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Abstract— We report our algorithmic development of the p-
frame problem that addresses the need of coordinating a set
of p networked robotic pan-tilt-zoom cameras for n, (n > p),
competing polygonal requests. We assume that the p frames
have almost no overlap on the coverage between frames and a
request is satisfied only if it is fully covered. We then propose a
Resolution Ratio with Non-Partial Coverage (RRNPC) metric
to quantify the satisfaction level for a given request with
respect to a set of p candidate frames. We propose a lattice-
based approximation algorithm to search for the solution that
maximizes the overall satisfaction. The algorithm builds on
an induction-like approach that finds the relationship between
the solution to the (p − 1)-frame problem and the solution to
the p-frame problem. For a given approximation bound ε, the
algorithm runs in O(n/ε3 +p2/ε6) time. We have implemented
the algorithm and experimental results are consistent with our
complexity analysis.

I. INTRODUCTION

Networked robotic pan-tilt-zoom cameras have found
many applications such as natural environment observation,
surveillance, and distance learning. Consider that a group
of p networked robotic pan-tilt-zoom cameras have been
installed for public surveillance in a popular location such
as Time Square in New York city. There are n different
concurrent requests initiated by a variety of sources such
as networked chemical sensors, online user requests, and
scheduled events. Fig. 1 illustrates the p-frame problem: how
to identify optimal p frames that best satisfy the n different
polygonal requests.

We assume that the p frames have the least overlap (will be
formally defined later) on the coverage between the frames
and a request is satisfied only if it is fully covered by
one of the p frames. Under the assumptions, we propose
a Resolution Ratio with Non-Partial Coverage (RRNPC)
metric to quantify the satisfaction level for a given request
with respect to a set of p candidate frames. Hence the p-frame
problem is to find the optimal set of (up to p) frames that
maximizes the overall satisfaction. Building on the results
in [1], we propose a lattice-based approximation algorithm.
The algorithm builds on an induction-like approach that
finds the relationship between the solution to the p − 1
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Fig. 1. An illustration of the least overlapping 3-frame problem.

frame problem and the solution to the p-frame problem.
For a given approximation bound ε, the algorithm runs in
O(n/ε3 + p2/ε6) time. We have implemented the algorithm
and experiment results are consistent with our complexity
analysis. We will begin with the related work.

II. RELATED WORK

The p-frame problem relates to networked robotics, the
facility location problem in operations research, and the
single frame selection problem.

The development of the Internet allows more users to
access online resources. The p frames taken by p networked
pan-tilt-zoom cameras can be viewed as a special case of
networked tele-operation, where each robotic camera has
3 Degrees of Freedom (DOF). According to the taxonomy
proposed by Chong et al. [2], this system belongs to Multiple
Operator Multiple Robot (MOMR) systems. The low cost
robot and sensor network makes the MOMR system a very
popular research domain [3]–[5]. In [6], [7], Liu and his
colleagues developed a competitive MOMR system under
a game setting. Our work emphasizes on the geometric
coverage attributes of the robotic camera and addresses the
MOMR problem in an optimization framework.

The p-frame problem is structurally similar to the p-center
facility location problem, which has been proven to be NP-
complete [8]. Given n request points on a plane, the task is
to optimally allocate p points as service centers to minimize
the maximum distance (called min-max version) between any
request point and its corresponding service center. In [9], an
O(n log2 n) algorithm for a 2-center problem is proposed.
As an extension, replacing service points by orthogonal
boxes, Arkin et al. [10] propose a (1 + ε)-approximation
algorithm that runs in O(n min(lg n, 1/ε) + (lg n)/ε2) for
the 2-box covering problem. Alt et al. [11] proposed a
(1 + ε)-approximation algorithm that runs in O(nO(m)),
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where ε = O(1/m), for the multiple disk covering problem.
The requests in these problems are all points instead of
polygonal regions as those in our p-frame problem and
the objective of the p-frame problem is to maximize the
satisfaction, which is not a distance metric.

The p-frame problem also relates to the art gallery problem
[12]. The art gallery problem is to minimize the number
of security guards to guard an art gallery, which is usually
represented by a polygon with n vertices. Each guard has a
certain range of vision. The location of the guard can be
represented by a point while the reachable region of the
guard can be represented by any geometrical shapes. Agarwal
et al. [13] consider a variation of the art gallery problem
where the terrain is not planar and there are only two guards
with minimal heights. They propose an exact algorithm that
runs in O(n2 log4 n) time. In [14], Eppstein et al. propose
the sculpture garden problem where each guard has only a
limited angle of visibility. They prove that the upper bound
is n − 2 and the lower bound is n/2 for the number of the
guards needed. More results on the art gallery problem can
be found in [15]. Unlike the art gallery problem, the p-frame
problem does not need to cover all requests. However, the
selection has to be made based on maximizing the level of
satisfaction of covered requests.

Our group has worked on camera frame selection problems
since 2002. We have addressed the Single Frame Selec-
tion (SFS) problem and its variations such as approximate
solution with continuous zoom [16], approximate solution
with fixed zoom [17], and exact solution with continuous
zoom and rectangular requests with fixed aspect ratio [18]
or variable aspect ratio [19]. Extending the results for SFS
to the p-frame problem is non-trivial. This paper is the first
attempt to tackle the problem.

III. PROBLEM DEFINITION

In this section, we formulate the p-frame problem. We
begin with the definition of the inputs and outputs. Assump-
tions are then presented. We establish the request satisfaction
metric so that we can formulate the problem as a geometric
optimization problem.

A. Input and Output

The input of the problem is a set of n requests R = {ri|i =
1, 2, ..., n}. Each request is defined as ri = [Ti, zi], where Ti

denotes the polygonal requested region and zi ∈ Z specifies
the desired resolution level, which is in the range of Z =
[z, z]. The only requirement for Ti is that its coverage area
can be computed in constant time.

A solution to the p-frame problem is a set of p camera
frames. Given a fixed aspect ratio (e.g. 4:3), a camera frame
can be defined as c = [x, y, z], where pair (x, y) denotes the
center point of the rectangular frame and z ∈ Z specifies
the resolution level of the camera frame. Here we consider
the coverage of the camera as rectangular according to
the camera configuration space. Therefore, the width and
height of the camera frame can be represented as 4z and

3z respectively. The coverage area of the frame is 12z2. The
four corners of the frame are located at (x ± 4z

2 , y ± 3z
2 ).

Given w and h are the camera pan-tilt ranges respectively,
then C = [0, w] × [0, h] × Z defines the set of all candidate
frames. Therefore, Cp indicates the solution space for the
p-frame problem. We define any candidate solution to the p-
frame problem as Cp = (c1, c2, ..., cp) ∈ Cp, where ci, i =
1, 2, ..., p, indicates the i-th camera frame in the solution. In
the rest of the paper, we use superscription ∗ to indicate the
optimal solution. The objective of the p-frame problem is to
find the optimal solution Cp∗ = (c∗1, c

∗
2, ..., c

∗
p) ∈ Cp that

best satisfies the requests.

B. Set Operators

We clarify the use of set operators such as “∩”, “⊆ ” and
“�∈” to represent the relationship between frames, frame sets,
and requests in the rest of the paper.

• When two operands are frames or requests (e.g., ri ∈
R, cu, cv ∈ C), the set operators represent the 2-D
regional relationship between them. For example, ri ⊆
cu represents that the region of ri is fully contained in
that of frame cu while cu∩cv represents the overlapping
region of frames cu and cv .

• When the operands are one frame (e.g., ci ∈ C) and one
frame set (e.g., Ck ∈ Ck, k < p), we treat the frame
as an element of a frame set. For example, ci �∈ Ck

represents that ci is not an element frame in the frame
set Ck.

• When the operands are two frame sets, we use set
operators. For example, {c1} ⊂ Cp means frame set
{c1} is a subset of Cp. Frame set {c1, c2} = {c1}∪{c2}
is different from c1 ∪ c2. The former is the frame set
that consists of two element frames and the later is the
union area of the two frames.

C. Assumptions

We assume that the p-frames are either taken from p
cameras that share the same workspace or taken from the
same camera. Therefore, if a location can be covered by a
frame, other frames can cover that location, too.

We assume that the solution Cp∗ to the p-frame problem
satisfies the following condition.

Definition 1 (Least Overlapping Condition (LOC)): ∀ri,
i = 1, ...n, ∀cu ∈ Cp∗, ∀cv ∈ Cp∗, and cu �= cv,

ri � cu ∩ cv. (1)
The LOC means that the overlap between frames is so small
that no request can be fully covered by more than one frame
simultaneously. The LOC forces the overall coverage of a
p-frame set ∪p

j=1cj to be close to the maximum. This is
meaningful in applications when the cameras need to search
for unexpected events while best satisfying the n existing
requests because the ability to search is usually proportional
to the union of overall coverage. Therefore, the LOC can
increase the capability of searching for unexpected events.
The extreme case of the LOC is that there is no overlap
between camera frames.
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Definition 2 (Non-Overlapping Condition (NOC)):
Given a p-frame set Cp = (c1, c2, ..., cp) ∈ Cp (p ≥ 2), Cp

satisfies the NOC, if

∀u = 1, 2, ..., p,∀v = 1, 2, ..., p, u �= v, cu ∩ cv = φ .
It is not difficult to find that the NOC is a sufficient condition
to the LOC. The NOC yields the maximum union coverage
and is a favorable solution to applications where searching
ability is important.

D. Satisfaction Metric

To measure how well a p-frame set satisfies the requests,
we need to define a satisfaction metric. We extend the
Coverage-Resolution Ratio (CRR) metric in [19] and pro-
pose a new Resolution Ratio with Non-Partial Coverage
(RRNPC).

Definition 3 (RRNPC metric): Given a request ri =
[Ti, zi] and a camera frame c = [x, y, z], the satisfaction
of request ri with respect to c is computed as

s(c, ri) = I(c, ri) · min(
zi

z
, 1), (2)

where I(c, ri) is an indicator function that describes the non-
partial coverage condition,

I(c, ri) =

{
1 if ri ⊆ c,

0 otherwise.
(3)

Eq. (3) indicates that we do not accept partial coverage
over the request. Only the requests completely contained in
a camera frame contribute to the overall satisfaction. From
(2) and (3), the satisfaction of the ith request is a scalar
si ∈ [0, 1].

Based on (2), the satisfaction of ri with respect to a candi-
date least overlapping p-frame set Cp = (c1, c2, ..., cp) ∈ Cp

is,

s(Cp, ri) =
p∑

u=1

I(cu, ri) · min(
zi

zu
, 1), (4)

where zi, zu indicate the resolution values of ri and the
u-th camera frame in Cp respectively. The LOC implies
that although (4) is in the form of summation, at most one
frame contains the region of request ri and thus non-negative
s(Cp, ri) has a maximum value of 1. Therefore, RRNPC is a
standardized metric that takes both the region coverage and
the resolution level into account.

To simplify the notation, we use s(c) =
∑n

i=1 s(c, ri) to
represent the overall satisfaction of a single frame c. We
also use s(Ck) =

∑k
j=1,cj∈Ck s(cj), to represent the overall

satisfaction of a partial candidate k-frame set Ck, k < p.

E. Problem Formulation

Based on the assumption and the RRNPC metric definition
above, the overall satisfaction of a p-frame set Cp =
{c1, c2, ..., cp} ∈ Cp over n requests is the sum of the
satisfaction of each individual request ri, i = 1, 2, ..., n,

s(Cp) =
n∑

i=1

p∑
u=1

I(cu, ri) · min(
zi

zu
, 1). (5)

Eq. (5) shows that the satisfaction of any candidate Cp can
be computed in O(pn) time. Now we can formulate the least
overlapping p-frame problem as a maximization problem,

Cp∗ = arg max
Cp∈Cp

s(Cp). (6)

IV. ALGORITHM

Solving the optimization problem in (6) is nontrivial. To
enumerate all possible combinations of candidate solutions
by brute force can easily take up to O(np) time. In this
section, we present a lattice-based approximation algorithm
beginning with the construction of the lattice. To maintain
the LOC in the lattice framework, we introduce the Virtual
Non-Overlapping Condition(VNOC). Based on the VNOC,
we analyze the structure of the approximate solution and
derive the approximation bound with respect to the optimal
solution that satisfies the NOC . To summarize this, a lattice-
based induction-like algorithm is presented at the end of the
section.

A. Construction of Lattice

We construct a regular 3-D lattice, which is inherited from
[1] to discretize the solution space Cp. Let 2-D point set V =
{(αd, βd)|αd ∈ [0, w], βd ∈ [0, h], α, β ∈ N ) discretize
the 2-D reachable region and represent all candidate center
points of rectangular frames, where d is the spacing of the
pan and tilt samples. Let 1-D point set Z = {γdz|γdz ∈
[z, z + 2dz], γ ∈ N} discretize the feasible resolution range
and represent all candidate resolution values for the camera,
where dz is the spacing of the zoom. Therefore, we can
construct the lattice as a set of 3-D points, L = V ×Z.

Each point c = (αd, βd, γdz) ∈ L represents the
setting of a candidate camera frame. There are totally
(wh/d2)(g/dz) = |L| candidate points/frames in L, where
g = z − z. We set dz = d/3 for cameras with an aspect
ration of 4 : 3 according to [1].

What is new is that the spacing of the lattice d and dz also
depends on the size of the requested regions. For any request
ri ∈ R, there exists an Iso-oriented Bounding Box (IBB) for
each ri. Let us define λ and µ as the smallest width and
height across all IBBs, respectively. We choose d such that

d < min(3λ/10, µ/3). (7)

This input-sensitive lattice setting can help us to establish
the LOC on the lattice and will be discussed later in Section
IV-B. From here on, we use symbol ˜ to denote the lattice-
based notations. For example, C̃p denotes a p-frame set on
lattice L.

Definition 4: For any camera frame c ∈ C,

c̃′ = min c̃, s.t. c̃ ∈ L and c ⊆ c̃.

Hence c̃′ is the smallest frame on the lattice that fully
encloses c.

In the rest of the paper, we use symbol ′ to denote
the corresponding smallest frame(s) on the lattice. For any
camera frame c = [x, y, z] and its corresponding c̃′ =
[x̃′, ỹ′, z̃′], we define their bottom-left corners as (xl, yb) and
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(x̃′l, ỹ′b), and their top-right corners as (xr, yt) and (x̃′r, ỹ′t),
respectively.

From the results of [1], we have

xl − x̃′l ≤ 5d/3, x̃′r − xr ≤ 5d/3,

yb − ỹ′b ≤ 3d/2, ỹ′t − yt ≤ 3d/2.
(8)

B. Virtual Non-Overlapping Condition

The NOC defined in Definition 2 guarantees the LOC.
However, due to the limitation of lattice spacing, it is very
difficult for candidate frames on the lattice to follow the
NOC. Actually, it is unnecessary (though sufficient) to follow
the NOC to satisfy the LOC. It is possible to allow a
minimum overlap that is controlled by the lattice spacing and
meanwhile guarantee that the LOC is still satisfied, which
yields the Virtual Non-Overlapping Condition (VNOC).

Definition 5 (Virtual Non-Overlapping Condition(VNOC)):
Given any j-frame set Cj = (c1, c2, ..., cj) ∈ Cj , j =
2, 3, ..., p and any two frames cu, cv ∈ Cj , then Cj

satisfies the VNOC, if min(xr
u − xl

v, xr
v − xl

u) ≤ 10d/3 or
min(yt

u − yb
v, yt

v − yb
u) ≤ 3d.

Corollary 1: Given any two frames c1, c2 ∈ C, if {c1, c2}
satisfies the VNOC, then {c1, c2} also satisfies the LOC.

Proof: From the definition of VNOC and the settings
of λ and µ, we see that the size of the overlapping region
c1∩ c2, on either the x-axis or y-axis, is less than the size of
the smallest request. This guarantees that no requested region
is fully contained in the overlapping region. Therefore, the
LOC is satisfied.

Lemma 1: Given any two frames c1, c2 ∈ C such that
{c1, c2} satisfies the VNOC, then

s({c1, c2}) = s(c1) + s(c2). (9)
Proof: From Corollary 1, {c1, c2} satisfies the LOC.

From the definition of the LOC and the RRNPC satisfaction
metric defined in (2), the conclusion follows.

C. Approximation Solution Bound

The construction of the lattice allows us to search for the
best p frames on the lattice, which yields an approximation
solution. Furthermore, the VNOC and Lemma 1 assist us in
deriving the approximation bound.

Lemma 2: For any two frames c1, c2 ∈ C, if {c1, c2}
satisfies the NOC, then {c̃′1, c̃′2} satisfies the VNOC.

The proof of the lemma is trivial based on the definition
of VNOC and the settings of λ and µ.

Given the optimal solution Cp∗ = (c∗1, c
∗
2, ..., c

∗
p) for the

optimization problem defined in (6) that satisfies the NOC,
there is a solution on the lattice C̃ ′p∗ = (c̃′∗1 , c̃′∗2 , ..., c̃′∗p )
whose element frames are the corresponding smallest frames
on the lattice that contain those of Cp∗. Lemma 2 implies
that C̃ ′p∗ exists and satisfies the VNOC. However, how
good is this solution in comparison to the optimal solution?
We define the approximation bound ε which characterizes
the comparative ratio of the approximation solution to the
optimal solution

s(C̃ ′p∗)/s(Cp∗) ≥ 1 − ε. (10)

Based on Lemma 1 and Theorem 1 in [1], we have

s(C̃ ′p∗)/s(Cp∗) ≥ 1 − 2dz

z + 2dz
. (11)

Let C̃p∗ denote the optimal p-frame set on the lattice.
Since C̃ ′p∗ is one of the p-frame sets on the lattice, then we
have

s(C̃p∗)
s(Cp∗)

≥ s(C̃ ′p∗)
s(Cp∗)

≥ 1 − 2dz

z + 2dz
. (12)

Eq. (12) implies that we can use the solution C̃p∗ as
the approximate solution to the optimal solution. Let the
approximation bound be

ε =
2dz

z + 2dz
. (13)

Solving (13) and combining the upper bound value of d
as in (7), we have

d = 3dz = min(
3
2
(

ε

1 − ε
)z,min(3λ/10, µ/3)). (14)

Eq. (14) indicates that when ε → 0,

d = 3dz =
3
2
(

ε

1 − ε
)z. (15)

Eqs. (13) and (15) imply that we can control the quality
of the approximate solution by tuning the lattice spacing d.
On the other hand, based on the lattice structure and the
definition of the approximation bound, we know that the
number of all candidate ponints/frames on the lattice is,

|L| = O(1/ε3). (16)

D. Lattice-based Algorithm

With the approximation bound established, the remaining
task is to search C̃p∗ on L. We design an induction-like
approach that builds on the relationship between the solution
to the (p−1)-frame problem and the solution to the p-frame
problem. The key elements that establish the connection
are Conditional Optimal Solution (COS) and Conditional
Optimal Residual Solution (CORS).

Definition 6 (Conditional Optimal Solution): ∀c̃ ∈ L, the
COS, Ũj(c̃) = {C̃j∗|c̃ ∈ C̃j∗}, is defined as the optimal j-
frame set, j = 1, 2, ..., p, for the j-frame problem that must
include c̃ in the solution set. Also, Ũj(c̃) satisfies the VNOC.

Therefore, we can obtain the optimal solution, C̃p∗, on the
lattice by searching c̃ over L and its corresponding COS,

C̃p∗ = Ũp(c̃∗), (17)

where c̃∗ = arg maxc̃∈L s(Ũp(c̃)).
Definition 7 (Conditional Optimal Residual Solution):

Given any COS, Ũj+1(c̃), j = 0, 1, ..., p − 1, we define the
j-frame CORS with respect to c̃ as: Q̃j(c̃) = Ũj+1(c̃)−{c̃}.

Corollary 2: Q̃j(c̃) is the optimal j-frame set that satis-
fies,

• c̃ /∈ Q̃j(c̃),
• {c̃} ∪ Q̃j(c̃) satisfies the VNOC.
What is interesting is that CORS allows us to establish the

relationship between Q̃j and Q̃j−1.
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Lemma 3:

Q̃j(c̃u) = Q̃j−1(c̃∗) ∪ {c̃∗}, (18)

where c̃∗ = arg maxc̃∈L s(Q̃j−1(c̃) ∪ {c̃}), subject to the
constraint that {c̃u, c̃} ∪ Q̃j−1(c̃) satisfies the VNOC.

Proof: We prove the lemma by contradiction. Notice
that the right hand side of (18) returns one of the j-frame
sets that satisfy the two conditions in Corollary 2, while the
left hand side is defined to be the optimal j-frame set that
satisfies the same two conditions. Therefore, if we assume
(18) does not hold, the only possibility is,

s(Q̃j(c̃u)) > s(Q̃j−1(c̃∗) ∪ {c̃∗}). (19)

Take an arbitrary frame c̃v ∈ Q̃j(c̃u) out of Q̃j(c̃u), the
result is Q̃j(c̃u)−{c̃v} and according to Lemma 1, we have,

s(Q̃j(c̃u) − {c̃v}) = s(Q̃j(c̃u)) − s(c̃v). (20)

Take c̃v out of Q̃j−1(c̃v) ∪ {c̃v}, the result is Q̃j−1(c̃v)
and

s(Q̃j−1(c̃v)) = s(Q̃j−1(c̃v) ∪ {c̃v}) − s(c̃v). (21)

Based on (19) and the fact that

s(Q̃j−1(c̃∗) ∪ {c̃∗}) ≥ s(Q̃j−1(c̃v) ∪ {c̃v}),
we have,

s(Q̃j(c̃u)) > s(Q̃j−1(c̃v) ∪ {c̃v}). (22)

Take c̃v out of both sides and combine with (20) and (21)
respectively, we have,

s(Q̃j(c̃u) − {c̃v}) > s(Q̃j−1(c̃v)). (23)

The frame set on the right hand side of (23), Q̃j−1(c̃v),
is defined to be the optimal (j − 1)-frame set that satisfies
the two conditions in Corollary 2 while the frame set on left
hand side, Q̃j(c̃u) − {c̃v}, is only one of the (j − 1)-frame
sets that satisfy the two conditions. Contradiction occurs.

It is worth mentioning that it takes O(p) time to check if
({c̃u, c̃}∪Q̃j(c̃)) satisfies the VNOC. Because {c̃}∪Q̃j(c̃) =
Ũj+1(c̃) satisfies the VNOC as defined in Definition 6 and
thus we only need to check if {c̃u} ∪ Ũj+1(c̃) satisfies the
VNOC, which takes O(p) time.

Eq. (17) implies that we can obtain the approximation
solution C̃p∗ from Ũp. Definition 7 indicates that we can
obtain Ũp from Q̃p−1. Now Lemma 3 implies that we can
construct Q̃j from Q̃j−1, j = 1, 2, ..., p−1. Considering the
fact that Q̃0 = φ, this allows us to establish the algorithm
using an induction-like approach. Algorithm 1 shows the
complete lattice-based algorithm. Considering any candidate
frame c̃ ∈ L, we pre-calculate the satisfaction values for all
the |L| candidate frames and store the values in a lookup
table to avoid redundant calculation. Given any candidate
frame c̃u ∈ L as the input, the lookup function l returns
the satisfaction value of c̃u, l(c̃u) = s(c̃u). We implement
the lookup function using the array, l[u] = s(c̃u). From the
pseudo code in Algorithm 1, it is not difficult to know that,

Theorem 1: Algorithm 1 runs in O(n/ε3 + p2/ε6) time.

Algorithm 1: Lattice-based Algorithm

begin
for j ← 1 to |L| do O(1/ε3)

l[j] = s(c̃j) O(n)

Q̃0(c̃j) = ∅; O(1)

s(Q̃0(c̃j)) = 0; O(1)
end
for k ← 1 to p do O(p)

C̃k∗ = ∅; O(1)

s(C̃k∗) = 0; O(1)

for u← 1 to |L| do update C̃k∗,O(1/ε3)

if s(C̃k∗) < s(Q̃k−1(c̃u)) + l[u] then
C̃k∗ = Q̃k−1(c̃u) ∪ {c̃u}; O(1)

s(C̃k∗) = s(Q̃k−1(c̃u)) + l[u]; O(1)
end

end
for u← 1 to |L| do update Q̃k(c̃u),O(1/ε3)

Q̃k(c̃u) = Q̃k−1(c̃u) ∪ ∅; O(1)

s(Q̃k(c̃u)) = s(Q̃k−1(c̃u)); O(1)
for v ← 1 to |L| do O(1/ε3)

if s(Q̃k(c̃u)) < s(Q̃k−1(c̃v)) + l[v] AND
{c̃u, c̃v} ∪ Q̃k−1(c̃v)
satisfies the VNOC O(p)
then

Q̃k(c̃u) = Q̃k−1(c̃v) ∪ {c̃v}; O(1)

s(Q̃k(c̃u)) = s(Q̃k−1(c̃v)) + l[v]; O(1)
end

end
end

end
return C̃p∗;

end

V. EXPERIMENTAL RESULTS

We have implemented the algorithm using Java. The
computer used is a desktop computer with an Intel Core 2
Duo 2.13GHz CPU and 2GB RAM. The operating system
is Windows XP. In experiments, we test the algorithm speed
with different parameter settings including the number of
request n, the number of camera frames p, and the approxi-
mation bound ε.

In the experiments, both triangular and rectangular inputs
are randomly generated. First, sd points in V are uniformly
generated across the reachable field of view. These points
indicate the locations of interest and are referred to as seeds.
Each seed is associated with a random radius of interest. To
generate a request, we randomly assign it to one seed. For a
triangular request, three 2-D points are randomly generated
within the radius of the corresponding seed as the vertices
of the triangle. For a rectangular request, a 2-D point is
randomly generated as the center of the rectangular region
within the radius of corresponding seed and then two random
numbers are generated as the width and height of the request.
Finally, the resolution value of the request is uniformly
randomly generated across the resolution range [z, z].

Across the experiment, we set w=80, h=60, z=5, z=15 and
sd=4. For each parameter setting, 50 trials have been carried
out for averaged performance. The simulation results indicate
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(a) The computation time
vs. the number of frames p,
(n=100, ε=0.25).
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(b) The computation time vs.
the approximation bound ε,
(n=100, p=2). Note that the
horizontal axis is 1/ε6.

Fig. 2. Speed testing results.

(a)
p=1, s=4.21

(b)
p=2, s=6.32

(c)
p=3, s=8.11

(d)
p=4, s=9.07

Fig. 3. Sample outputs when p increases for a fixed input set n = 10.

the linear relationship between the computation time and n.
Fig. 2 illustrates the relationship between the computation
time and the parameters p and ε. The results are consistent
with our analysis.

Fig. 3 shows how the output of the algorithm for a fixed
set of inputs (n=10) changes when p increases from 1 to
4. It shows that our algorithm reasonably allocates camera
frames in each case.

VI. CONCLUSION

We formulated the least overlapping p-frame problem with
non-partial coverage as an optimization problem. A lattice-
based approximation algorithm was proposed for solving the
problem. Given n requests and p camera frames, the algo-
rithm runs in O(n/ε3 + p2/ε6) time with the approximation
bound ε. We have implemented the algorithm and tested it
on random inputs. The experimental results are consistent
with our theoretical analysis.

In future work, we will explore the new geometric data
structures to improve complexity results. We will also de-
velop algorithms for different variations of the problem such
as allowing camera frames to overlap with each others.
We plan to apply the algorithm in an outdoor collaborative
observation system in the natural environment for field
experiments. We plan to make it available online for Internet
users with various background and observation purposes.
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