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Abstract— For human-robot cooperation in the context of
human-augmentation tasks, the stability of the control model
is of great concern due to the risk for the human safety rep-
resented by a powerful robot. This paper investigates stability
conditions for impedance control in this cooperative context and
where touch is used as the sense of interaction. The proposed
analysis takes into account human arm and robot physical char-
acteristics, which are first investigated. Then, a global system
model including noise filtering and impedance control is defined
in a state-space representation. From this representation, a
Lyapunov function candidate has been successfully discovered.
In addition to providing conclusions on the global asymptotic
stability of the system, the relative simplicity of the resulting
equation allows the derivation of general expressions for the
critical values of impedance parameters. Such knowledge is of
great interest in the context of design of new adaptive control
laws or simply to serve as design guidelines for conventional
impedance control. The accuracy of these results were verified
in a user study involving 7 human subjects and a 3-dof parallel
robot. In this experiment, the real effective stability frontier was
defined for each subject and compared with values predicted
using the Lyapunov function.

I. INTRODUCTION

Robots having the faculty to assist and interact with human
beings have been for a long time strictly a subject of science-
fiction. However, thanks to the recent drastic increase in
computing power of microprocessor units and also to the
commercial availability of new low-cost sensor technologies,
human robot cooperation (HRC) is now an emerging field.
One of the main requirements to build robots with such
capabilities is that they could understand the intentions of
humans and act in accordance to them. Using the sense of
touch as the medium of interaction, this challenge is related
to the general problem of control of constrained motion.

This problem has been well known for a few decades in
robotics and many different control schemes have already
been proposed. Among the schemes that satisfy HRC task
requirements, the control algorithm that is probably the
most commonly used is the so called impedance control
[1]. However, like almost all the proposed algorithms for
the control of constrained motion, this scheme is known to
become unstable when facing a stiff environment [2]. Many
studies cover this issue for impedance control in a general
task perspective [2], [3], but very few cover this subject in
the context of HRC.
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Having a good understanding of the stability limit of the
control algorithm is fundamental for human safety when the
latter are physically involved in a robot task. Due to its
mechanical power, an unstable robot could severely injure
a human being or even cause a fatal accident. From a
control design point of view, this knowledge could also lead
to design guidelines that could be helpful for developing
new adaptive control laws that would no longer be a mere
compromise between performance and stability.

Kazerooni in [4] defined general conditions for stability
using the small gain theorem for extender (i.e., a class
of robot manipulator worn by humans to increase human
mechanical strength). The author particularly points out the
trade-off that needs to be made in the design of such systems
between stability of the closed-loop system and the dynamic
performance. Later, in [5] Tsumugiwa et al. proposed to in-
vestigate the stability of the impedance control scheme in the
context of HRC by a root locus analysis using pole locations
of the characteristic equation. However, no experimentation
was conducted with human subjects executing cooperative
task to validate the approach. Moreover, the mathematical
complexity of the approach did not allow the inference
of general formulation for stability frontiers, and hence a
computer solving algorithm is needed for each new designed
system.

This paper presents a new analysis of the stability of
impedance control for human-robot interaction based on Lya-
punov stability theory. The relative simplicity of the resulting
equation allows to define analytically the stability frontier as
well as the critical value for each impedance parameter. The
global system including both physical parts of the interaction,
is first modeled. Then, a Lyapunov function candidate to the
closed loop system is found. Using this function, stability
frontiers and critical values of each impedance parameter are
defined. Finally, assumptions made during the modelling of
human and robot physical characteristics and stability results
are verified in different series of experiments involving 7
human subjects.

II. MODELLING

A. Model of the physical characteristics of the human arm

In [5] only the stiffness of the arm and a delay associated
with the human reaction were taken into account as
human characteristics in the study of HRC stability.
Obviously, stiffness is a very important property of the
physical characteristics of the arm. However, damping
effects and hand soft tissues also have a considerable impact
on the interaction stability for HRC using the sense of touch.
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1) stiffness: The human arm has a very dominant spring
like characteristic that we all learn to control at an early
age and that allows us to perform very dextrous movements
and tasks. This stiffness greatly depends on the spatial
configuration of the arm but also varies with time as
a result of the activation level in bi-articulate muscles.
The stiffness matrix is well known to give an ellipsoid
shape distribution of the human Cartesian stiffness. For a
given configuration, only the size but not the orientation of
this ellipse can be modified by the level of cocontraction [6].

2) Damping: The natural viscous properties inherent to
human muscles has been demonstrated [7] to be of great
importance in the stabilization of human movements thanks
to the role that they play in disturbance rejection.

As seen in the preceding paragraph, humans have the
natural ability to adjust the stiffness of their arms using dif-
ferent activation levels in antagonistic and agonistic muscles.
Some studies [8], [9] have shown that viscosity properties
of the arm also simultaneously increase or decrease with
the stiffness variation. The investigation of the relationship
between these two characteristics in [9], [10] led to the
conclusion that the damping ratio is constant regardless of
bi-articulate muscle activation level. This fact gives a direct
relation between the damping effect and the square root of
the stiffness.

According to these results the human arm damping effect
in each Cartesian direction will be modelled here, using the
following equation:

d = α
√
kh (1)

where d is the damping coefficient, kh is the stiffness in the
corresponding direction and α is a weighting factor. The
analysis of the Cartesian space data obtained in the human
cooperation study of [11] also supports this relationship.

3) Hand Soft Tissue Properties: Human-robot cooperation
using touch as the medium of interaction involves also the
effect of the superposed hand skin, fat and muscle elasticity
properties since the interaction is made via this part. Because
of its very short limited range of compression, this elasticity
property cannot simply be added in series with the elasticity
of the arm.

Around the origin and with other initial conditions close
to zero, the stiffness of the skin alone can be sufficient to
define stability of the interaction, since for these conditions
the equivalent stiffness of the whole system is roughly equal
to the stiffness of the skin. This human soft contact property
is very important for grasping stability. However, the use of
this stiffness alone could not guarantee stability for all state
vector values. For some given state values the skin can reach
its maximum compressibility and then, the global stiffness
could shift to the one of the arm. Since such perturbations or
conditions will always happen in a real implementation, the
effect of the skin will be neglected in the human model with
the consequences that for some very low state values, the
critical stability frontier could be slightly overshot. Moreover,

to the best knowledge of the authors, the properties of the
hand soft tissue are well covered in the literature but not
in a way that could be useful in this context. Therefore, it
could be difficult to take into account this characteristic in
the model.

B. Robot model

It may appear useless to consider the robot stiffness since
the latter is often very high, and its effect on the coupled
stiffness is almost negligible. This statement is true for most
current robots. However, there is a strong design effort at
this moment to build a new generation of human-safe robots
with low impedance and some compliance. In this case,
the complete stiffness of the robot may have a considerable
impact on the coupled stiffness with positive repercussions
on the global stability of the system.

In most cases, robot links are a lot stiffer than the
actuators. Under this assumption, the robot stiffness can be
represented by the stiffness of its actuator. Starting with the
well-known relation:

τ = JT
q F (2)

where τ is the vector of joint torques, Jq is the Jaco-
bian matrix of the robot and F is the vector of cartesian
forces/torques. We can relate the joint stiffness (Kq) to the
Cartesian one ( Kx) using the derivation proposed by Chen
and Kao [12]. Following this, eq. (2)can be differentiated
to yield:

dτ = (dJT
q )F + JT

q (dF) (3)

Using the definition of stiffness, this equation can be rear-
ranged as:

JT
q Kxdx = Kqdq−

(
∂JT

q

∂q
dq

)
F (4)

where q and x are respectively joint and Cartesian coordinate
vectors. With the use of the relation:

dx = Jqdq, (5)

the expression of the Cartesian stiffness matrix of the ma-
nipulator becomes:

Kx = J−T
q

(
Kq −

∂JT
q

∂q
F

)
J−1

q . (6)

Hence, under the assumption of a high structural stiffness
we have:

Kr = Kx (7)

where Kr is the stiffness matrix of the robot. If the robot
is designed with the objective of a low inertia and the links
have a relatively low stiffness— like sometimes with parallel
robots— the structural stiffness should be considered. For
this case, the global robot stiffness matrix become:

Kr = (Kx + Ks)
−1 KxKs (8)

where Ks is the structural stiffness of the links. Sometimes,
in human robot cooperative tasks, the interaction does not
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directly happen between the robot and the human but via an
object held in cooperation. For this case, the object should
be considered as a structural extension of the robot.

C. Coupled stiffness

Since the human and the robot are directly in constant
contact during the interaction, the effective stiffness Keff

of the coupled system is given by:

Keff = (Kh + Kr)
−1 KhKr (9)

where Kh and Kr are respectively the human and robot
Cartesian stiffness, as defined in the above sections.

D. Model of Impedance Control scheme

In the present analysis, the dynamics of the robot will be
modelled as its given impedance characteristics. The general
impedance equation can be represented as:

F = mẍ + cẋ + kx (10)

where F is the force vector, x the displacement vector and
m, c and k are the mass, damping and stiffness parameters.
However, in HRC, virtual stiffness is often set to zero since
this parameter can become an obstacle for carrying tasks [1].
The impedance equation is then reduced to:

F = mẍ + cẋ. (11)

Typically, impedance control in HRC implies the use of a
force sensor. Such a sensor is often very noisy and requires
in most cases the use of a filter. The use of a filter has a
major impact on the stability since it induces delays in the
feedback. A first order filter will be assumed in the model.
Such a simple filter is probably the most commonly used.
The transfer function for this filter Gf is:

GF (s) =
1

Ts+ 1
(12)

where T is the time constant of the filter.
Even if robot controllers always run in a discrete mode

with the consequence of a delay equal to the sampling period,
the servo rate used is commonly very high. The effect of the
sampling is thus marginal compared to the impact of the
low dynamics of the noise filter and the impedance function.
The sampling delay will therefore be neglected here. This
assumption will not induce significant errors. However, if the
sampling period becomes the critical delay in the system, it
should be considered.

Since the human and the robot are rigidly in contact, the
Cartesian position is assumed to be the same as the one
of the robot. Figure 1 gives a schematic representation of
the model including the human. Combining the impedance
model and the filter leads to a third order function that can
be represented in state space by the following system of
equations:

ẋ1 = x2

ẋ2 = x3

ẋ3 =
F − (m+ cT )x3 − cx2

mT
(13)

Force Velocity Position Effective Position1
1

Robot

Noise

Noise

Keq

Interaction stiffness

1
s

Integrator

1/c
m/c.s+1

Impedance Model

d

Human damping

1
T.s+1

Filter

Fig. 1. Representation of the system.

where x1, x2 and x3 are the state variables. Assuming that
the human operator is in direct contact with the robot or with
an object supported by the robot, the feedback can be written
as:

F = −Keqx1 − dx2 (14)

which leads to the following closed-loop system:

ẋ1 = x2

ẋ2 = x3

ẋ3 =
−Keqx1 − (m+ cT )x3 − (c+ d)x2

mT
. (15)

Such a system can be represented in state space by:

ẋ = Ax (16)

with the following state matrix:

A =
1
mT

 0 mT 0
0 0 mT
−Keq −(c+ d) −(m+ cT )

 . (17)

This state matrix will be used in the next section to investi-
gate the stability condition of the control scheme.

III. STABILITY ANALYSIS USING LYAPUNOV FUNCTION

Since the present system is linear, we could simply look
at the eigenvalues of the 3 × 3 state matrix to conclude on
stability. However, although the characteristic polynomial is
clearly simple, the expressions of the roots are not. While we
can find a general analytic expression for critical impedance
mass using these roots solved with the help of a computer,
their complexity does not allow us to find relations for critical
impedance damping, which is more a subject of interest.
Using the so-called Lyapunov direct method for stability
will allow some simplifications that will easily lead to such
expressions.

A. Lyapunov Candidate

From the Lyapunov theorem [13] we know that if there
exists a scalar function V of the state x, with continuous
first order derivatives such that

V (x) is positive definite
V̇ (x) is negative definite
V (x)→∞ as ‖x‖ → ∞

then the equilibrium at the origin is globally asymptotically
stable.
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Starting with the general Lyapunov candidate:

V (x) = xT Px, (18)

the first condition for global stability will be fulfilled if P
is positive definite. This function also clearly satisfies the
condition of infinity for infinite state values.

The time derivative of this function can be expressed as:

V̇ (x) = ẋT Px + xT Pẋ = −2xT Qx. (19)

If matrix Q is positive definite — with the consequence of
V̇ (x) being negative definite — the second condition will
be satisfied and global stability of the system in the sense
of Lyapunov will be guarantee. Substituting eq. (16) into
eq. (19) leads to the so-called Lyapunov equation, which
can be used to find a Lyapunov function candidate:

AT P + PA = −2Q. (20)

For computational simplicity we will assume Q = I. This
matrix is obviously a positive definite matrix. Substituting
all the values into eq. (20), leads to the following matrix
equationp21 + p12 + 2 p22 + p13 r1

p31 + p22 p32 + p23 + 2 r2
r1 r2 r3

 = 0 (21)

with

r1 = p11Keq+(c+d)p12+(m+cT )p13
−mT + p23 (22)

r2 = p21Keq+(c+d)p22+(m+cT )p23
−mT + p33 (23)

r3 = (p13+p31)Keq+(c+d)(p23+p32)+2(m+cT )p33
−mT + 2. (24)

The four equations given by the upper-left sub-matrix of
eq. (21) can be easily solved, leading to:

p12 = p21 = p23 = p32 = −1 (25)

and
p13 = p31 = −p22. (26)

Using these results, matrix P can be greatly simplified and
becomes:

P =

 p11 −1 −p22

−1 p22 −1
−p22 −1 p33

 . (27)

Substituting this simplified matrix into eq. (20) gives a fully
constrained system of 3 equations that can be solved easily.
Solving these equations, one has

p11 = B1m3+B2m2+B3m+B4
Keq(−KeqT+c+d)m+c2T+c T d (28)

p22 = B1m2+(3 c T+Keq+T d)m+c2T 2+k T c
(−KeqT+c+d)m+c2T+c T d (29)

p33 = Keq
2+Keq(m+Tc)+c2+2cd+d2+mTd
(−KeqT+c+d)m+c2T+c T d (30)

(31)

with

B1 = 1 + T 2 (32)

B2 = Keq + 3 c T + T 2Keq (33)

B3 = KeqT (c− d) + c2 + 2 c d+ d2 + 3 c2T 2 (34)

B4 = c2T 2(Keq + cT ) + cT (c2 + 2cd+ d2). (35)

B. Positive definiteness of matrix P
A necessary condition for a matrix to be positive definite is

that all its diagonal entries be positive. From this statement,
we can conclude that the system is unstable when p11, p22 or
p33 become negative. Due to their physical meaning Keq, d, c
and m will always be in <+. Hence, it can be easily seen that
the numerator of eqs. (29, 30, 31) will always be positive.
Therefore, the only way that the diagonal elements of matrix
P become negative is that the denominator, which is the same
for all terms, becomes negative. The system is thus clearly
unstable when:(

(−KeqT + c+ d)m+ c2T + c T d
)
< 0 (36)

This condition gives some indications on instability but is
not a priori sufficient to describe if the system is stable. A
necessary and sufficient condition for a matrix P(n×n) to be
positive definite is, that all its principal minors are positive
The first leading minor is given directly by coefficient p11.
Positiveness definition of this term results directly on the
sign of eq. (36). While it can be shown that the third one
is always positive, to the best knowledge of the authors it
is only possible to prove that the second leading minor is
positive when the first one is also positive. From this result, it
follows that the necessary condition for positive definiteness
is in this case sufficient and then the sign of eq. (36) can be
used to conclude on the stability of the impedance control
scheme in the context of HRC.

C. Critical impedance parameters
It was shown in the preceding subsection that eq. (36) is

sufficient to determine when the system is globally asymp-
totically stable in the sense of Lyapunov. Using this low
order equation, a relation giving the critical frontier for each
impedance parameter can be found.

We can note that for given characteristics of the human
operator (Keq and d) and the filter that needs to be set,
eq. (36) is linear in m. Critical mass parameters can be found
when this function is equal to zero, i.e., when the system is
critically stable. This equation has only one solution given
by:

mc = − c T (c+ d)
−KeqT + c+ d

. (37)

Probably more important, the critical damping parameter
is given by finding the roots of eq. (36) with c as a variable.
Since this equation is quadratic, two roots can be found;
one negative and the other almost always positive. Due to
the physical meaning, critical damping will be given by the
positive root, namely:

cc =
−(m+ Td) +

√
m2 − 2mTd+ (d2 + 4Keqm)T 2

2T
.

(38)
If this equation leads to a negative result, then the control
is stable for any positive value of the damping coefficient.
This can happen when the stiffness is very low. This result
indicates that the closed-loop function tends to become a
simple mass and damping system, which is known to have
an infinity of equilibrium points.
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Fig. 2. Posture of the human during the interaction with the robot.

IV. EXPERIMENTAL VALIDATION

A. Objective of the experiments

The stability control analysis presented in this paper aims
at providing direct mathematical tools to design new control
laws for HRC. Thus, this section will illustrate the capability
of the method described above to predict the stability frontier
for impedance control on a real cooperative system.

The first part of the experiment was conducted using a
very simple fake human arm built essentially of aluminum
and springs. This preliminary test was first made to help
us verify the accuracy of our implementation of the Mussa-
Ivaldi [6] procedure to identify stiffness, since this value is
already known from the manufacturer. Also, the use of this
simple system allowed us to test our conclusion on stability
for impedance control without having to deal with all the
uncertainties associates with a real human arm.

The next set of experiments was conducted with real
human subjects interacting with a robot. The stiffness of
their arms was first estimated and then the critical damping
parameters were determined experimentally.

B. Experimental setup

The study was performed with the help of 7 different
subjects of age ranging from 21 to 30. This group was formed
of 4 males and 3 females. Five of them were right-handed and
the other two were left-handed. Except for two male subjects,
all of them had never interacted with a robot previously.

The robot used for this experiment, was the Tripteron
[14], a 3-DOF parallel robot. This robot is a fully decoupled
translational parallel manipulator and hence the Jacobian
matrix is the identity matrix in all configurations and so
dexterity remains constant over all the workspace. This
characteristic is very useful in the context of HRC because
the human operator does not have to consider the possibility
of encountering a singular configuration. The use of this
parallel manipulator also allows to cover a wide range of
human motion in terms of acceleration and velocity since
the Tripteron can perform accelerations higher than 5g. A
six-axis force/torque sensor ATI mini-40 was mounted on
the end-effector. In order to minimize the effect of the noise

TABLE I
STIFFNESS ESTIMATION (N/M) AND CRITICAL DAMPING (NS/M) FOR

THE SIMPLE SPRING HUMAN ARM MODEL

Kh Kh estimated Predicted cc Experimental cc

Spring 1 5500 5347 94.9 92
Spring 2 3200 3114 70.5 69
Spring 3 2500 2287 59.3 58

on the force sensor, a low pass filter with a time constant
of 0.1125s was used. The controller is implemented on a
real-time QNX computer with a sampling period of 2ms.

C. Experimentation and results

1) Fake human arm experimentation: The experimen-
tation with the fake human arm was conducted using 3
different springs. The damping effect was neglected due to
its low value. The virtual mass of the impedance model
was set for this experiment to 2 kg. Table I shows the
stiffness estimation results, the experimental critical damping
frontier and the predicted one. It can be seen that both
are very close and that in the case of low human model
uncertainties, the proposed method for stability investigation
adequately predicts the stability behaviour of the robot. The
estimated stiffness appears to be always lower than the
manufacturer’s specification. However, it is recalled that this
stiffness considers also the effect of the robot stiffness with
the consequence of lower results.

2) Stiffness identification: Figure 2 shows the human po-
sition selected for the interaction with the robot. This position
was experimentally found to give a very stiff arm behaviour
in one direction. In this case, the maximum eigenvalue for
the ellipse representing the stiffness matrix is clearly oriented
parallel to the human arm. Such a position was used to
simplify our identification test since investigation of the
human arm stiffness is not the main focus of this paper.
Following this, only the stiffness in this principal direction
was evaluated.

As mentioned in the preceding section, stiffness character-
ization was implemented according to the Mussa-Ivaldi [6]
procedure. The same robot was used for the arm characteriza-
tion as for the interaction stability test, with the consquence
of the resulting stiffness already taking into account the
stiffness of the robot. This identification test, in which a
human was asked to contract the muscle of their arm at their
maximum level, was performed eight times and the average
was taken as the stiffness value. Figure 3 shows the estimated
stiffness for the 7 subjects.

3) Critical damping estimation: The values obtained in
the preceding section were used to compute the estimated
stability frontier for the impedance control for each subject
in order to compare with experimental results. A human
damping characteristic directly related to the square root
of the stiffness was taken into account (α = 1). During
this experiment, the subjects were asked to keep the same
position and level of muscle contraction as during the
arm characterization procedure. On the robot’s side, the
impedance mass parameter was set to 2 kg and the damping
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was initially set to 75 Ns
m . This value has been progressively

lowered by increments of 1 Ns
m until the human started to

feel cooperation instability.
Since humans can only contract their muscle at a same

level for a short period of time, it was important to keep
the experimentation as short as possible. Therefore, only the
critical damping was targeted in this experiment. Instability
can obviously occur for a different value of mass parameters,
depending on the rest of the system. However, the higher the
mass parameter for which instability happens, the lower is
the frequency of the resulting increasing oscillation. At some
point the frequency is so slow that it becomes very hard for
the human subject to conclude whether the control is really
stable or not around the frontier. Also, experimentations
in [11] showed that a fixed low mass should be targeted
for HRC. Figure 4 shows both predicted and experimental
critical damping parameters. Predicted results where only the
stiffness is taken into account in the human model is also
provided on this graph. This is to illustrate the impact of
neglecting the viscous effect in the human arm, like in the
stability study of [5].

It can be observed on this figure, that the method proposed
in this paper is relatively good at predicting the stability fron-
tier of the impedance control in an HRC context. However,

the method appears to always slightly overestimate this fron-
tier. This can be related to the fact that we neglect the skin
softness in our model but probably more to the approximate
relation we assumed for the human arm damping. Finally, the
results where only stiffness has been taken into account for
the human characteristics, largely overestimate the frontier.

V. CONCLUSION

In this study, we proposed to investigate the stability of
impedance control in the context of human-robot cooperation
using Lyapunov theory. A model of both human and robot
characteristics was built and a Lyapunov function candidate
for the whole system was found. Using the relatively simple
equation obtained, we defined general stability frontiers but
also critical values of each impedance parameter to serve
as design guidelines. These useful tools were observed to
provide accurate prediction of the stability in a real HRC
context during an experimental validation, involving 7 hu-
man subjects. Future work will focus on the integration of
these results to build new adaptive control laws that could
guarantee global stability of the control algorithm.
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