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Abstract— This paper describes how the use of panoramic
cameras can dramatically simplify safety issues for a robot
arm moving in close proximity to human beings, since they
can simultaneously observe a 360◦ field of view. We present in
this context an approach to visual servoing in which both the
manipulator as well as any other moving object are tracked.
Reliability and robustness are enhanced by adaptative back-
ground modelling and global illumination change detection.

I. INTRODUCTION

In recent years, research in robotics has focused on devel-
oping autonomous robot systems capable of performing some
of our daily tasks. As the robot is continuously interacting
with its environment, its dependability is based on adequately
performing its tasks and guaranteeing the safety of all
elements around it, mainly when they are human beings. The
last issue is specially necessary when the robot is moving
in unknown, dynamic environments and it is performing
manipulation tasks (such as picking up and carrying items
or opening and closing doors) because the system is larger
and most sophisticated and the damage caused to the objects
around it can be considerable.

Although a variety of sensors have been developed to
prevent or detect collisions with robot manipulators such as
cages, laser fencing or visual acoustic signals, they are not
suitable for one that operates in human-populated, everyday
environments. An alternative device is a fisheye camera.
It provides panoramic vision whereby rich information is
obtained, which has proven to be useful for autonomous
robot navigation and surveillance. We propose a mobile
manipulator which incorporates a visual system composed of
N (> 1) fisheye cameras mounted on the robot base, pointing
upwards to the ceiling, to guarantee the safety in its whole
workspace. Figs. 1 depicts our experimental setup, which
consists of a mobile Nomadic XR4000 base, a Mitsubishi
PA10 arm, and two fisheye cameras (Foculus FO124TC
IEEE1394 cameras, with FUJINON-YV2.2X1.4A-2 lenses
which provide 185◦field of view).

The complete workspace can be covered with only two
cameras placed at both sides of the manipulator. Neverthe-
less, additional cameras allow the straightforward recovery
of 3D information, increasing the robustness and thus the
dependability of the setup. The software system is scalable
to any number of cameras, since a distributed, agent-based
approach is used [1].
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Fig. 1. Experimental setup: external view of the arm and cameras.

We present two different visual applications to cope with
the safety problem. On the one hand, a visual servoing
approach based on fisheye cameras which can track the
motion of the manipulator. On the other hand, an adaptative
background modelling combined with a global illumination
change detection has been developed to track any moving
object in the robot workspace and its surrounding area.

II. FISHEYE VISION FOR DEPENDABLE
MANIPULATION

Visual control for central catadioptric cameras [2], [3]
has been extensively studied and many applications have
been demonstrated (e.g. obstacle recognition [4], formation
control [5], occupancy grids [6]), but little or no attention
has been devoted to fisheye cameras. The vision acquired
by a fisheye lens is somehow similar to human vision from
the point of view of resolution distribution. However, fisheye
lenses introduce radial distortion which is difficult to remove,
and they lack a single view point, having instead a locus of
viewpoints [7].

Nevertheless, a visual servoing interaction matrix can be
derived for a fisheye projection. Using simple projection
equations, an interaction matrix can be obtained, which takes
into account image data, and the distance to the object.

Tracking is simplified, since the background consists
mainly of the ceiling of rooms (homogeneous colors, semi-
structured, no obstacles, few moving objects). People track-
ing is limited to the border of the fisheye image (efficient).
Motion detection is first used to track people approaching to
the robot.

The goal of the system is to augment the dependability
of the visually-controlled arm by redundantly covering the
whole workspace of the manipulator with several fisheye
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cameras. In the next section, we will develop the theoretical
fisheye control model needed in such setup for visually
guided tasks.

III. FISHEYE VISUAL CONTROL MODEL

The fisheye projection is based on the principle that, in
the ideal case, the distance between an image point and the
principal point is linearly dependent on the angle of incidence
of the ray of the corresponding object point.

For a 180 degree fisheye lens, an object point’s ray with
an angle of incidence of 90 degrees is projected onto the
outer border of the circular fisheye image [8]. The relation
between the angle of incidence and the resulting distance
of the image point from the principal point is constant for
the whole image. Consequently, the following ratio equation
holds for the fisheye projection:

α

r
=

π

2R
(1)

where α is the angle of incidence, r =
√
u2 + v2 is the

distance from the image point to the optical axis, R is the
image radius, and (u, v) are the image coordinates.

For the sake of simplicity, we will assume that there is no
distortion and the principal point is centered. The interaction
matrix can then be fully derived (2). We use the method
proposed by Espiau et al. [9]: first the motion equations of a
3D point are transformed to its spherical coordinates. Then, a
simple relationship between the spherical coordinates and the
fisheye image projection is used to compute the interaction
matrix of an image point.

The resulting matrix depends on the image coordinates
(u, v), the distance from the image point to the optical axis r
and the angle of incidence α computed in (1). As in standard
pinhole visual servoing, 3D information is needed. In this
case, the distance d to the 3D point. Not surprisingly, this
information is only needed in the translational part of the
matrix, not in the rotational part.

A simpler formulation is obtained if the image points are
expressed in polar coordinates (3). Instead of (u, v), the
feature vector consists of (r, θ) for each point. Not only
the computations are simplified, but the behavior during the
control task is different. In visual servoing, the features are
expected to go through a straight trajectory from their current
to desired values. If image Cartesian coordinates are used,
the point will move along a straight line. If image polar
coordinates are used, the point describes an arc. The behavior
of the 3D trajectory of the end-effector is different too, as
will be shown in the experiments.

The approach can be easily extended to multiple cameras,
by stacking the interaction matrix of each camera multiplied
by the appropriate screw transformation matrix [10].

The dependability of the resulting visual control is in-
creased with respect to other approaches [11] due to the
following reasons:

• Few calibration parameters: compared to the pinhole
model, fisheye cameras are simpler to calibrate. Distor-
tion is included in the projection model.

• Wide field of view: the image covers the whole
workspace of the manipulator, thus the features will
always remain inside. As a minor drawback to take into
account, the resolution decreases in the border of the
image, thus feature detection is harder yet feasible.

• Camera redundancy: multiple cameras overcome the
problem of occlusion of the arm and other objects in
the scene. Feature redundancy also adds robustness to
the control law.

IV. SURVEILLANCE APPLICATION

As in most of surveillance applications, the visual system
we present for tracking humans or other objects can perform
two main tasks:

• moving object recognition and segmentation from the
surrounding environment

• obtaining information about the proximity of the de-
tected objects to the robot system. This information
is necessary to make correct decisions about robot
movements in order to achieve the robot goal without
causing any damage

Research in human and object recognition and segmenta-
tion has taken a number of forms. However, it is important
to pay attention to a key issue in vision applications in which
dependability is based on the ability of adapting to several
changes in the system environment. So, it must cope with
two different kinds of changes:

• minor dynamic factors, such as, for example, blinking of
computer screens, shadows, mirror images on the glass
windows, curtains movement or waving trees, as well as
changes induced by camera motion, sensor noise, non-
uniform attenuation or atmospheric absorption, among
other things

• sudden changes in illumination such as switching on/off
a light or opening/closing a window

Different approaches have tried to adapt to these dynamic
factors, but they fail when a sudden change in illumination
occurs or when they are building an initial background model
if someone or something appears in the scene [12], [13].
The novel algorithm we propose here works at two levels to
overcome these problems:

• pixel level, in which an adaptative background model
is used to classify pixels as foreground or background.
This model associates a statistical distribution defined
by its mean color value and its variance, to each pixel
of the image

• frame level, whereby the raw classification based on the
background model is improved and the model is adapted
when a global change in illumination occurs. Moreover,
it allows to obtain the initial background model without
any restrictions

Thus, when a human or another moving object enters the
room where the robot is, it is detected by means of the
background model at pixel level. It is possible because each
pixel belonging to the moving object has an intensity value
which does not fit to the background model. The method is
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similar to the one presented in [14], but the constraint to be
satisfied is:

|ni,j − µi,j | > k ∗ σi,j (4)

where ni,j represents the value of the pixel (i, j) in the
current frame, µi,j and σi,j are the mean and standard devia-
tion values calculated by the background model respectively
and k is a constant the value of which depends on the point
distribution.

Then, the obtained binary image is refined by using a
combination of substraction techniques at frame level. More-
over, two consecutive morphological operations are applied
to erase isolated points or lines caused by the dynamic factors
mentioned above. The next step is to update the statistical
model with the values of the pixels classified as background
in order to adapt it to some small changes which do not
represent targets. On the other hand, a pattern of each moving
object is built once each detected connected component
has been labeled. This pattern allows the system to track
the moving objects because it can match an object in two
consecutive frames even when it suffers a partial or whole
occlusion, since the system maintains information about a
detected object during several frames in order to recognize
it if it reappears.

It must be taken into account that the built pattern for
each detected object has a different orientation depending
on its position inside the scene because the raw image is a
circular omnidirectional one. So, several rotations would be
necessary in order to correctly match the patterns of the same
object in two different frames. However, a transformation
from the circular omnidirectional image to a perspective one
is applied, as can be seen in Fig. 2. Therefore, all patterns
have the same orientation and its comparison is easier, faster
and more dependable.

Fig. 2. An omnidirectional image, its corresponding panoramic image and
the pattern of the detected object

At the same time, a process for sudden illumination
change detection is performed at frame level. This step is
necessary because the model is based on intensity values
and a change in illumination produces a variation of them.

A new adaptative background model is build when an event
of this type occurs, because if it was not done, the application
would detect background pixel like moving objects.

V. EXPERIMENTAL RESULTS

The experiments presented in this section start with a
visual servoing simulation and then human tracking results
are presented in the second part.

A simulation with two cameras has been performed. The
end-effector frame traverses the simulated workspace from
its initial position to its destination in the opposite side. The
whole displacement amounts to 2m translation and a large
rotation (90◦X, 180◦Z). Such task cannot be handled with
pinhole cameras, but it does not pose any problem to the
large field of view of fisheye lenses.

Two cameras attached to the base observe the target
which is made of 5 points, attached to the end-effector. The
image trajectories depicted in Fig. 3 show very straight line
trajectories of the image points in the fisheye view. Such
trajectories are expected since the visual servoing control
law imposes a feature motion in the negative direction of the
first derivative.

The classical problem is that such control in the image
space will consequently produce unpredictable behavior in
the Cartesian space, i.e. the 3D trajectory of the end-effector.
As a result, the robot might go out of its workspace, trying
to move a joint further from its range, or colliding with an
obstacle of the environment, or a person.

Polar image coordinates do not impose such a straight line
trajectory of the image point (Fig. 4). Instead, both the radius
and the angle of each feature move linearly. As a result, the
image points describe arcs in the image plane. Features are
not likely to go out of the field of view, though. The radius is
bounded by the initial and final values, which are obviously
within the image range. The change in the angle does indeed
keep the features visible.
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Fig. 3. (u, v) features: image trajectories on the left and right cameras.
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Fig. 4. (r, θ) features: image trajectories on the left and right cameras.

The choice of features has direct consequences in the
behavior of the end-effector in 3D space, as depicted in
(Fig. 5). In this figure, the location of the left and right
cameras is represented by two Cartesian frames at (−1, 0, 0)
and (1, 0, 0). The trajectories of the end-effector are depicted
in blue for the (u, v) representation, and in red for the (r, θ)
representation. Interestingly, the latter is more close to a
straight line path than the former. Intuitively, if the image
points are constrained to straight line trajectories in the image
space, the end-effector needs to move away from the camera,
since the points approach the center of the image. However,
if the image points move along arcs, the end-effector does
not need to perform such motion.
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Fig. 5. End-effector trajectory: using (u, v) features in blue, using (r, θ)
features in red.

Quantitatively, in the example, the maximum distance
from the blue path to a straight linear path is 0.42 m. On the
other hand, such distance from the red path is only 0.08 m.
The risk of collision of the arm with surrounding objects or
agents is dramatically decreased in the latter case.

Feature errors for (u, v) and (r, θ) representations are
depicted in Figs. 6 and 7 respectively. In this particular
task, the error is mostly owed to v and θ, since the initial
and final u and r values are very similar. Thus, the error
plots of the former features exhibit the classic exponentially
decreasing curve. The latter do not exhibit the same patter at
the beginning of the task, but one should take into account
that the error magnitude is significantly lower, thus there are
no visible consequences neither in the image space nor in
the Cartesian space.

The kinematic screw is depicted in Fig. 8 for the (u, v)
representation and in Fig. 9 for the (r, θ) representation. Ve-
locities are smooth, and the coupling between translation and
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Fig. 6. (u, v) features: error.
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Fig. 7. (r, θ) features: error.

rotation does not cause any misbehavior either in the image
or Cartesian trajectories. There are no significant differences
between the velocity patters of each representation.
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Fig. 8. (u, v) features: Kinematic screw, linear (left) and angular (right)
velocities.
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Fig. 9. (r, θ) features: Kinematic screw, linear (left) and angular (right)
velocities.

In our human tracking experiments, the fisheye camera
is located in the center of our laboratory room. The lab
contains some of the small dynamic factors named above
(e.g. blinking of computer screens or variations in illumina-
tion due to the different time of the day or switch on/off
a light). Images are acquired in 24-bit RGB model with a
640x480 resolution. Detection results for multiple moving
humans and its corresponding cylindrical panoramic images
under different illuminations are shown in Fig. 10

A first experiment involving the robot arm and a person
is shown in Fig. 11. The task is simplified by using only
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Fig. 10. Resulting detection images under different illuminations.

one fisheye camera. The goal is to detect an approaching
person, and move the arm to point the end-effector towards
that person, whose intention is supposed to act interactively
with the arm.

The end-effector of the arm is tracked by a color mark.
Since only two feature values are available (r, θ), the motion
of the arm is restricted to a rotation about a vertical axis. This
simple motion is enough to accomplish the task.

The approaching person is detected when he is still far
from the workspace of the robot. The arm starts to move, in
order to align its orientation to the angle of the detected
feature. While the arm is moving, the motion filter is
programmed to discard the moving features of the arm (ego-
motion). As can be seen in the third row of the sequence, the
visual feedback approach converges to the correct orientation
of the approaching person.

VI. FUTURE WORK

We have presented two different applications to guarantee
the safety in the robot workspace. They separately give the
system some information about the manipulator position with
respect to the reference system and the proximity of the
detected moving objects to the system. So, we are working
to combine both of them in order to make correct decisions
about the robot movements not only to achieve the robot
goals but also not to cause any damage. Moreover, future
work will include the definition of such high-level behaviors
for the safe interaction between the arm and the surrounding
people.
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Fig. 11. Image sequence of an experiment with one camera. The end-effector has a color mark, which is segmented and plotted with a green cross and
bounding box in the image. Motion detection is plotted with red and orange pixels.
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