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Abstract—This paper presents a new approach for estimating
physical properties of deformable models from experimental
measurements. In contrast to most previous work, we introduce a
new method based on particle filters which identifies the different
stiffness properties for spring-based models. This approach
addresses some important limitations encountered with gradient
descent techniques which often converge towards ill solutions or
remain fixed in local minima conditions.

Index Terms—simulation, real-time, deformable bodies, model
estimation, particle filter.

I. INTRODUCTION

In recent years important efforts have been devoted to-
wards the development of sophisticated numerical models
for describing and simulating the behavior of complex de-
formable bodies. Among the many techniques developed,
finite element models (FEM) have become a gold standard
for most simulation applications used today in the industry.
With the development of faster computers with enhanced
graphics capabilities, these simulation technologies have also
been deployed in the movie industry to simulate the dynamic
behaviors and interactions between virtual actors and their
environments. If such physics engines have enabled animators
to program the motion of virtual characters semi automatically,
considerable amounts of time are still spent adjusting the
physical parameters of each physical model in order to ob-
tain the perfectly desired behavior. Unlike cartoon characters
which often display exaggerated and often unrealistic motions,
programming the fine motion of a real human in a realistic
way remains an extremely difficult task. In a different area
such as the medical field, physics engines are also used to
improve the capabilities of current imaging technologies such
as CT or MRI scanners. For medical and technical reasons
such imaging devices can only be used during short periods
of time or at different time intervals during an operation. By
developing real-time physical models of organs and by using
external sensory devices (i.e ultra-sound, force sensors) to
update these models, research efforts are aiming at developing
various techniques to provide 3D image information to the
surgeon in real time. Even further, these same models could
also be used for simulation purposes to plan an operation

before hand or to train doctors. While the goals addressed by
these different applications vary greatly, and despite the fact
that very different types of physical models may be used (i.e
finite elements versus spring based models), all require some
manual or automatic calibration in order to precisely simulate
the behavior of the environment being modeled.

To simulate the mechanical behavior of a real object,
all physical properties such as stiffness, damping and mass
distribution must be identified. In the ideal case, these values
may be derived directly from the shape and the material
properties composing the object, but due to the complexity
of most structures (i.e biological tissues) such information is
rarely available directly. In order to identify these parameters,
experimental approaches can be used instead; these strategies
require applying various force constraints onto the object while
measuring the changes of its configuration.

As the physical parameters of the estimated model may be
adjusted, the quality of correspondence between the reference
model (or real object) and the estimated model is evaluated by
measuring the variations of shape under different force con-
straints. In practice, this may be performed by comparing the
average distance between two clouds of points (i.e. markers)
which represent the surface of each object. In applications
where dynamic properties need to be simulated (damping),
velocity measurements may also be used.

To estimate the physical properties of a model, different
manual or automatic techniques have been proposed. In [6]
and [7] the authors present a genetic based algorithm which
estimates various parameters of a deformable model; in [7]
they extend their work to identify stiffness properties too. Due
to the complexity of their algorithms, their work is limited to
2D models only with homogeneous stiffness.

In [8] a mass-spring model is used in combination with
a neural network to simulate the physical behavior of a
deformable body in real time. The different nodes composing
the neural network are programmed to model the position of
the mass units, spring functions and viscosity functions. The
authors present a learning method based on a gradient descent
approach to tune the neural network according to a reference
model.
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Optimization search of mass-spring parameters using a
simulated annealing algorithm is presented in [5] and address
2D situations only. Another approach presented in [20] re-
fines the mass-springs representation and computes a uniform
stiffness value according to the Young Modulus. An FEM
representation is used as a reference model.

In [21] experiments using a vision based system and a least
square approach are presented.

In this paper we present a new strategy based on particle
filters to estimate the stiffness properties of a deformable
body. Our approach is composed of three stages: In the first
step, the behavior of the object is identified by applying
force constraints at different locations on the object and by
recording the resulting displacements. During the second phase
our algorithm randomly selects various sets of stiffness values
for each spring composing the estimated model; each set being
referred to as a particle. The same external forces that were
applied on the real object in step one are then applied on
the estimated model under each set of stiffness configurations.
The particles (or stiffness configurations) which produced the
best results are selected and new particles located within
their neighborhood are created. The algorithm halts when the
displacements between the reference and the estimated model
reach a desired level of correspondence.

II. BACKGROUND

A. Modeling Deformable Objects

Rendering deformable objects in a realistic manner is a
challenging task in computer simulation. While rigid bodies
can be accurately described using a limited number of parame-
ters, deformable objects, require a much larger set of variable
to express their configuration. During the last two decades,
a wide variety of approaches have been presented in soft
tissue simulation. Mass-spring system techniques [3] [4] have
widely and effectively been used for modeling deformable
bodies. Each object is described by a set of mass points
dispersed throughout the object and interconnected with each
other through a network of springs. These systems are easy
to model, to construct and have well understood physics.
They are also well suited for parallel computation, making
it possible to run complex environments in real-time for
interactive simulations. (A surgery simulator for instance). On
the other side, mass-spring systems have some drawbacks.
Incompressible volumetric objects and high stiffness mate-
rials have poor stability requiring small time steps during
the numerical integration process, which considerably slows
down the simulation. A second category of techniques is
finite elements methods [1] [2], which offer a strategy with
much higher accuracy to solve continuum models. In FEM,
unlike mass-spring methods where the equilibrium equation is
discretized and solved at each finite mass point, objects are
divided into unitary surface (2D) or volumetric (3D) elements
joined at discrete node points where a continuous equilibrium
equation is approximated over each element. Compared to
mass-spring systems, finite element methods generate a more
physically realistic behavior, but at the cost of requiring much

more numerical computation. For this reason FEM techniques
are difficult to use for real-time simulations.

Since our identification approach requires running a simu-
lator on large amounts of data sets, we opted for a real-time
mass-spring skeleton system [16]. Under this model, volumes
are approximated with macroscopic elastic sphere which are
placed along the medial axis transform of the object. Spheres
composing the skeleton are then connected together with three-
dimensional elastic links that provide elongation, flexion and
torsion properties to the object.

Fig. 1. Skeleton based model: Filling spheres are placed along the medial
skeleton of the object and are connected together with elastic links which
model elongation, flexion and torsion properties. Each vertex of the mesh is
attached to the nearest sphere or link

B. Particle Filters

Particle Filters [12] have already been used successfully in
various fields such as mobile robotics [9] [10], feature tracking
[11], and medical applications [17]–[19]. They provide a
powerful tool to estimate multi-modal parameters in a multi-
dimensional problem.

The goal of our work consist in estimating the stiffness
parameters (elongation constant kE , flexion constant kF and
torsion constant kT ) for each spring that composes the physical
skeleton of our object. In order to limit the complexity of
our system, we shall consider that all damping properties are
uniform.

Characterizing the stiffness properties of an object involves
estimating their values based on a set of experimental measure-
ments. In practice, such measurements are generally imprecise
and noisy due to the limitations of the hardware used to
acquire the data. Bayesian estimation provides a systematic
approach to parameter estimation under these conditions. One
commonly used Bayesian estimation technique is described as
the particle filter algorithm, which is a sampling and estimation
method that is used to approximate a posterior (i.e. probability
distribution) over all states according to the available mea-
surements made on the system and the model evolution. This
approach can deal with multi-modal problems where classic
optimization algorithms, such as gradient descent, usually fail.
The main advantage of Particle Filters comes from the fact that
the system maintains a ”global view” of the problem due to the
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large number of samples (particles) spread out in the search
space.

Baysian filtering techniques have been widely covered in
the literature. A survey of sequential sampling methods for
Baysian filtering can be found in [13]. Another review about
particle filters can also be found in [12].

The particle filter algorithm works in three phases. In the
first stage, the algorithm samples the search space with a
finite number of particles spread out randomly and uniformly.
In the second stage an associated weight is computed for
each particle according to a set of measurements previously
acquired. Finally a resampling process selects a new set of
particles by favoring previous particles with higher weights.
A mutation step can be added at the end to redistribute the
selected particles around the estimated solution.

III. ALGORITHM DESCRIPTION

In the following section, we describe the Particle Filter (PF)
approach that we used to characterize the physical properties
of our models.

The posterior density represents the probability distri-
bution p(X|Y1...Yj), where X is the estimated parame-
ters and Yj the measurement at time j, is represented
by a set of weighted particles with M particles Sj =
{(s[0]j , w

[0]
j ), (s[1]j , w

[1]
j )..., (s[M ]

j , w
[M ]
j )} where the weights w

are proportional to the measurement model:

w
[m]
j = Cp(Yj |X = sm

j ) (1)

with C a normalizing constant. The weights are normalized,
meaning that

M∑
m=1

w
[m]
j = 1 (2)

At time j, a new measurement Yj becomes available using
the measurement model p(Yj |X). Then, the posterior proba-
bility can be updated using the Bayes’ rule.

In our model, the parameters that we wish to estimate
correspond to the stiffness properties of each spring. If we
consider that each spring may hold different stiffness proper-
ties, the number of parameters needed to describe our model
is proportional to the number of links N inside the skeleton
model. The state variables X are defined as follow:

X = {(kE(1), kF (1)), (kE(2), kF (2)), ...,
..., (kE(N), kF (N))} (3)

The set of particles Sj in the search space V is defined in
the same way. Each particle at time j has a dimension of 2N
and is composed as follow:

sj = {(kE(1)j , kF (1)j), (kE(2)j , kF (2)j), ...
..., (kE(N)j , kF (N)j)} (4)

The main loop of the adapted PF algorithm is presented in
Alg. 1. At the end of the algorithm, we find two methods
to estimate the state variables given the set of particles:
Either by taking the particle with the highest weight, or by
computing the mean values for each particle dimensions. With
the second method, the standard deviation for each dimension
should remain small, meaning that all the particles should be
concentrated in the same area to provide relevant results.

A. Measurement model

The measurement model is defined by the probability
p(Y |X). In our application, the measurement space is com-
posed by the position in the 3D space of each node P =
{p0, p1, ..., pN} with pn = {xn, yn, zn} the position of the
node n, the force applied on the model f = {f (x), f (y), f (z)}
and the node on which the force is applied n(f). One mea-
surement at time j is defined by:

Yj = {Pj , fj , n
(f)
j } (5)

For each particle, the observation likelihood is represented
by a Gaussian computed as follows:

p(Yj |Xm) =
1√
2πσ

exp(−e(Yj , Xm)2

2σ
) (6)

The most expensive operation in the standard Particle Filter
algorithm is the evaluation of the likelihood function (6)
because it has to be performed once at every algorithm loop
for every particle.

After applying the selected particle to the model, the sim-
plest and most instinctive way to compute its likelihood is
to define a function e(Yj , Xm) which expresses the overall
distance between the mass nodes of the estimated model and
ones of the reference model. This approach turns out to be
quite expensive because, for each particle, the simulator needs
to compute the final state of the estimated model when a given
external force is applied. In practice, the simulator may need
to perform a few hundred iterations in order to obtain the final
steady state before distances can be computed.

In order to speed up this process, we established a different
measurement model by looking at the force domain. Instead
of comparing the overall distance between the estimated and
reference models, we analyze the resulting forces at each
mass node. When the initial measurements are performed on
the reference model, external forces are applied at different
locations of the object. Since the measurements are performed
once the reference model reaches a steady state (zero velocity
at each node), we can conclude that the resulting forces at
each mass node is equal to zero. If we position the mass
nodes of the estimated model in the same configuration as
the reference model and apply the same external forces, we
can now measure the likelihood of a particle by computing
the resulting forces at each mass node. If the sum of these
forces is near zero, this means that the stiffness of the springs
are very similar to the reference model. On the other side, if
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the resulting forces are important, we can conclude that the
estimated stiffness values are far from the reference model.

For each particle, there are two observation likelihoods: one
for forces and one for torques. These quantities are presented
in equation (6) with e(Yj , Xm) defined as follow:

eF (Yj , Xm) =
N∑

n=1

(
∑

Fi)n (7)

eT (Yj , Xm) =
N∑

n=1

(
∑

Ti)n (8)

Where eF (Yj , Xm) and eT (Yj , Xm) denote the error func-
tions to compute the resulting forces and torques on each node.
(
∑
Fi)n represents the sum of all forces (internal and external)

on node n and (
∑
Ti)n represents the sum of torques on node

n.

B. Weights computation

The last step of the algorithm consists in estimating the
weight for each particle in order to define their likelihood:

wm =
J∏

j=1

p(Y F
j |Xm)

J∏
j=1

p(Y T
j |Xm) (9)

The weights are then normalized as shown in equ. (2).

PF loop (V, S, M, σr, σF , σT )
1: // Sample M particle uniformly in the search space V
2: {Xm} ← Uniform Sample(M , V )
3: for k = 1 to K do
4: for j = 1 to J do
5: // Compute estimated forces and torques
6: (Fn, Tn)j ← evol model{Sk, Yj}
7: end for
8: // Compute likelihood weights
9: wm ← p(Y F

j |Xm)p(Y T
j |Xm)

10: // Normalize weights
11: wm = wm/

∑
wm

12: // Resample with Low Variance Sampling Method
13: {Xm} ← low var resample({Xm}, {wm}, M )
14: // Mutate
15: Xm = Xm + white noise(σr)
16: end for

Alg. 1: PF algorithm to characterize deformable objects.

C. Algorithm Parameters Definitions

The number of particles used in our PF system directly
affects the precision at which we can estimate the physical
parameters of our model and also the speed at which the
estimation can be performed.

If the model we wish to evaluate is describes by N variables,
the number of necessary particles is defined by MN . By
including a mutation step to add noise in the particle set
after resampling, it becomes possible to recenter the particles

Fig. 2. The deformable object used for the first experiment. A cube in the
skeleton representation made with 3x3x2 spheres. On the left, the cube is in
a steady position under gravity. In the middle and on the right, an external
force is applied.

around the found solutions, and therefore we can refine our
search while still maintaining a reasonable number of particles.

IV. RESULTS UNDER SIMULATION

To validate our approach, several experiments were per-
formed on different sets of 3D models of various complexity
and size. The application that we developed was programmed
in C++ and integrated the open source framework CHAI 3D
[23] which provides graphic and dynamic rendering modules.
For each experiment. we defined a reference model on which
our application could perform various measurements. An es-
timated model for which the stiffness properties need to be
estimated was interfaced to the Particle Filter for identification.
All experiments were performed on a 2.1 GHz single core
laptop computer running Windows XP.

In the first experiment, we present the results performed
on an homogeneous deformable cube consisting of a 3x3x2
network of elastic spheres. The model is illustrated in figure
2. Since every links contains the same stiffness properties,
the complexity of the problem is reduced to two dimensions
where kE and kF are to be estimated. 600 particles were used
for this experiment and six measurements were performed on
the reference model. The evolution of the particle set, starting
with the initial distribution, is plotted in figure 3. We observe
that the particles converge towards a unique solution only after
a few iterations. The algorithm estimates the stiffness values
with a final error of only 0.8% for kE and 0.6% for kF .
The standard deviation for kE and kF was 0.023N/mm and
6.7Nmm/rad respectively. It took 7.8s to obtain this result.

In this second experiment, we apply the same algorithm
on a non-homogeneous object consisting of 3x6 spheres. The
object is split in 3 areas with different stiffness; the model
is illustrated in figure 4. In this experiment, six unknown
parameters need to be estimated (kE and kF for each zone).
900 particles were spread out randomly in the entire search
space. The evolution of the particle set, starting with the initial
distribution, is plotted in figure 5. Once that the particle model
had converged, the maximal error was measured at 4.6% for
kE and 10.1% for kF . The standard deviation did not exceed
0.069N/mm for the elongation parameters and 15.1Nm/rad for
the flexion parameters. The experiment was performed in 42.6
seconds.

To evaluate our particle filter method, we also ran a series
of experiments using a non-linear least-squares optimization
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Fig. 5. Experiment II: the objet to characterize is a structure of 6x3 spheres in a network of springs defined by 3 homogeneous zones. These graphs represent
the particle distribution at the end of each step of the PF algorithm. It starts with the initial distribution and then a selection of steps are shown. Each step
contains 3 graphs that represent the 3 homogeneous zones. Each of them include elongation stiffness kE [N/mm] for horizontal axes and flexion stiffness kF

[Nmm/rad] for vertical axes. 900 particles were used to estimate the 6 parameters kE1, kE2, kE3 and kF1, kF2, kF3
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Fig. 3. Experiments I: the object to characterize is a deformable cube with
homogeneous stiffness consisting of 3x2x3 sphere. Every link carried the same
stiffness parameters. These graphs represent the particle distribution at the end
of each step of the PF algorithm. It starts with the initial distribution and then
each even steps are shown. Each graph include elongation stiffness kE and
flexion stiffness kF for horizontal and vertical axes respectively. 600 particles
were used to estimate the two parameters kE and kF

Fig. 4. The deformable object for the second experiment. A sheet of 6x3
spheres split in 3 areas with different stiffness. Each link colors represent an
area with a different stiffness.

algorithm. The experiments were performed under Matlab
with the non-linear optimization tool box. Despite the fact
that the algorithm was able to estimate correctly the stiffness
parameters for a simple homogeneous object, the results were
less accurate and the computation time was 10 to 20 times
slower compared to the Particle Filter approach. Moreover,
the computation time increased drastically with the number of
parameters to estimate. The algorithm also fell more often in
local minima when computing solutions on larger objects.

V. CONCLUSION AND FUTURE WORK

In this paper we introduced a new method based on particle
filters to identify stiffness properties of deformable objects.
Through experiments performed on different 3D models, we
showed that by selecting an adequate set of particles, it is
possible to develop an effective algorithm which converges
towards a solution that describes the physical properties of
the object. Our approach also addressed some problems en-
countered with gradient descent techniques.

Future work will include refining the Particle Filter algo-
rithm in order to reduce the necessary number of particles
when more complex deformable objects are used. Other re-
search aspects will include using such algorithm on real ob-
jects; this will require developing different sensing techniques
to perfectly capture the configuration of the object under
various force constraints.
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