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Abstract— In order to perform coronary artery bypass graft
surgery, a stationary heart is necessary. A human cannot
achieve manual tracking of the complex heartbeat motion.
Robotics technology can overcome such limitations. In the
robotic-assisted beating heart surgery, the robot actively cancels
heart motion by closely following a point of interest on the heart
surface—a process called Active Relative Motion Canceling.
As a result, surgeon can operate on the beating heart as
if it is stationary. In this paper, a generalized estimation
algorithm, that uses an adaptive filter to generate future
position estimates is studied. The predictor is parameterized
on-line and adaptively to minimize the prediction error in the
mean-square sense. The predictor is evaluated using a 3-degree-
of-freedom test-bed system and prerecorded heart motion data.

I. INTRODUCTION

Robotic-assisted beating heart surgery has been proposed
as an alternative for types of heart surgery that involve
stopping or physically restraining the heart. Trejos [1] noted
that the arteries on the heart surface moved too quickly to
effectively be tracked by hand and that robotic tracking could
solve this problem. A surgical robot can be used to track a
point on the heart surface, moving with the heart and cancel
the relative motion, allowing a surgeon to operate as if the
heart were stationary.

Current techniques to compensate for the biological mo-
tion during coronary artery bypass graft (CABG) surgery is
either to stop the heart and use a cardio-pulmonary bypass
machine or to passively restrain the heart with stabilizers.
Stopping the heart can cause significant complications dur-
ing or after the surgery, resulting from the use of cardio-
pulmonary bypass machine. These complications can include
long term cognitive loss [2], and increased hospitalization
time and cost [3].

Robotic-assisted surgery replaces conventional surgical
tools with robotic instruments which are under the direct
control of the surgeon through teleoperation, as shown in
Figure 1. The surgeon views the surgical site through a
camera mounted on a robotic arm that follows the heart
motion, showing the surgeon a stabilized view. The robotic
surgical instruments also track the heart motion, canceling
the relative motion between the surgical site and the instru-
ments. As a result, the surgeon operates on the heart as if the
heart were still. This is in contrast to traditional off-pump
CABG surgery where the heart is passively constrained to
dampen the beating motion. The robotic approach is called
“Active Relative Motion Canceling (ARMC)” to emphasize

Fig. 1. System concept for Robotic Telesurgical System for Off-Pump
CABG Surgery with Active Relative Motion Canceling (ARMC). Left:
Surgical instruments and camera mounted on a robot actively tracking
heart motion. Right: Surgeon operating on a stabilized view of the heart,
and teleoperatively controlling robotic surgical instruments to perform the
surgery.

this difference [4]. Since this method does not rely on
passively constraining the heart, it would be possible to
operate on the side and back surfaces of the heart as well as
the front surface using millimeter scale robotic manipulators
that can fit into spaces the surgeon could not otherwise reach.

Tracking a point-of-interest (POI) on the heart surface
during surgery requires high accuracy, especially when per-
forming off-pump CABG surgery. The surgeon is required to
operate on blood vessels that are small in diameter, ranging
from 0.5-2.0 mm, and moving at a quasiperidic frequency
range of 1-2 Hz. In order to operate on these vessels,
accurate position tracking in the order of 100-250 µm root-
mean-square (RMS) position error is required [5]. Error
feedback control alone was found to be unable to reduce
the tracking error sufficiently. A predictive controller in
the feedforward path was found to be necessary [5]. The
controller implements a receeding horizon model predictive
controller (RHMPC) and is described in Rotella [6].

The primary goal of this research has been to improve
the tracking performance of a surgical robot prototype as
proof of concept that the degree of necessary tracking can be
achieved. To this end, the tracking performance research has
primarily been focused on developing estimation methods
for use with a receding horizon model predictive controller
(Details of the control algorithm, which can be found in [4],
will not be discussed here because of space restrictions).

In this paper, a generalized adaptive filter based pre-
dictor is proposed to parameterize linear predictors for
points throughout the horizon independently. The prediction
scheme is implemented and its effectiveness is studied by
simulation and on a 3-degree-of-freedom (DOF) hardware
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robotic system using previously recorded heart motion data,
as the reference. Section II discusses how predictions were
generated on similar projects. Section III formally formulates
the prediction problem and introduces the prediction method.
In Section IV, the 3-DOF robotic test-bed and experimental
procedures are described, and the results are compared with
earlier works in literature. Finally, conclusions and possible
extensions to the predictor are presented.

II. RELATED WORK IN LITERATURE

There are several research groups that have studied the
problem of ARMC for beating heart surgery. Nakamura et
al. [7] performed experiments to track the heart motion
with a 4-DOF robot using high-speed visual servoing. The
tracking error due to the camera feedback system was too
large to perform beating heart surgery (error on the order
of few millimeters in the normal direction). Ortmaier [8]
used Takens Theorem—a statistical method for detecting
chaotic attractors—to develop a robust prediction algorithm,
anticipating periods of lost data when a tool obscured the
visual tracking system. Ginhoux et al. [9] separated breathing
motion from heart motion in the prediction algorithm. The
breathing motion was treated as perfectly periodic, since the
patient would be on a breathing machine. The heart motion
was predicted by estimating the fundamental frequency, as
well as the amplitude and phase of the first 5 harmonics.
The predicted heart motion was used to estimate disturbance
which was corrected by the controller. Rotella [6] used
the previous cycle of heart motion data as an estimate of
future behavior. The estimate was used along with a model
predictive controller to achieve high precision tracking of the
heart motion on a 1-DOF test-bed system. Using the previous
cycle as a future estimate lead to problems since the heart
motion was not perfectly periodic. Bebek et al. [4] improved
upon this prediction scheme by synchronizing heart periods
using ECG data and separated heart and breathing motion,
predicting only heart motion.

Franke et al. [10] proposed a new estimation algorithm
for the controller presented by Bebek et al. [4]. A recursive
least squares based adaptive filter algorithm was used for
parameterizing a linear system to predict the heart motion.
The linear predictor was parameterized by a least squares
algorithm, and was inherently robust to noise. The predictor
only used observations close to and including the present
observation making it less susceptible to differences between
heart periods than the estimation algorithm of Bebek et al.
[4]. Also, no assumptions were made towards periodicity of
the system a priori. Rather the predictor was unconstrained
so that it could best mimic the motion of the POI.

This paper extends and generalizes the work presented in
[10] by generalizing the prediction method. The generalized
method does not assume that the horizon can be generated
through recursive implementation of a one-step predictor;
instead, estimators for samples throughout the horizon are
independently parameterized. In this way, there is no pre-
sumed linear dynamics governing the POI motion, in contrast
to the recursive application of a one-step predictor which is
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Fig. 2. A schematic of the prediction problem. The circles represent past
observations, now in memory, the ‘X’ is the current observation, and the
curve originating from there is the horizon estimate. The predictor takes the
past observations and produces the horizon estimate from only those points.

a linear time-invariant model. A predictor that has horizon
estimates related by a linear system is a special case of a
model which presumes no such dependencies and therefore
the former predictor is more general.

III. HORIZON ESTIMATOR

First, allow the introduction of some notation. Let xi

represent an observation. In this case, xi is a three dimen-
sional column vector representing the location of the POI
in Cartesian coordinates. The observation x0 is the location
of the heart at the current sample. The observation x−1 is
the observation immediately prior to the current one. The
older observations will be referenced by decreasing subscript
index (e.g., x−5 would have been the current observation five
samples ago). Likewise, x1 represents the next observation.
This observation has not occurred, and will not be known
until it becomes the present value. So, the estimate for the
next observation is introduced as x̂1.

With this notation, the prediction problem can be posed:
given the N -dimensional vector of present and past obser-
vations, [x0, x−1, . . . , x−N+1]T , find the best estimate of
the M -dimensional horizon, [x1, x2, . . . , xM ]T (see Figure
2). The ‘best estimate’ will be the one that minimizes the
square of the estimation error, where the estimation error is
the difference between the prediction and the observed value
at that time.

A. Recursive Least Squares Estimation Scheme

In the recursive least squares estimation scheme (details
were given in [10]), two assumptions were made. First,
predictor, W : [x0, . . . , x−N+1]T → x̂1, is linear and there-
fore can be represented by matrix multiplication. Second,
that estimates further in the the prediction horizon can be
generated by recursively applying the single step predictor.
Since the predictor is linear, it can be represented by matrix
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multiplication as:

W

⎡
⎢⎢⎢⎣

x0

x−1

...
x−N+1

⎤
⎥⎥⎥⎦ = x̂1 (1)

In order to have an online, adaptive method for deter-
mining W, the recursive least squares (RLS) algorithm was
employed. The updating of W was done through an adaptive
filter which used the collection of observations from the
previous sample as input and the current observation as
the desired output [11]. Since W is updated at every time
step, the estimator is able to adapt to slowly changing heart
behavior.

This recursive relationship can be written explicitly. If W
is factored as W = CΦ0,1 where

Φ0,1 : [x0, . . . , x−N+1]T → [x̂1, x0, . . . , x−N+2]T

C : [x0, . . . , x−N+1]T → x0; C = [I 0 · · · 0],

then it is possible to define a matrix U such that it maps the
memory of past observations to the expected horizon. In this
case,

U =

⎡
⎢⎢⎢⎣

CΦ0,1

CΦ2
0,1

...
CΦM

0,1

⎤
⎥⎥⎥⎦

U : (x0, x−1, . . . , x−N+1) → (x̂1, x̂2, . . . , x̂M ).

(2)

B. Generalized Linear Prediction

In Section III-A, the optimal (in the sense of prediction
error magnitude) linear one step predictor was formulated
and used recursively to generate predictions. This method
approximates the heart dynamics as being a linear discrete
time system and leads to sub-ideal predictions, as the POI
motion has nonlinear dynamics. In the generalized prediction
method that is proposed in this paper, the assumption of
a linear system relation between consecutive time samples
is abandoned. Instead, a linear estimator for each point in
the horizon is independently estimated. This is done by
extending (1) as follows:

V

⎡
⎢⎢⎢⎣

x0

x−1

...
x−N+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x̂1

x̂2

...
x̂M

⎤
⎥⎥⎥⎦ (3)

Where V is the estimation matrix that maps from the col-
lection of observations to the expected horizon. In the same
way as W was parameterized, RLS is used to determine
V online and adaptively. However, since (3) contains the
estimated values that are being solved for, it is unsuitable for
implementation via RLS as is. This can be solved by assum-
ing POI statistics to be stationary, or at least slowly varying,
which makes V approximately constant. The assumption of

time invariance of the heart statistics is utilized to introduce
M delays so that all quantities have been observed when
solving for V.

V

⎡
⎢⎢⎢⎣

x−M

x−M−1

...
x−N−M+1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

x−M+1

x−M+2

...
x0

⎤
⎥⎥⎥⎦ (4)

The analogy can be made between (4) and an adaptive
filter. The right hand side is the desired output and the
observation vector on the left hand side is the input. Further,
introducing the estimation matrices

Φ0,i : [x0, . . . , x−N+1]T → [x̂i, x̂i+1, . . . , x̂−N+i]T

for 1 ≤ i ≤ M , then V can be decomposed similar to U in
(2) as

V =

⎡
⎢⎢⎢⎣

CΦ0,1

CΦ0,2

...
CΦ0,M

⎤
⎥⎥⎥⎦ (5)

The generalization of this prediction method results from
the fact that, unlike in (2), Φ0,i are parameterized indepen-
dently and not, in general, equal to Φi

0,1. The removal of this
constraint allows for the nonlinear dynamics throughout the
prediction horizon to be better predicted by a linear estimator.

The predictor is implemented in a similar way to the
previous vector RLS adaptive filter, see [10]. The adaptive
filter is formulated to solve the delayed prediction equation
4. This is equivalent to using a bank of n-step predictors,
but is more computationally efficient. The largest cost in
the RLS algorithm involves updataing the inverse covariance
matrix of the inputs. Since each estimate is using the same
input vector, the updating only needs to be done once,
providing a dramatic reduction in computational complexity
when predictions are being made at many points throughout
the horizon.

IV. EXPERIMENTS AND RESULTS

A. Heart Motion Data

The motion of the heart surface is quasi-periodic in
nature. The motion of the POI on the heart is primarily
the superposition of two effects: motion due to the heart
beating and motion due to breathing. Each of these signals
closely resemble periodic signals. Measurement of heart
motion with high precision and high confidence is required
for precise motion canceling performance. Also, redundant
sensing systems are desirable for safety reasons. Sensors that
are planned to be used to collect heart motion data include
sonomicrometric sensors, a whisker sensor, a multi-camera
vision system and a laser sensor [12]. The prerecorded data
used in this study was collected from an adult porcine using
a Sonomicrometry system by Cavusoglu et al. [5]. Fourier
analysis of the heart signal data reveals how this periodic
nature is prevalent (see Figure 3). Lung motion has the
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Fig. 3. Power Spectral Density of the heart motion in the y and z directions.
Tall, narrow peaks with the absence of intermittent frequencies indicate
largely periodic motion of the heart.

lower frequency with a fundamental period of approximately
0.4 Hz with only the primary harmonic appearing significant.
The heart motion itself has a fundamental frequency of 2 Hz,
corresponding to 120 bpm, with the first five harmonics being
considered significant. The sharpness of these peaks indicate
that the harmonics decay very little in time, meaning that
the overall motion of the POI is similar to a superposition of
periodic signals. The first 10 seconds of the 56-second-long
prerecorded data was used to tune the controller parameters.
Then the validation experiments were carried out using the
complete 56-s-long heart motion data.

B. 3-DOF Robotic Test Bed

The proposed estimation algorithm was tested on a PHAN-
ToM Premium 1.5A haptic device, which is a 3-DOF robotic
system. The nonlinearities of the system (i.e., gravitational
effects, joint frictions, and Coriolis and centrifugal forces)
were canceled independently from the controller. In order to
maintain the accuracy of the experiments, the manipulator
was brought to a selected home position, in this case its
zero configuration, before every experiment. A schematic of
the degrees of freedom and the zero configuration of the
manipulator is shown in Figure 4.

The controller from [4] was modified to include the new
prediction algorithm. The trials used the same prerecorded
heart motion data described above. The robot was made to
follow the combined motion of heartbeat and breathing. The
system was run using prerecorded data points in place of
online measurements. The controller was implemented in
Simulink for xPC Target and ran in real time with a sampling
time of 0.5 ms on a 2.6 GHz Pentium 4 PC. The linearized
robot model was controlled using a receding horizon model
predictive controller (RHMPC). The RHMPC was formu-
lated to track the horizon estimate weighted by a quadratic
objective function. The encoder positions on the PHANToM

Fig. 4. Zero Configuration of the PHANToM manipulator, also showing
the axes movements and spatial and tool frames.

were recorded and these positions were transformed into end
effector positions. The reported RMS errors are calculated
from the difference between the prerecorded target point and
the actual end effector position.

C. Simulation and Experimental Results

The same control method and reference data were used
while running simulations and experiments. During the trials,
an estimator that made use of the past 10 observations
predicted 4 different future points in the 25 ms horizon and
quadratic interpolation was accounted for the intermittent
points. The predictor was downsampled by a factor of
15, processing observations that were 7.5 ms apart. The
experiments were carried out using the 56-s long heartbeat
data which is explained in Section IV-A. Experiments were
run ten times with the estimation algorithm and again with
the actual heart motion data as future signal reference for
the prediction horizon. The later case represents a ‘perfect’
estimation, providing a performance base of the robotic
system’s capability. The end-effector RMS position errors in
millimeters along with maximum end-effector position errors
are reported in Table I. The three axes mean of the RMS
control efforts are also tabulated. Tracking results with the
generalized adaptive filter estimation is shown in Figure 5.
In the figure magnitude of the end effector position error su-
perimposed with the reference signal for the x-axis is shown.
We believe that, the maximum error values are affected from
the noise in the data collected by Sonomicrometry sensor as
it is unlikely that the POI on the heart is capable of moving
5 mm in a few milliseconds. The data has been kept as-is
without applying any filtering to eliminate these jumps in
the sensor measurement data as currently we do not have
an independent set of sensor measurements (such as from a
vision sensor) that would confirm this conjecture.

As can be seen from Table I, in the simulation the estima-
tor and the exact heart signal performed almost equally. The
maximum error and control effort were slightly smaller with
the estimated horizon. In the experiments, the controller with
estimator outperformed the controller with exact heart signal
reference. The maximum error and control effort were also
slightly smaller, similar to the simulation results. However,
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TABLE I
SIMULATION AND EXPERIMENT RESULTS: END-EFFECTOR RMS POSITION ERROR, MAX POSITION ERROR AND RMS CONTROL EFFORT VALUES FOR

THE CONTROL ALGORITHMS USED WITH 56-S HEART MOTION DATA.

End-effector Tracking Results
RMS Position Error [mm] Max Position Error [mm] Control Effort [mNm]
Simulation PHANToM Simulation PHANToM Simulation PHANToM

Receding Horizon Model Predictive Controller
with Exact Reference Information 0.295 0.312 1.732 1.993 14.8 45.2

Receding Horizon Model Predictive Controller
with Generalized Adaptive Filter Estimation 0.295 0.305 1.680 1.813 14.6 45.6
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Fig. 5. Tracking results with Receding Horizon Model Predictive Controller with Generalized Adaptive Filter Estimation. Magnitude of the end effector
error (below) superimposed with the reference signal for the x-axis.

the control effort of the new predictor was slightly larger
in the hardware trials, indicating that though the tracking
performance increased, it did so at a tradeoff.

At this point, it would be informative to compare the
presented tracking results with the previously reported values
in the literature.

Ginhoux et al. [9] used motion canceling through predic-
tion of future heart motion using high-speed visual servoing
with a model predictive controller. Their results indicated
a tracking error variance on the order of 6-7 pixels (ap-
proximately 1.5-1.75 mm calculated from the 40 pixel/cm
resolution reported in [9]) in each direction of a 3-DOF
tracking task. Although it yielded better results than earlier
studies using vision systems, the error was still very large to
perform heart surgery.

Bebek et al. used the past heartbeat cycle motion data,
synchronized with the ECG data, in their estimation algo-
rithms. They achieved 0.682 mm RMS end-effector position
error on a 3-DOF robotic test-bed system [4].

Franke et al. used a recursive least squares based adaptive
filter algorithm for parameterizing a linear system to predict
the heart motion. The predictor was used with the model
predictive controller presented by Bebek et al. [4]. They re-
ported 0.449 mm RMS end-effector position tracking results
in [10].

The generalized predictor proposed in this paper represent

the best results reported in the literature. These results
show that the model predictive controller with the proposed
generalized estimator and the exact reference data performed
equally well, which indicates that the main cause of error is
no longer the prediction but the performance limitations of
the robot and controller. It is important to note that the results
also need to be validated in vivo, which was the case in [9].

V. CONCLUSION AND FUTURE WORK

In this paper, a generalized estimator for predicting the
horizon estimate for the model predictive controller is pre-
sented. The experimental RMS error of 0.295 mm obtained
using the generalized estimator described in this paper rep-
resents a significant improvement in prediction performance
compared to earlier studies. These results show that the
estimation of future POI motion is no longer the bottleneck
in the heartbeat motion tracking.

Initially, RHMPC was concluded to be capable of out
performing causal controllers [6]; However, since predictions
have become increasingly reliable, it is possible to consider
controllers that use the horizon estimate in their control law.
It remains as future work to implement such controllers to
either improve upon the current setup or to demonstrate its
effectiveness.

Another way to improve tracking quality is to incorporate
other types of data into the estimation scheme. One such
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possibility is to include the electrocardiogram (ECG) signal
into the observations. In this way, the predictor is able to use
the electrical signals that activate heart contraction in order
to improve the prediction. This may improve performance
during heart contractions, when rapid POI motion occurs.
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