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Abstract—In this paper, we propose a distributed path planning
method for robot navigation amidst a wireless sensor network.
Our method uses communication backbone as a roadmap. In
building and maintaining the roadmap, it takes path safety
and network longevity into account, and therefore the roadmap
adapts to dynamic dangers and evolves over time to increase
network longevity. To find a safe path, a navigation field is
propagated over the roadmap and the shortest path is computed.
Simulation results show that as compared to existing methods our
method finds a safe path with less communication cost, and in
dense networks it generates smaller roadmaps. We also provide
theoretical bounds on the path quality in terms of path length.

I. INTRODUCTION

Recently there has been significant interest in sensor net-
work for environmental monitoring and many other applica-
tions, and in many cases, robots have been an integral part
of the system [1]. In this paper, we explore one possible
interaction between robots and sensor networks: navigation
in a sensor network. By communicating with a sensor net-
work deployed in an environment and continuously perceiving
changes, robots can respond to events outside their perception
range, and move with guidance obtained from the network.
The application can be to guide a robot (or humans) toward
a goal across a hazardous environment [2], especially in an
emergency situation [3]. The problem of robot navigation in
sensor networks can be formulated as a robot path planning
problem in presence of obstacles, with danger areas (e.g.,
spots with excessive heat) of the network being modeled as
obstacles.

One naive way to solve the problem is for the robot to
gather all sensor readings from the network and plan a path in
a centralized manner. The problems with doing so are that (a)
the communication cost of gathering information is high, and
(b) it is hard to adapt to dynamic environments due to the rel-
atively long time needed for information gathering. Therefore
distributed methods are desired for path planning in sensor
network environments, and several distributed methods have
been proposed for the problem. In [4], [5], [6], a navigation
potential field is propagated across the sensor network, and
then the field is used to navigate the robot. When the robot
moves in the sensor field, the robot interacts with neighboring
sensor nodes to get optimal motion with respect to a certain
objective, such as distance to goal or safety. The major problem
with this type of approach is that flooding algorithms are used
to propagate the navigation field, and consequently, the field
needs relatively long time to become stable when a goal is

specified, and the energy consumption could be high, due to
the high volume of communication resulting from flooding.

Recently, inspired by Probabilistic Roadmap Method (PRM)
[7], roadmap based methods have been proposed to reduce
flooding and hence communication cost [8], [9], [10], [11].
Rather than propagating the navigation field over the entire
network, these methods navigate the robot through a roadmap,
a smaller subset of the network. As suggested in [9], [11],
in addition to being more efficient in dynamic environments,
the roadmap based methods can incorporate physical obsta-
cles, provided the robot is mounted with necessary sensors.
However, all these methods still need a certain degree of
flooding for all nodes in roadmap construction, and for non-
roadmap nodes to compute the navigation field to guide the
robot toward the roadmap; therefore they do not take full
advantage of the roadmap. In this paper, we propose a different
roadmap method, which eliminates flooding in the construction
of roadmap.

The proposed method is inspired by distributed clustering
algorithms for constructing communication backbone [12].
We first extract the backbone of the sensor network via a
clustering algorithm adapted from [13], and use the backbone
as roadmap for path planning. The extracted backbone is
a virtual network formed by a relatively small subset of
the network, and provides a hierarchical organization of the
original network. The basic idea is to group a set of nodes
based on physical proximity, and represent each group with
a single node as clusterhead; these clusterheads and selected
connections among them form the backbone.

It is advantageous to use backbone network as a roadmap.
There is no need of flooding in order to construct the backbone;
a node decides whether to become a backbone node, based
on its 2-hop neighbor information. The size of backbone
depends on network connectivity, and when connectivity is
high, the number of clusterheads decreases, resulting in a
smaller roadmap. Furthermore, the clusterheads will spread out
in the network, and every node will be at most 1-hop away
from the roadmap. This property brings two benefits: (a) the
length of a computed path is bounded by a constant ratio to the
optimal one; and (b) there is no extra cost for a non-roadmap
node to compute navigation field toward the roadmap. As seen
in the simulation results, compared to existing method [11],
the backbone based roadmap results in smaller roadmaps, and
fewer messages to construct the roadmap, and fewer messages
to navigate a robot to the given goal.
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The remainder of the paper is organized as follows. In
Section II, we give some background introduction including
related works, basic concept of clustering algorithms. Then,
we detail the proposed algorithm in Section III, and present
some theoretical results in Section IV. In Section V we show
simulation results, followed by conclusion and future work in
Section VI.

II. BACKGROUND

A. Problem Overview

A sensor network consists of a set of sensor nodes, S =
{s1, · · · , sn}, in the environment. A sensor node can measure
state of the environment (e.g., temperature) within its sensing
range, ds. Danger areas (e.g., with excessive heat) can be
detected by sensors, if the sensor reading is beyond a certain
threshold. Two nodes can communicate with each other, if they
are within distance, dc, the communication range. In this paper,
we assume a simple fixed radius cookie-cutter communication
model. We also assume that sensor nodes know their location.
The network formed by sensor nodes is modeled as a proximity
graph, G(V,E), whose vertices represent sensor nodes, and
edges represent communication links between nodes.

The robot, R, is assumed to be a point (circular) robot.
The robot is mounted with sensing and wireless communica-
tion devices that can communicate with sensor nodes within
communication range, dc. We assume localization devices
such as GPS are not available on the robot (e.g., in indoor
environments).

The robot responds to a certain event (e.g., a victim in
a rescue scene [3]). When a sensor node sg in the network
detects a target event, the sensor network navigates the robot
R toward sg while avoiding danger areas (e.g. fire). The
challenges of the problem come from that fact that (a) the
robot does not have localization device, (b) the path should be
danger-free, and (c) the environment may change over time.
The problem can be solved in two steps: (1) Path planning,
finding a feasible path in terms of sensor nodes; and (2) Path
navigation, navigating the robot along the path by moving the
robot from one node to another. The first step is done within
sensor network alone, and the second is done with continuous
interaction between network and the robot. The focus of this
paper is the first step: path planning.

B. Related Work

1) Robot path planning: General approaches to solve au-
tonomous path planning and navigation problems can be
found in [14]. For many difficult path planning problems,
(e.g., problems with high-dimensional robots, or complicated
environments), sampling-based methods such as PRM [7] have
been successful in the past decade. The approach we take in
this paper is essentially this type of method, in the sense that
it uses a limited number of sensors (samples) to navigate the
robot. However, for path planning in sensor networks, the key
challenge is how to do the path planning in a distributed way
[10].

2) Robot navigation in sensor networks: Several distributed
algorithms have been proposed for the problem. One class of
algorithms is to propagate a navigation field over the entire
sensor network: messages flood from the goal, so that each
sensor node will have knowledge about best movement to
reach goal. [4], [5], [6], [15] fall into this category, and they
differ in the definition of navigation field based on different
objectives. All the above algorithms, however, use flooding to
propagate a navigation field, which is not efficient in terms
of network energy consumption due to high communication
volume. Different techniques have been proposed to reduce
flooding. [8], [9] propose to find a feasible path incrementally
as the robot travels through the sensor network, and flooding
is reduced by limiting query to only nodes in vicinity of the
robot; [9] further reduces communication by building a virtual
grid road-map in the area, and limiting query to nodes close
to roadmap edges. [10] proposed to scale down the original
network by building a skeleton graph based on geographic
information. Recently, [11] proposed to build a roadmap by
randomly choosing a certain number of nodes as milestones,
and making connections among them. As mentioned before,
these methods still involve a certain degree of flooding.

C. Clustering and graph domination

Clustering is a technique of scaling down networks with
a large number of nodes, and it is mainly used for routing
in large scale networks, especially sensor networks. Given a
graph G = (V,E), the aim of clustering is to find subsets of
V , {V1, V2, · · · , Vk}, such that each of Vi induces a connected
subgraph of G, and

⋃k
i=1 Vi = V . The subsets are called

clusters, and they can overlap with each other. A particular
vertex in Vi is chosen to represent the cluster, called the
clusterhead.

Distributed clustering algorithms have been introduced in
[16], and have been extensively studied since the past decade
for ad hoc networks. Good reviews of clustering algorithms
can be found in [17], [18], [19]. A natural way to cluster an
ad hoc network is to use graph domination and its variants. A
dominating set, D, is a set of vertices that makes all vertices
of the graph either in D or adjacent to at least one vertex in
D. Formally,

D ⊆ V, ∀u ∈ V − D, ∃v ∈ D s.t. (u, v) ∈ E.

The members of a minimum dominating set (MDS) can be used
to represent clusterheads, each of which forms a cluster with
their neighbors. A connected dominating set (CDS), C ⊆ V ,
is a dominating set of G, such that the subgraph induced by C
is connected. A CDS in general includes a set of clusterheads
as in MDS, and gateways that connect them. The problems
of finding (MDS), and minimum connected dominating set
(MCDS) have been proved to be NP-hard [20]. Due to the
hardness of the domination problems, different algorithms use
different heuristics to choose dominating sets as clusterheads
(and gateways). In this paper, we adopt the TMPO algorithm,
Topology Management by Probity Ordering, in [13], which
uses a comprehensive heuristic combining multiple criteria. We
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now outline the TMPO algorithm in the next section. Please
refer to [13] for detailed description.

D. TMPO: CDS election based on priority

With TMPO, a node decides whether or not to be a CDS
member based on a knowledge of its 2-hop neighbors, and
their priority which is a function of node energy and mobility.
There are three types of nodes in the CDS, clusterheads (CH),
doorways (DW), and gateways (GW). Clusterheads form a
dominating set, and doorways are a special type of gateways
connecting clusterheads. We call clusterheads, doorways, gate-
ways CDS nodes, and all other nodes as regular nodes. A
node decides whether to become a CDS node according to the
following criteria, and note that these criteria are stated with
respect to local 2-hop neighbor information.

A node becomes a CH, if it satisfies either of the following
conditions:

(C.1) It has the highest priority among its 1-hop neighbor;
(C.2) It has the highest priority among some node’s 1-hop

neighbors;

It has been proved that clusterheads elected based on (C.1) and
(C.2) make an approximation to MDS. Furthermore, for any
clusterhead, the closest clusterhead (if there exists one) is at
most 3-hop away. To form the backbone, connections between
clusterheads need to be established. If two clusterheads are
only 1-hop away, the link between them is kept. If two
clusterheads are 2-hop away, and there is no other clusterhead
in between, a gateway is needed to connect them. If two
clusterheads are 3-hop away, and there is no other clusterhead
in between, a doorway is needed to bring them one-hop closer,
and a gateway is needed to connect the doorway and the other
clusterhead. Simply put, the shortest path (of length 3) with the
highest priority node is used to connect these two clusterheads,
and the node with the highest priority becomes doorway and
connects to one of the clusterheads, and a common neighbor
(with the highest priority) of the doorway and the other
clusterhead is elected as a gateway to connect the doorway
and the other clusterhead. More specifically, a node becomes
a DW, if it satisfies all of the following conditions:

(D.1) It has one clusterhead, c1, as 1-hop neighbor.
(D.2) It has another clusterhead, c2, as 2-hop neighbor, but no

other clusterhead neighboring c2.
(D.3) c1 and c2 are not neighbors, and there is no other nodes

connecting c1 and c2;
(D.4) There is no other path between c1 and c2 that has a higher

priority node.

A node becomes a GW, if it satisfies all of the following
conditions:

(G.1) It has two disjoint clusterheads, or one clusterhead and one
doorway, n1 and n2 as 1-hop neighbors;

(G.1) There is no 1-hop neighbor that is a common neighbor of
n1 and n2, and has higher priority.

III. BACKBONE FOR NAVIGATION

A. Node priority

In [13], priority is defined as a function of energy and
mobility, and a node that has higher energy and lower mobility
is more likely to be a clusterhead, thereby achieving longer

lifetime, and more stable backbone. We adapt and generalize
this definition for robot navigation. We define the priority Pi,
of node i, as a function of energy and safety:

Pi(do, E) = B1

⊕
B2

⊕
B3

B1 = �do · log2(1 − 0.9E)�
B2 = do

B3 = do · node id

(1)

where Bi is a bitstring and
⊕

is bit-concatenation operation,
do is the distance to danger, and E is remaining energy. As
do ≥ 0, the priority will be non-negative, and when do = 0,
and the node will lose its privilege to become a CDS node.
E ∈ [0, 1], when the battery is depleted, the logarithmic term
goes to zero, and B1 becomes zero.

B. Roadmap construction

The backbone construction procedure essentially elects
members of CDS, as described in Section II-D. We make
two key modifications to the original TMPO algorithm, since
the problem imposes safety constraints. First, with the priority
defined in previous section, nodes that are further away from
danger, and have more energy are more likely to be elected
in the CDS. In order to eradicate the possibility of electing a
node in danger, which has zero priority, we include an extra
criterion for CDS election:

(E.1) A zero-priority node is not eligible to be a CDS node.

Furthermore, during the election, a node simply ignores a
neighbor, if this neighbor has zero-priority, as if the neighbor
were not in the list of neighbors. Equivalently, the elec-
tion is done with respect to the network with all nodes in
danger removed. Note that inclusion of (E.1) may result in
a disconnected backbone, even if the original network is a
connected one. In such a case, the backbone will be the
union of CDS for each connected component. For the sake
of easy description, we may interchange the terms of CDS
and backbone throughout the paper.

The second modification is regarding information propaga-
tion after election. In [13], clusterheads and doorways need to
propagate their type (CH, DW, or GW) information, because
election of doorways depends on which nodes are clusterheads
in neighborhood, and election of gateways depends on in-
formation of clusterheads and doorways. In our problem, in
order to (further) reduce the communication volume for goal
dissemination in later stages, we propose to propagate extra
information for doorways and gateways. That is, besides type
information, a doorway or gateway should also propagate the
information as to which clusterheads (or doorways) it connects.

The backbone roadmap is constructed in a distributed fash-
ion. The detailed algorithm is shown in Algorithm 1, and the
same algorithm runs in every sensor node. When CDS nodes
are elected, connections among them are formed implicitly
by constructing employers and employees. For a doorway,
employers is a list of clusterheads it connects, for a gateway
employers is a list of clusterheads and doorways it connects,
and a clusterhead has an empty set of employers. Once a
node changes its type (e.g., newly elected as a clusterhead), it
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propagates its type by broadcasting a TYPE CHG message for
two hops. TYPE CHG message includes employers, and upon
reception of the message, clusterheads and doorways update
their employees by including all doorways and gateways that
connect them to another clusterhead. Clearly, a gateway has
an empty set of employees. employers and employees will be
used in the next stage for goal dissemination for navigation.

Algorithm 1: Roadmap construction

employers ← ∅; type ← Regular;1
if ((C.1) or (C.2)) and (E.1) then2

type ← CH;3
else4

if (D.1-4) and (E.1) then5
type ← DW;6
employers ← CHs that it connects;7

endif8
if (G.1-2) and (E.1) then9

type ← GW;10
employers ← CHs and DWs that it connects;11

endif12
endif13

if type changes then14
omsg.msgid ← TYPE CHG;15
omsg.content.type ← type ;16
omsg.content.param ← employers ;17
Broadcast omsg ;18

endif19

if imsg received and imsg.msgid=TYPE CHG then20
if from 1-hop neighbor then Broadcast imsg ;21
if (type = CH or DW) then Update employees;22

endif23

Algorithm 2: Goal Dissemination
forme ←false; //Is the message for me?1
if imsg received and imsg.msgid=GOAL then2

if (type is CH or GW or DW) then3
if sender ∈ employees then forme ←true ;4
else if sender ∈ employers then forme ←true ;5

else6
forme ←true ;7

endif8

if forme = true and imsg.hops+1<hopstogoal then9
imsg.hops ← hopstogoal ← imsg.hops+1;10
nexttogoal ← imsg.sender;11
if type �= Regular then Broadcast imsg ;12

endif13
endif14

C. Goal dissemination

The purpose of goal dissemination is to notify, if possible,
every node of the specified goal, so that every node can provide
guidance (to the robot) in case the robot is in the neighborhood.
Now that we have constructed backbone as a roadmap, the goal
dissemination propagates a potential field over the network via
the roadmap, and the best path is found by following the field.
The definition of path quality depends on applications, and dif-
ferent potential functions can be use, e.g., [11] uses a weighted
combination of path length and maximum danger level. While
nothing prevents one from adopting other potential functions,
here we simply choose the shortest path in the roadmap, as we

have already taken safety into consideration when constructing
the roadmap, and all nodes in the roadmap are in safe areas.
The procedure is shown in Algorithm 2. The goal node initiates
the procedure by broadcasting a GOAL message, and backbone
nodes forward the message to every node of the network.
If the received message gives a better path to goal, a node
updates the information, and the message is re-broadcast only
if the receiving node is a backbone node. The number of
messages is reduced by limiting rebroadcasting (forwarding):
A backbone node only processes messages from its employers,
employees, and the goal node. If a message comes from any
other nodes, the receiving node simply discards the message;
A regular node receives and processes GOAL messages but
never forwards the message.

D. Robot navigation

The robot navigates with the cooperation of sensor nodes.
When a robot moves amidst the sensor network, it constantly
broadcasts a QUERY message, and waits for response from
sensor nodes in the neighborhood. When sensor nodes re-
ceive QUERY message, they respond with NAVIG messages
which contain current distance to goal (hopstogoal) and
best movement toward goal (nexttogoal). This information
for every node has been updated in the goal dissemination
stage. When receiving NAVIG message, the robot chooses
the best movement. After execution, the query-respond-move
procedure repeats again, until the goal is reached.

E. Dynamic environments

Algorithm 3 shows how the roadmap adapts to dynamic
dangers. When a sensor node detects danger (e.g., high temper-
ature), do becomes 0, and it broadcasts a DANGER message.
Nodes receive the message, update their value of d0, and
forward the message up to a certain distance, dmax. Upon
change of d0, node priority changes, and re-election of CDS
is done locally again to adjust the roadmap for the changed
environment. When some nodes in backbone have changed,
the navigation field over the previous backbone needs update.
As local changes in backbone may result in global changes
in the navigation field, rather than updating the field locally,
a STALE message is sent to the goal node, and another round
of goal dissemination will be initiated.

Remarks: Clearly, danger detection may involve non-
backbone nodes, as a non-backbone node can also detect dan-
gers. The propagation of danger information may need a small
degree of flooding depending on the value of dmax. Note that,
however, there is no flooding needed in backbone election/re-
election (i.e., roadmap construction), where all messages are
sent at most 2 hops.

F. Load balance: network longevity

Generally backbone nodes should be kept alive for naviga-
tion, and hence they consume more energy. To achieve overall
longevity of the sensor network, nodes in the network should
share their roles as backbone nodes. With the definition of
priority in Eq.(1), this can be easily achieved. Remaining en-
ergy is represented by a set of discrete levels. When the energy
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drops to the next level, a node broadcasts an ENERGY message
to notify its neighbors within two hops. Upon reception of
the message, its neighbors recompute the priority and reelect
backbone if needed.
Algorithm 3: Roadmap Maintenance

/* Upon sensor reading changes. */
if reading > T then1

d0 ← 0;2
omsg.msgid = DANGER;3
omsg.danger.dist = 0;4
Broadcast omsg ;5

endif6

/* Upon receiption of DANGER msg. */
if imsg received and imsg.msgid=DANGER then7

if imsg.danger.dist+1< d0 < dmax then8
imsg.danger.dist← d0 ←imsg.danger.dist+1;9
Broadcast imsg ;10

endif11
endif12

/* Wait for a certain period, then: */
Call procedure in Algorithm 1;13
if type changes then14

Send a STALE message to goal node;15
endif16

G. Other considerations for realistic implementation

a) Synchronization: For simplicity of explanation in de-
scription and theoretic analysis, we assume synchronous com-
munication. In real implementation, asynchronous mechanism
is used to avoid congestion and synchronous sudden loss of
the old network states. As in [13], we use a simple random
time slot offset for a node to uniformly distribute the local
backbone re-election and communication.

b) Robustness: In our problem, sensor nodes are static,
and we do not globally update the backbone topology peri-
odically as in [13], since such update can be costly. Instead,
we only update backbone locally when it is indeed necessary:
dangers are detected, or a node’s battery drops to a certain
level. In realistic scenarios, the backbone may not always
reflect the actual environment. For instance, a node can be
burnt before it has a chance to send out a DANGER message, or
imperfect communication may result in inconsistent neighbor
information. This needs to be taken into consideration, in order
to make the proposed algorithm robust enough to implement on
a real system. What we do is somewhat similar to the strategy
in [11]. We verify the path on the execution phase: before the
robot moves, it confirms (with current associated sensor node)
that the next sensor node is indeed alive and safe. If otherwise
is indicated, a local CDS re-election is initiated, and the robot
waits until the backbone is updated and a new movement is
given.

IV. THEORETICAL RESULTS

We define a subset Vbad ⊆ V as nodes in dangerous regions,
Vgood = V − Vbad as nodes in safe regions, and Vrdmp as
roadmap nodes. Ggood is a subgraph of G, induced by Vgood.
Grdmp(Vrdmp, Erdmp) is the constructed backbone roadmap,
and (u, v) ∈ Erdmp if and only if u, v ∈ Vrdmp and u is

in employers or employees list of v. We have the following
lemma:

Lemma 1: All nodes in the roadmap constructed as in
Algorithm 1 are safe nodes. That is Vrdmp ⊆ Vgood. If Ggood

is a connected graph, Vrdmp is a CDS of Ggood, and Grdmp

is a connected graph.
Proof: Recall that the algorithm elects backbone nodes

based on priority defined in Eq.(1). When a node, si, is in
a danger area, do = 0, and consequently Pi = 0. A node
with zero priority will not be selected, due to condition (E.1).
The second half of the lemma follows from the fact that, on
election, a node ignores all neighbors with zero-priority. When
si is in danger areas, it notifies all its neighbors, and all its
neighbors take si out of consideration on backbone selection.
The neighbor list (in each node) that the CDS election is based
on is same as the neighbor list in Ggood.

A more general statement of Lemma 1 is: Vrdmp consists
of CDSs of all connected components of Ggood. Assume that
the sensing range ds is larger than half of the communication
range dc/2, which implies that moving between two safe nodes
results in a safe path. With Lemma 1, the correctness of the
algorithm follows.

Corollary 1: (Correctness) If there exists a safe sensor path
in the original network, G, then there exists a safe one in the
constructed backbone, Grdmp.

Note that we find the shortest path in the roadmap as the
best path, since we have already taken safety into account
when constructing the backbone/roadmap: the closer is a node
to danger, the smaller the priority it has, and the less chance
it has to be chosen as a backbone node. We now give bounds
on the path length.

Theorem 1: (Path length) For a connected graph Ggood,
the shortest path found in the constructed roadmap, Grdmp, is
bounded by the shortest path found in Ggood:

Drdmp(u, v) ≤ 3Dgood(u, v) + 2

where Drdmp(u, v) and Dgood(u, v) are lengths of the shortest
path between u and v, in Grdmp, Ggood, respectively.

Proof: We show that we can always find a path in
backbone related to the shortest path. From Lemma 1, vertices
of Grdmp is a CDS of Ggood. Assume, in the worst case,
all nodes in a shortest path between u and v are not in
the backbone. Consider Fig. 1(a). The squared nodes are
clusterheads, the dark/grey round nodes are doorway/gateway
nodes, and all other white nodes are regular nodes. The thick
lines represent connections in backbone, and the thin ones
represent those not in backbone. (The path u,w1, w2, w3, v
is an example of the worse case shortest path.)

As shown in Fig. 1(b), since each vertex must be dominated
by a clusterhead, clusterheads (e.g. c1 and c2) dominating two
adjacent vertices (e.g. w1 and w2) are at most 3-hops away.
As w1 and w2 are not in backbone, there must exist another
path of length ≤ 3 between c1 and c2 in backbone (e.g. c1 −
a−b−c2). There must be at least one connection between one
of {w1, w2} and one of {b, c}, otherwise, w1, and w2 would
have been in backbone.
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For the start and goal nodes(i.e., u, and v), each of them
should have a dominating clusterhead node within 1-hop. So
in total, Drdmp(u, v) ≤ 3Dgood(u, v) + 2. Fig. 1(a) also gives
a worst case scenario, showing that the bound is tight; once
any vertex in the shortest path becomes a backbone node, or
two of them share a clusterhead, the path length reduces.
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Fig. 1. Bound on path length.

Algorithm 1 for roadmap construction is adapted from the
approximation algorithm finding minimum CDS in [13], and
the approximation ratio analysis of the algorithm is beyond the
scope of this paper. But the following known results on the
size of minimum connected dominating set give a rough idea
of roadmap size. Let γc denote the cardinality of minimum
connected dominating set, and ∆ the maximum vertex degree.

Theorem 2: (Bounds on optimal roadmap size) For any
connected graph G,

1) [21] γc ≤ n − ∆;
2) [22] n(

∆−1
) ≤ γc ≤ 2m−n, where n, m is the number

of vertices and edges of G respectively. The equality for
lower bound is attained if and only if ∆ = n − 1, and
equality for upper bound is attained if and only if G is
a path graph.

Theorem 3: (Communication complexity) Let |CDS| be
the size of the backbone. The roadmap construction procedure
in Algorithm 1 takes O(|CDS| · ∆) messages. The goal
dissemination procedure in Algorithm 2 takes O(|CDS|)
messages.

Proof: Once a node is elected as a CDS node, a
TYPE CHG message will be sent for 2 hops. That is at most
(1 + ∆) messages for every node in CDS. Thus, in total, the
number of messages is O(|CDS| · ∆).

Assume that a node forwards the message as soon as it
is received and processed. The Algorithm 2 basically finds a
shortest path in the backbone, with the hop count as distance
model [5]. Thus, if a node receives two GOAL messages, the
one received later is further away from goal. So every node
forwards only the first message it receives, and hence the total
number of messages generated is |CDS|.

V. SIMULATION RESULTS

We have performed simulations to show performance of
proposed method using backbone as roadmap. We used an in-
house developed software simulator, where sensor nodes are
uniformly distributed within a 1000m × 1000m field, and we
assume there is no noise and interference.

A. Comparison with AER [11]

To compare with AER, we have done simulations for differ-
ent sizes of network, and different communication ranges. In
the first simulation, the communication range is fixed to 100m,
and the network size ranges from 200 to 800 sensor nodes. In
the second simulation, the network size is fixed to 200 nodes,
and the communication range varies from 100m to 300m.

TABLE I
PERFORMANCE IN NETWORKS WITH DIFFERENT SIZE, AND

COMMUNICATION RANGE FIXED TO 100M.

Size d Method Mcon Mgoal
Roadmap Path

Nv Ne Lo L

200 5
TMPO 1049 157 121 196

18
20

AER 1135 272 96 150 21

300 8
TMPO 1624 288 165 322

17
18

AER 2952 713 149 282 19

400 11
TMPO 2231 377 210 427

18
19

AER 5665 1256 191 434 20

500 14
TMPO 2850 479 243 568

17
19

AER 7852 2083 239 523 19

600 17
TMPO 3578 299 266 679

17
17

AER 13099 3233 309 776 18

700 20
TMPO 4108 339 310 789

17
17

AER 18913 4289 359 946 17

800 22
TMPO 4814 352 338 884

17
17

AER 25305 6321 423 1174 17

TABLE II
PERFORMANCE IN NETWORKS WITH DIFFERENT COMMUNICATION

RANGE, AND NETWORK SIZE FIXED TO 200 NODES.

Range d Method Mcon Mgoal
Roadmap Path
Nv Ne Lo L

100m 5
TMPO 1049 157 121 196

18
20

AER 1135 272 96 150 21

150m 15
TMPO 1119 132 97 218

11
12

AER 3161 639 86 193 13

200m 21
TMPO 1153 102 75 177

8
9

AER 5754 860 95 233 9

250m 32
TMPO 1193 54 50 119

6
7

AER 9465 896 92 296 7

300m 44
TMPO 1236 37 29 61

5
6

AER 11346 859 74 251 6

The results are shown in Table I and II. The performance
metrics we compared include: (1) number of messages needed
to construct a roadmap, Mcon, and the number includes mes-
sages used to collect neighborhood information; (2) number
of messages needed for goal dissemination, Mgoal. A message
can either be a broadcast message or a unicast message, i.e.,
they both count as 1. (3) roadmap size, represented by number
of nodes (Nv) and the number of links (Ne) used in the
constructed roadmap. For AER, we set the probability of being
a landmark to be 0.10 as used in [11], and roadmap size
includes edge nodes. (4) path length, L, in terms of hop count.
For each case, we also computed the average degree (d) of the
entire network, and the optimal path length Lo.

The simulation results show that TMPO (i) generates fewer
messages for roadmap construction and goal propagation, and
(ii) produces a smaller roadmap when the network connectivity
is high (network size ≥ 600 in Table I, and range ≥ 200m in
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Fig. 2. Original roadmap.
Fig. 3. Roadmap changes with dynamic danger. �
represents danger

Fig. 4. Roadmap adapts over time.

Table II). The smaller number of messages is mainly due to
use of broadcasting as opposed to unicast used in AER. The
smaller roadmap for high connectivity is achieved because of
the nature of dominating set; intuitively when the connectivity
is higher, it allows a node to dominate more nodes, and hence
a smaller dominating set in general. Also shown is that, the
length of paths computed by both algorithms is generally fairly
close to optimal, even though we have given theoretic bounds
on path length for the proposed algorithm whereas there is not
such guarantee in AER.

B. Roadmap changes upon danger

In this simulation we show how the roadmap changes in
response to dynamic dangers. Fig. 2 shows the initial roadmap.
When some dangers happen, the roadmap adapts to dangers,
as shown in Fig. 3 (a) and (b), and in extreme cases, it may
result in a disconnected roadmap.

C. Roadmap changes over time

In this simulation we show that nodes can share their roles
as backbone nodes to average out the energy consumption to
achieve a longer life of the network. Fig. 2 shows the initial
roadmap, Fig. 4(a) shows the roadmap after 1 hour (scalable),
and Fig. 4(b) shows the roadmap after 2 hours. We can see
the roadmap changes over time, and contains different nodes.

VI. CONCLUSION

We proposed a new method for robot navigation in sen-
sor networks. The method extracts backbone of the sensor
network via a clustering algorithm, and uses the backbone
as planning roadmap. The backbone consists of a connected
dominating set (CDS) of the (safe portion of the) network, and
is elected based on the defined priority which takes energy and
distance to danger into account to achieve network longevity
and path safety. With backbone as the roadmap, the method
avoids flooding in both roadmap construction and path query
(goal dissemination). As the backbone is related to network
connectivity, when the network has high connectivity, the size
of backbone decreases, resulting in a smaller roadmap for
navigation. Through simulations, we show that the proposed
method uses fewer messages for planning.
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