making it difficult for the MOEA to find the
Pareto optimal set. In addition, the error introduced by the
sensory input units may lead to poor performance by the
evolved neural controllers.

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10
x 10

4

f2

f1

2 Neurons
3 Neurons

4 Neurons

5 Neurons

6 Neurons
7 Neurons

Fig. 5. Performance of neural controllers with different number of units.

(a)

(b)

(c)

Fig. 6. Performance of neural controller with one sensory input and one
hidden unit for protecting task. (a) CR trajectory. (b) Unit activation. (c)
Hinton diagram of weight connections.

In the following, the results of applying MOEAs to evolve
efficient neural controllers are presented. In contrast with
previous approaches [12], where the fitness function of an
obstacle avoidance task and the structure of the neural
controller are included in a single fitness function, we
considered the structure of the neural controller as a separate
objective function. The complexity of the evolved neural
structure generated by MOEA can also be used as an index
to empirically measure task complexity.

In addition to 52 genes encoding the weight connections
of the neural network, the genome encodes 15 binary genes
(11 for the sensory input units and 4 for the hidden units),
which indicate if an input or hidden unit exists in the
network or not. Rather than using variable-length genotypes
to allow for varying numbers of hidden and memory units,
we use fixed-length genotypes with the maximum number of
input and hidden units. This encoding method allows an
input or hidden unit to evolve even if it is not active during a
certain period of the evolutionary optimization process. The
objective function f3 is constructed as follows:

hi nrnrf +=3 (11)

(a)

0
1

-1
1

0
1

0
1

0
1

0
1

0 200 500 700
0
1

(b)

(c)
Fig. 7. Performance of neural controller with three sensory inputs and two
hidden units. (a) CR trajectory. (b) Unit activation. (c) Hinton diagram.

-1

1

0

1

0

1

0 200 500 700
0

1

 ArobRmotor Lmotor

Initial CR robot position

H1

Arob

Rmotor

Lmotor

time step

Dbat Arob PS4 Rmotor Lmotor

Dobj

Aobj

PS4

H2

H1

Rmotor

Lmotor

Initial CR robot position

time step

2199

where nri and nrh are the number of input and hidden units.
The minimum number of input and hidden units is
considered to be two. Based on the value of binary genes, the
input and hidden units are selected and the neural controller
is constructed.

The graph of nondominated front solutions for different
numbers of units is shown in Fig. 5. This figure shows that
as the neural controller complexity increases, the solutions
move to the lower-right corner, which indicates better
performance. Not surprisingly, the most complex neural
networks control the CR robot to perform both tasks by
switching between them based on the conditions in the
environment. The neural network that has seven units in the
input and hidden layers controlled the CR robot to collect
eight objects while working to maintain a short distance
between itself and the protected robot. In addition, the
number of units to complete the protection task is larger than
that of the object collection task: five and four units,
respectively.

In the following, we analyze the strategy employed by the
CR robot to complete single and multiple tasks as the
number of sensory units is reduced. Fig. 6(a) illustrates the
performance of a minimal neural structure with only one
sensory input (Arob) and one hidden unit for the protecting
task. When the protecting robot is visible the CR moves
rapidly keeping the protecting robot on its left side. As the
angle increases the angular velocity of the left wheel is
reduced but still remains larger than that of the right wheel.
Therefore, the protected robot escapes from the visual field.
Fig. 6(b) shows that when the protected robot is not visible
the H1 is fully activated. Due to the positive connection
between the H1 with Lmotor unit and the negative connection
with the Rmotor unit, as shown in Fig. 6(c), the CR rotates
clockwise until the protected robot again comes into the
visual field. However, the value of f1 is nearly three times
larger than that of the best neural controller with two sensory
input and three hidden units (Fig. 5).

Fig. 7(a) shows a successful robot controller with only
three sensory inputs (Dobj, Arob and PS4) along with two
hidden units that switches between the two tasks and arrange
to collect six objects while also following the protected
robot. Fig. 7(b) and 7(c) further illustrate the robot
controller’s performance, showing the unit activation values
and the Hinton diagram of the weight connections. When the
PS4 unit is active, due to the strong positive connections with
the H1 and H2 units, the CR robot ignores the visible objects
and just follows the protected robot. However, when the
protected robot changes direction, the activation of the PS4

unit becomes 0 and the CR switches to the object collecting
task. Therefore, the CR utilized the activation of the PS4 unit
to switch between the two tasks.

VI. CONCLUSIONS
This paper has experimentally investigated the

effectiveness of applying MOEAs to address the multiple
task robot performance problem. In particular, it was
demonstrated that in a single run of the MOEA, robust
neural controllers are generated with distinctly different
characteristics, ranging from performing each of the
assigned tasks to simultaneously performing different tasks,
by flexibly switching between them. Therefore, the user can
select the most appropriate neural controller based on the
task priority or the environmental conditions. Finally, we
applied the MOEA to generate efficient neural controllers
with a minimum number of sensory and hidden units for
multiple task performance. The robustness of evolved neural
controllers was also tested on the real hardware of the CR
robot, using visual, proximity and distance sensors.

REFERENCES
[1] A. Waibel, H. Sawai, and K. Shikano, “Modularity and scaling in

large phonemic neural networks,” IEEE Transactions on Acoustics,
Speech and Signal Processing, vol. 37, no. 12, pp.1888-98, 1989.

[2] L. Y. Pratt, J. Mostow, and C. A. Kamm, “Direct transfer of learned
information among neural networks,” in Proc. of the Ninth National
Conference on Artificial Intelligence (AAAI-91), pp. 584-589, 1991.

[3] S. Thrun and J. O'Sullivan, “Clustering learning tasks and the
selective cross-task transfer of knowledge,” In S. Thrun and L.Y. Pratt,
editors, Learning To Learn. Kluwer Academic Publishers, 1998.

[4] S. P. Singh, “Transfer of learning by composing solutions of elemental
sequential tasks,” Machine Learning, vol. 8, no 3, pp. 323-339, 1992.

[5] G. Capi and K. Doya, “Application of evolutionary computation for
efficient reinforcement learning,” Applied Artificial Intelligence, vol.
20, no. 1, pp. 1-20, 2006.

[6] S. Nolfi, “Evolving robots able to self-localize in the environment:
The importance of viewing cognition as the result of processes
occurring at different time scales,” Connection Science, vol. 14, no. 3,
pp. 231-244, 2002.

[7] G. Capi, and K. Doya, "Evolution of neural architecture fitting
environmental dynamics," Adaptive Behavior, vol. 13, no. 1, pp.53-66,
2005.

[8] D. Floreano, and F. Mondada, “Evolution of homing navigation in a
real mobile robot,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B, vol. 26, pp. 396-407, 1996.

[9] D. Cliff, and G. F. Miller, “Co-evolution of pursuit and evasion II:
Simulation methods and results”, From animals to animats 4, pp.
506-515, 1996.

[10] C. A. Coello Coello, D. A. Van Veldhuizen, and G. B. Lamont,
Evolutionary Algorithms for Solving Multi-Objective Problems,
Kluwer Academic Publishers, New York, 2002.

[11] H. A. Abbass “A Memetic Pareto Evolutionary Approach to Artificial
Neural Networks”, The Australian Joint Conference on Artificial
Intelligence, Adelaide, Lecture Notes in Artificial Intelligence LNAI
2256, Springer-Verlag, 1-12, 2001.

[12] R. Odagiri, Y. Wei, T. Asai, O. Yamakawa, and K. Murase,
“Measuring the complexity of the real environment with evolutionary
robot: Evolution of a real mobile robot Khepera to have minimal
structure,” Proc. IEEE Int. Conf. on Evolutionary Computation
(ICEC98), pp. 348-353, 1998.

2200

