
 
 

  

Abstract— While learning and evolution have been 
effectively applied to single task performance, multiple task 
performance still lacks methods that demonstrated to be both 
reliable and efficient. This paper introduces a new method for 
multiple task performance based on multiobjective 
evolutionary algorithms, where each task is considered as a 
separate objective function. In order to verify the effectiveness, 
the proposed method is applied to evolve neural controllers for 
the Cyber Rodent robot that has to switch properly between 
two distinctly different tasks: (1) protecting another moving 
robot by following it closely and (2) collecting objects scattered 
in the environment. Furthermore, the tasks and neural 
complexity are analyzed by including the neural structure as a 
separate objective function. The simulation and experimental 
results using the Cyber Rodent robot show that the 
multiobjective-based evolutionary method can be applied 
effectively for generating neural networks which enable the 
robot to perform multiple tasks, simultaneously. 

I. INTRODUCTION 
ESEARCH on intelligent agents has mainly focused on 
evolution or learning of individual perceptual-motor 

and cognitive tasks. Nevertheless, intelligent agents 
operating in everyday life environments often are required to 
perform multiple tasks simultaneously or in rapid alternation, 
which can be a challenge even for humans and primates.  

Several approaches have been proposed to address the 
problem of multiple task robot performance. The standard 
methodology in machine learning has been to break large 
problems into small, independent sub-problems, learn the 
sub-problems separately, and then recombine the learned 
pieces [1]. In [2], a different methodology has been used in 
which all the tasks are learned at the same time. Thrun et al. 
[3] presented a task-clustering algorithm that clustered the 
learning tasks into classes of mutually related tasks. In this 
approach, when the agent faced a new learning task, it first 
determined the most related task cluster then exploited 
information from this task cluster only. However, in all these 
approaches the tasks considered were similar with each 
other. Learning sequences of multiple decision tasks [4] or 
changing the agent behavior based on the environmental 
conditions [5] have also been undertaken. 

In addition to learning, the evolution of neural controllers 
is well known for providing a family of naturally-inspired 
algorithms which can successfully address a wide range of 

 
 

robot behavior learning problems [6], [7]. In evolutionary 
robotics, different constraints and objectives are typically 
handled as weighted components of the fitness function [8], 
[9], thus applying a Single Objective Evolutionary 
Algorithm (SOEA). For example, Floreano evolved neural 
controllers for Khepera robots to perform straight movement 
while avoiding obstacles [8]. The average rotation speed, 
absolute difference between the right and left wheels, and 
proximity sensor readings are all included in a single fitness 
function. Cliff co-evolved pursuer and evader in a simulated 
environment [9]. While the fitness score of the evader was 
simply the length of time it lasted before being hit by the 
pursuer, the fitness score for the pursuer was more 
complicated. The pursuer received fitness points for 
approaching the evader and bonus for hitting the evader. The 
bonus was dependant on the timing of the collisions. As the 
authors noted, they had to try many weight coefficients 
before they arrived at a successful combination.  

This article presents a novel approach for multiple task 
robot performance based on Multiobjective Evolutionary 
Algorithms (MOEAs) [10]. Unlike previous methods, in the 
experiments presented here, each task is considered as a 
separate objective function. The Nondominated Sorting 
Genetic Algorithm (NSGA) is used to generate the Pareto 
set of neural networks that tradeoff between the separate 
task performance.  MOEAs have been successfully applied 
to evolve neural networks in which the architectural 
complexity and performance are co-optimized [11].  

In this work, for the first time a MOEA is applied to 
evolve neural controllers for multiple task robot 
performance. The specific questions we ask in this study are 
whether: 1) MOEAs can successfully generate neural 
controllers for multiple task performance. 2) The evolved 
neural controllers optimized by MOEA in a simulated 
environment perform well in the step of real hardware 
implementation. 3) MOEAs can generate efficient neural 
controllers and provide information about the complexity of 
the tasks and environment. In order to answer these 
questions, in the experiments reported here, we consider the 
evolution of neural controllers for the Cyber Rodent (CR) 
robot that has to perform two different tasks: 1) protecting 
another robot by following it closely while it moves and 2) 
collecting objects scattered in the environment.  
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In the proposed method, we evolve one single neural 
controller for multiple task performance, considering 
information relevant to each task as the sensory input of the 
neural controller. As the number of tasks increases, 
additional sensory information related to each task must be 
considered, resulting in complex neural networks. This 
makes the evolution process difficult. In addition, the 
hardware implementation of evolved neural controllers may 
result in poor performance due to the increased error in the 
sensory data. In order to further investigate if the MOEA can 
also generate efficient neural controllers for multiple task 
performance, the structure of the neural network is included 
as a separate objective function.  

II. MULTIOBJECTIVE EVOLUTIONARY ALGORITHM 

A. Multiobjective Optimization Problem 
In multiobjective optimization problems there are many 

(possibly conflicting) objectives to be optimized, 
simultaneously. Therefore, there is no longer a single 
optimal solution but rather a whole set of possible solutions 
of equivalent quality. Consider without loss of generality the 
following multiobjective maximization problem with m 
decision variables, x parameters and n objectives:  
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The decision vector a is called Pareto-optimal if and only 
if a is nondominated regarding the whole parameter space X. 
Pareto-optimal parameter vectors cannot be improved in any 
objective without causing degradation in at least one of the 
other objectives. They represent in that sense globally 
optimal solutions. Note that a Pareto-optimal set does not 
necessarily contain all Pareto optimal solutions in X. The set 
of objective vectors corresponding to a set of Pareto-optimal 
parameter vectors is called "Pareto-optimal front".  

In extending the ideas of SOEAs to multiobjective cases, 
two major problems must be addressed: how to accomplish 
fitness assignment and selection in order to guide the search 
towards the Pareto-optimal set; how to maintain a diverse 
population in order to prevent premature convergence and 
achieve a well distributed, wide spread trade-off front. 
Different approaches to relate the fitness function to the 
objective function can be classified with regard to the first 
issue. The second problem is usually solved by introducing 
elitism and intermediate recombination.  

 
Fig. 1. Environment. 
 

III. MULTIOBJECTIVE EVOLUTION OF NEURAL 
CONTROLLERS 

A. Tasks and Environment 
The CR robot has to learn to perform two different tasks: 

protecting another moving robot by following it closely; and 
collecting objects scattered in the environment (Fig. 1). The 
entire environment is a rectangle of 4m x 3.5m surrounded 
by walls. There are 15 green colored objects scattered in the 
environment. The individual life time of each agent is 700 
time steps, where each time step lasts 0.1s. During this time 
the red color protected robot follows a rectangular trajectory 
with a constant velocity of 0.1m/s; at the end the protected 
robot returns to its initial position. 

B. Neural Architecture 
We implemented a feed-forward neural controller with 11, 

4 and 2 units in the input, hidden and output layers, 
respectively. The inputs of the neural controller are the angle 
(Aobj), distance (Dobj) and color (Cobj) of the nearest object, 
the angle (Arob) and color (Crob) of the protected robot, the 
readings of five proximity sensors (PSi) and the distance 
sensor (DS) in the front of the CR robot. The egocentric 
angle to the protected robot or nearest object varies from 0 to 
1 where 0 corresponds to 45o to the right and 1 is 45o to the 
left. The value of these neurons becomes -1 when the 
protected robot becomes invisible or there is no object in the 
visual field. The proximity sensors can measure up to 0.25m, 
while the distance sensor varies from 0.1m to 0.8m. The 
proximity and distance sensor reading varies from 0 to 1, 
where 0 means no obstacle and 1 means touching the 
obstacle.  

Random noise, uniformly distributed in the range of +/- 
5% of sensor readings, has been added to the angle of the 
nearest object, the angle of the moving robot, the distance 
sensor, and the five proximity sensors. Because the distance 
to the nearest object during the experiments is determined 
based on the number of pixels, the random noise in 
simulations is considered in the range of +/- 10%. Based on 
the characteristics of the CR robot visual sensor, in 
simulations, the visual distance to the nearest object is 
limited to 1.2m. 
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Fig. 2. Nondominated optimal solutions of different generations. 
 
The hidden and output units use sigmoid activation 

function: 
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where the incoming activation for node i is: 
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and j ranges over nodes with weights into node i.  
The output units directly control the right and left wheel 

angular velocities where 0 corresponds to no motion and 1 
corresponds to full-speed forward rotation. The left and right 
wheel angular velocities,  rightω and leftω , are calculated as: 
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where maxω is the maximum angular velocity and yright and 
yleft are the neuron outputs. The maximum forward velocity 
is considered to be 0.5 m/s. 

C. Evolution 
For any evolutionary computation technique, a 

chromosome representation is needed to describe each 
individual in the population. The genome of every 
individual of the population encodes the weight connections 
of the neural controller. The genome length is 52 and the 
connection weights range from -10 to 10. For the protecting 
task, the target distance dt between the CR robot and the 
protected robot is considered 0.3m. In order to minimize the 
difference between the target and real distance, dr, the fitness, 
f1, is considered as follows: 
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where max_st is the maximum number of steps.  
The fitness of the object collecting task, f2, is simply the 

number of objects collected during its individual lifetime. If 
an individual happens to hit the protected agent or the wall, 

the trial is terminated and a low fitness is assigned. 
Therefore, such individuals will have a low probability to 
survive. The following genetic parameters are used: 
Nger=100, Npop=50, σshared=0.4.  

IV. RESULTS 

A. MOEA Results 
In this section, we first discuss the best solutions obtained 

from the MOEA in terms of multiple task performance. All 
the simulations were performed on a Pentium 4 3.2GHz 
computer. 

Fig. 2 shows the nondominated optimal front for 
generations 1, 30, and 100, averaged for five different runs 
of MOEA. During the first 30 generations there is a great 
improvement of the quality and distribution of 
nondominated optimal solutions. The nondominated optimal 
front of 100 generation has a clear tradeoff between the two 
objective functions. Therefore, we can choose whether to 
select a neural network that controls the CR robot to perform 
as follows: only the robot protecting task (Box 1); only the 
object collecting task (Box 5); or both the robot protecting 
and object collecting tasks by flexibly switching between 
them (Box 2, Box 3, Box 4). 

The Box 3 neural networks induce the CR robot to 
simultaneously perform both tasks with the same priority, as 
shown in Fig. 3(a). The CR robot, while follows the 
protected robot, captured eight of the objects scattered in the 
environment. Fig. 3(b) shows that all sensory units are 
activated during the CR movement. The proximity and 
distance sensors help the CR robot to not hit the protected 
robot, even while it moves very close and perpendicular to 
the moving direction of the protected robot (around 150 and 
575 steps). The Hinton diagram of the Box 3 neural 
controller shows that Dobj has strong weight connections 
with hidden units [Fig. 3(c)]. This leads us to the conclusion 
that the CR robot switches between two tasks based on the 
activation of the Dobj unit.  

A. Hardware Experiments 
We implemented the evolved optimal neural controllers on 
the real hardware of the CR robot, which is a two-wheel 
driven mobile robot. A video capture of the CR robot 
controlled by Box 3 neural network is shown in Fig. 4. The 
protected robot has a red cover with a rectangular shape in 
order to be detected by the visual and proximity sensors. Fig. 
4 shows that the CR robot protected the moving robot, while 
also switching to the object collection task. 
However, there are two main differences between the 
simulated and real robot performance. First, the distance to 
the nearest object utilized by the CR robot to switch from the 
protecting to the object collecting task was longer in the real 
environment. 
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This is because in some situations more than one object 

entered into the visual field of the CR robot, resulting in an 
increase in the pixel number. The other difference, observed 
during the performance of the protecting task, was the 
relative position between the CR and the protected robot. In 
the hardware implementation, the CR robot moves further 
ahead relative to the protected robot. 

The reason is that in the simulated environment, the angle 
to the protected robot is calculated relative to its center. On 
the other hand, in the real hardware experiments, the angle is 
calculated based on the position of the red blob in the visual 
sensor. Therefore, during the experiments, even if the center 
of the protected robot is out of the visual field, half of the 
front of the robot is still visible. However, despite these 
differences, the CR still performed the multiple tasks well.  
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Fig. 4. Video capture of the CR robot during the experiment. 
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Fig. 3. CR multiple tasks performance (Box3). (a) CR trajectory. (b) Unit activation. (c) Hinton diagram of connection weights. 
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V. NEURAL AND TASK COMPLEXITY 
The previous experiments demonstrated that our approach 
can effectively be applied to evolve neural controllers for 
multiple tasks execution. However, as the number of tasks 
increases, additional sensory units related to each task have 
to be considered. This results in large neural controllers and 
a long genome, making it difficult for the MOEA to find the 
Pareto optimal set. In addition, the error introduced by the 
sensory input units may lead to poor performance by the 
evolved neural controllers.  
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Fig. 5. Performance of neural controllers with different number of units. 
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Fig. 6. Performance of neural controller with one sensory input and one 
hidden unit for protecting task. (a) CR trajectory. (b) Unit activation. (c) 
Hinton diagram of weight connections. 

In the following, the results of applying MOEAs to evolve 
efficient neural controllers are presented. In contrast with 
previous approaches [12], where the fitness function of an 
obstacle avoidance task and the structure of the neural 
controller are included in a single fitness function, we 
considered the structure of the neural controller as a separate 
objective function. The complexity of the evolved neural 
structure generated by MOEA can also be used as an index 
to empirically measure task complexity.  

In addition to 52 genes encoding the weight connections 
of the neural network, the genome encodes 15 binary genes 
(11 for the sensory input units and 4 for the hidden units), 
which indicate if an input or hidden unit exists in the 
network or not. Rather than using variable-length genotypes 
to allow for varying numbers of hidden and memory units, 
we use fixed-length genotypes with the maximum number of 
input and hidden units. This encoding method allows an 
input or hidden unit to evolve even if it is not active during a 
certain period of the evolutionary optimization process. The 
objective function f3 is constructed as follows: 

hi nrnrf +=3                              (11) 
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(c) 
Fig. 7. Performance of neural controller with three sensory inputs and two 
hidden units. (a) CR trajectory. (b) Unit activation. (c) Hinton diagram. 
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where nri and nrh are the number of input and hidden units. 
The minimum number of input and hidden units is 
considered to be two. Based on the value of binary genes, the 
input and hidden units are selected and the neural controller 
is constructed. 

The graph of nondominated front solutions for different 
numbers of units is shown in Fig. 5. This figure shows that 
as the neural controller complexity increases, the solutions 
move to the lower-right corner, which indicates better 
performance. Not surprisingly, the most complex neural 
networks control the CR robot to perform both tasks by 
switching between them based on the conditions in the 
environment. The neural network that has seven units in the 
input and hidden layers controlled the CR robot to collect 
eight objects while working to maintain a short distance 
between itself and the protected robot. In addition, the 
number of units to complete the protection task is larger than 
that of the object collection task: five and four units, 
respectively.  

In the following, we analyze the strategy employed by the 
CR robot to complete single and multiple tasks as the 
number of sensory units is reduced. Fig. 6(a) illustrates the 
performance of a minimal neural structure with only one 
sensory input (Arob) and one hidden unit for the protecting 
task. When the protecting robot is visible the CR moves 
rapidly keeping the protecting robot on its left side. As the 
angle increases the angular velocity of the left wheel is 
reduced but still remains larger than that of the right wheel. 
Therefore, the protected robot escapes from the visual field. 
Fig. 6(b) shows that when the protected robot is not visible 
the H1 is fully activated. Due to the positive connection 
between the H1 with Lmotor unit and the negative connection 
with the Rmotor unit, as shown in Fig. 6(c), the CR rotates 
clockwise until the protected robot again comes into the 
visual field. However, the value of f1 is nearly three times 
larger than that of the best neural controller with two sensory 
input and three hidden units (Fig. 5). 

Fig. 7(a) shows a successful robot controller with only 
three sensory inputs (Dobj, Arob and PS4) along with two 
hidden units that switches between the two tasks and arrange 
to collect six objects while also following the protected 
robot. Fig. 7(b) and 7(c) further illustrate the robot 
controller’s performance, showing the unit activation values 
and the Hinton diagram of the weight connections. When the 
PS4 unit is active, due to the strong positive connections with 
the H1 and H2 units, the CR robot ignores the visible objects 
and just follows the protected robot. However, when the 
protected robot changes direction, the activation of the PS4 

unit becomes 0 and the CR switches to the object collecting 
task. Therefore, the CR utilized the activation of the PS4 unit 
to switch between the two tasks. 

VI. CONCLUSIONS 
This paper has experimentally investigated the 

effectiveness of applying MOEAs to address the multiple 
task robot performance problem. In particular, it was 
demonstrated that in a single run of the MOEA, robust 
neural controllers are generated with distinctly different 
characteristics, ranging from performing each of the 
assigned tasks to simultaneously performing different tasks, 
by flexibly switching between them. Therefore, the user can 
select the most appropriate neural controller based on the 
task priority or the environmental conditions. Finally, we 
applied the MOEA to generate efficient neural controllers 
with a minimum number of sensory and hidden units for 
multiple task performance. The robustness of evolved neural 
controllers was also tested on the real hardware of the CR 
robot, using visual, proximity and distance sensors.  
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