
A Natural Gesture Interface for Operating Robotic Systems

Anqi Xu, Gregory Dudek and Junaed Sattar

Abstract— A gesture-based interaction framework is pre-
sented for controlling mobile robots. This natural interaction
paradigm has few physical requirements, and thus can be
deployed in many restrictive and challenging environments. We
present an implementation of this scheme in the control of an
underwater robot by an on-site human operator. The operator
performs discrete gestures using engineered visual targets,
which are interpreted by the robot as parametrized actionable
commands. By combining the symbolic alphabets resulting from
several visual cues, a large vocabulary of statements can be
produced. An Iterative Closest Point algorithm is used to detect
these observed motions, by comparing them with an established
database of gestures. Finally, we present quantitative data
collected from human participants indicating accuracy and
performance of our proposed scheme.

I. INTRODUCTION

Gestures are one of the most expressive ways of commu-
nicating between people. Whether they are initiated using
hands, facial features, or the entire body, the benefits of
using gestures in comparison with other media such as
speech or writing comes from the vast amount of information
that can be associated with a simple shape or motion. In
this paper we present an approach for adapting gestures as
a communication scheme in the Human-Robot Interaction
(HRI) context. More specifically, our work deals with robot
control in the underwater domain, where available modes of
communication are highly constrained due to the restrictions
imposed by the water medium. This paper describes a
framework for controlling an amphibious legged robot, by
tracing out trajectories using bar-code-like markers.

We are particularly interested in the application where an
underwater scuba diver is assisted by a semi-autonomous
robotic vehicle. This setup can be thought of as the human-
robot counterpart of a broader communication problem. In
general, divers converse with each other using hand signals as
opposed to speech or writing. This is because the aquatic en-
vironment does not allow for simple and reliable acoustic and
radio communication, and because the physical and cognitive
burdens of writing or using other similar communication
media are generally undesirable. On the other hand, visual
gestures do not rely on complicated or exotic hardware, do
not require strict environmental settings, and can convey a
wide range of information with minimal physical and mental
effort from the user. Furthermore, by combining spatial
gestures with other visual communication modes, a large and
expressive vocabulary can be obtained.

Centre for Intelligent Machines, McGill University, 3480
University Street, Montreal, Quebec, Canada H3A 2A7.
{anqixu,dudek,junaed}@cim.mcgill.ca

Fig. 1. Comparison of C (left) and RoboChat (right) syntax.

While our approach is motivated by underwater robotics,
the methods we employ can be used in other human-robot
interaction (HRI) contexts as well. Conventional approaches
of robot interaction rely on keyboards, joysticks and spoken
dialog. These traditional methods can be problematic in
many contexts, such as when speech and radio signals
cannot be used (i.e. underwater). The approach presented
in this paper extends prior work using an interface called
RoboChat [5]. Using RoboChat, an underwater diver displays
a sequence of symbolic patterns to the robot, and uses the
symbol sequence to generate utterances using a specialized
language (Fig. 1), which includes both terse imperative ac-
tions commands, as well as complex procedural statements.
The RoboChat language also features syntactic structures
that serve to minimize user input, as well as to increase
the flexibility of the language. It is designed to employ any
system of fiducial markers to permit robust target detection.
The present implementation uses the ARTag marker set [7],
although we are transitioning to an alternative deployment
based on Fourier Tags [12].

In spite of its utility, RoboChat suffers from three critical
weaknesses in its user interface. First of all, because a sep-
arate fiducial marker is required for each robot instruction,
the number of markers associated with robot commands may
be significantly large for a sophisticated robotic system. This
requirement can impede the diver’s locomotive capabilities,
since he must ensure the secure transportation of this large
amount of marker cards underwater. Secondly, the mapping
between robot instructions and symbolic markers are com-
pletely arbitrary, as the diver must first read the labels on each
card to locate a particular token. Thirdly, as a consequence
of the previous two deficiencies, the diver may require a
significant amount of time to locate the desired markers
to formulate a syntactically correct script, which may be
unacceptable for controlling a robot in real-time.

This paper proposes an interaction paradigm called
RoboChat Gestures, which can be used as a supplementary
input scheme for RoboChat. It is designed specifically to
remedy all three aforementioned weaknesses in the core
interface. The main premise is for the diver to formulate dis-
crete motions using a pair of fiducial markers. By interpreting

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3557

different motions as robot commands, the diver no longer is
required to carry one marker per instruction. The trajectories
of RoboChat Gestures are derived from different types of
traditional gestures, to take advantage of existing associations
and conventions in the form of embedded information. This
introduces a natural relationship between trajectories and
their meanings, which alleviates the cognitive strain on
the user. Additionally, the robot can process the observed
gestures and extract features from the motion, such as its
shape, orientation, or its size. Each gesture is mapped to a
command, while the extracted features are associated with
various parameters for that instruction. Because much of the
information is now embedded in each trajectory, RoboChat
Gestures can express the same amount of information that
the previous RoboChat interface could, but in significantly
less time, and using only two fiducial markers.

The rest of the paper is organized as follows. Section II
presents a brief literature survey. Sections III and IV elabo-
rate on the concept of RoboChat Gestures, and in particular
explains the inner workings of the gesture detection process.
Implementation results of the proposed scheme is discussed
in Section V, both quantitatively and qualitatively. We con-
clude the paper in Section VI and present possible avenues
for future work.

II. RELATED WORK

Our work described in this paper is based on four principal
ideas: a navigating underwater robot, the use of robust visual
targets, gesture recognition in the abstract, and gestures for
robot control.

Sattar et al. looked at using visual communications, and
specifically visual servo-control with respect to a human op-
erator, to handle the navigation of an underwater robot [13].
In that work, while the robot follows a diver to maneuver,
the diver can only modulate the robot’s activities by making
hand signals that are interpreted by a human operator on the
surface. Visual communication has also been used by several
authors to allow communication between robots on land, or
between robots and intelligent modules on the sea floor, for
example in the work of Vasilescu and Rus [16].

The work of Waldherr, Romero and Thrun [17] exemplifies
the explicit communication paradigm in which hand gestures
are used to interact with a robot and lead it through an envi-
ronment. Tsotsos et. al [15] considered a gestural interface
for non-expert users, in particular disabled children, based on
a combination of stereo vision and keyboard-like input. As an
example of implicit communication, Rybski and Voyles [11]
developed a system whereby a robot could observe a human
performing a task and learn about the environment.

Fiducial marker systems, as mentioned in the previous
section, are efficiently and robustly detectable under difficult
conditions. Apart from the ARTag toolkit mentioned previ-
ously, other fiducial marker systems have been developed
for use in a variety of applications. The ARToolkit marker
system [10] consists of symbols very similar to the ARTag
flavor in that they contain different patterns enclosed within
a square black border. Circular markers are also possible

in fiducial schemes, as demonstrated by the Photomodeler
Coded Targets Module system [1] and the Fourier Tags [12].

Vision-based gesture recognition has long been considered
for a variety of tasks, and has proven to be a challenging
problem examined for over 20 years with diverse well-
established applications [6] [9]. The types of gestural vo-
cabularies range from extremely simple actions, like simple
fist versus open hand, to very complex languages, such as the
American Sign Language (ASL). ASL allows for the expres-
sion of substantial affect and individual variation, making it
exceedingly difficult to deal with in its complete form. For
example, Tsotsos et al. [3] considered the interpretation of
elementary ASL primitives (i.e simple component motions)
and achieved 86 to 97 per cent recognition rates under
controlled conditions.

Gesture-based robot control is an extensively explored
topic in HRI. This includes explicit as well as implicit
communication frameworks between human operators and
robotics systems. Several authors have considered specialized
gestural behaviors [8] or strokes on a touch screen to control
basic robot navigation. Skubic et al. have examined the
combination of several types of human interface components,
with special emphasis on speech, to express spatial relation-
ships and spatial navigation tasks [14].

III. METHODOLOGY

A. Motivation and Setup

RoboChat Gestures is motivated partly by traditional hand
signals used by all human scuba divers to communicate with
one another. As mentioned in Sec. I, the original RobotChat
scheme was developed as an automated input interface to pre-
clude the need for a human interpreter or a remote video link.
Usability studies of RoboChat suggests that naive subjects
were able to formulate hand signals faster than searching
through printed markers. This difference was apparent even
when the markers were organized into indexed flip books to
enhance rapid deployment. We believe that this discrepancy
in performance was due to the intuitive relationships that
existed between the hand signals and the commands they
represented. These natural relationships served as useful
mnemonics, which allowed the diver to quickly generate the
input without actively considering each individual step in
performing the gesture.

The RoboChat Gestures scheme employs the same tech-
nique as hand signals to increase its performance. Each
gesture comprises of a sequence of motions performed using
two fiducial markers, whose trajectory and shape imply a
relevant action known to be associated with this gesture.
Because different instructions can now be specified using
the same pair of markers, the total number of visual targets
required to express the RoboChat vocabulary is reduced
considerably, making the system much more portable. This
benefit is particularly awarding to scuba divers, who already
have to attend to many instruments attached to their dive
gear. In general, the expression space for RoboChat Gestures
comprises of several dimensions. Different features may be
used in the identification process, including the markers’ ID,

3558

the shape of the trajectory drawn, its size, its orientation,
and the time taken to trace out the gesture. In addition, the
gestures provide a way to communicate out-of-band signals,
for example to stop the robot in case of an emergency. To
optimize the system’s usability, numerical values for these
non-deterministic features are converted from a continuous
representation to a discrete one, for both signal types.

B. Gesture design criteria

The selection of gestures for our system depends highly on
the target application. Designing shapes and motions suitable
for an aquatic robot comes with a number of restrictions.
Firstly, in the water medium, both the diver and the robot are
in constant motion, which makes performing and detecting
gestures more complex compared to the terrestrial domain.
To address this issue, we use two fiducial markers to perform
gestures, by using one marker as a reference point or “origin”
in the image space, and using the other “free” marker to
draw the actual gesture shapes. This approach compensates
for the constant motion of the vehicle and the operator, but
also reduces the effective field of view of the camera. This
problem can also be addressed by increasing the distance
between the operator and the camera. With our current im-
plementation with ARTags, successful detection is possible
with a separation of up to 2 meters. Also, since the marker
detection scheme is impeded by motion blur, we impose on
the operator the requirement to pause briefly at the vertices
of the gestures. The time span of the pause is usually very
small, resulting directly from the robustness of the fiducial
detection scheme.

IV. ROBOCHAT GESTURES DETECTION ALGORITHM

A. Overview

Our gesture recognition system exploits the positions of
the visual targets on the image plane over time. Thus
the raw input data to the system is a series of points of
the form (x, y, t). We use an Iterative Closest Point (ICP)
algorithm [2] to determine whether a given point cloud
represents a known gesture. Traditional ICP methods match
3-D points independent of their ordering, typically using
either a Euclidean or Mahalanobis distance metric. In our
case, we augment the ICP distance metric to use the position
of the gesture points on the 2-D image plane, as well as the
temporal sequence (but not the speed) associated with the
gesture. This algorithm attempts to pair up an observation
point cloud to different reference clouds, each representing
a unique gesture.

The ICP algorithm has two simple steps. First, for each of
the points in the observation cloud, we identify the closest
point in the reference set. Each point pair returns a distance,
which is stored into an error metric vector. Then, we find
the optimal method of transforming the observation cloud,
to minimize the least square error for the previously obtained
vector. Afterwards, we apply the transformation and iterate
these two steps until the improvement in the algorithm falls
below a certain threshold. When this terminating criterion is
reached, we evaluate the final error metric vector, and use it

Fig. 2. Raw and pre-processed data for two RoboChat Gestures clouds.

to determine whether the observation accurately resembles
the selected reference.

B. Pre-processing

To be able to properly compare point clouds, we need to
ensure that the data are on a similar scale. First, we identify
the position of the static marker as the origin, by looking for
the point sequence with the smallest covariance in the 2-D
positional space. We generate the data cloud by centering the
other marker about this (time-dependent) origin. To detect
rotated shapes, we first obtain the principal eigenvector for
each cloud, and rotate the data so that this vector is aligned in
every cloud. Additionally, to be able to match gestures with
different shapes, we unit-normalize the positional values on
the principal eigenvector axis, as well as on its perpendicular
axis. This last operation generally does not constrain pro-
portions, which is not an issue if we assume that only non-
degenerate 2-D shapes are allowed (i.e. no lines). Finally, we
unit-normalize the time axis as well, to allow for gestures at
different speeds to be compared. We perform these three
steps to ensure that similar shapes are already somewhat
aligned with each other prior to the detection phase, as shown
in Fig. 2. Additionally, it minimizes the number of iterations
required by the ICP algorithm, and also minimizes the chance
for the optimization part of the algorithm to be trapped by a
local minimum.

In order to increase detection rates, we compare the
observation cloud against different variants of each refer-
ence cloud. We generate these variants by rotating the data
by 180’ in the positional plane, by inverting points about
the principal eigenvector axis, by inverting the time axis,
and by permutations of these three transformations. These
transformations allow for detection of mirrored shapes, and
also cancels out the sign of the eigenvector, which may be
different even for similar clouds.

C. Point-to-point matching step

We first obtain the distance vectors between an observation
point and all data in the reference cloud. We then compute

3559

]

Fig. 3. Effect of trimming the point cloud.

the magnitude array using the Euclidean distance formula.
Next, we identify point pairs whose temporal components
surpass a certain absolute value, and penalize their cor-
responding error magnitude by manually adding to it a
fixed value. This way, when searching for the minimum
magnitude, we select the closest point pair from those with
tolerable temporal distances, if such pairs are available. After
pairing up each point in the observation cloud with one in
the reference, we assemble all the distances into the error
metric vector.

Since markers can be detected when the user is bringing
them into their starting positions, and also when they are
being removed after a gesture has been completed, this can
introduce “terminal” outliers. For this reason, we provide the
option to trim the observation cloud following the pairing
process. If the first few observation points all match to a
single reference point, we discard all but the last point. The
same operation is also performed on the last few observation
points as well. We then stretch the temporal values for the
resulting cloud to match the range of the initial set. As shown
in Fig. 3, this process can eliminate outliers at both ends of
the data.

D. Cloud optimization step
In the subsequent step, we use the error metric vector

to solve for an optimal transformation that minimizes the
squared distance of this new error metric vector. We in-
troduce two different types of transformations: in the first
variant, the algorithm minimizes the point cloud by allowing
it to rotate about the positional plane, and to translate in
all 3 dimensions. The second variant also allows for 3-
dimensional translation, but it employs proportional scaling
in the positional plane instead of rotation. These two variants
are either linear or can be linearized, and thus both have
closed-form solutions to their optimization rules.

The solution for the rotational variant is not exact, because
we approximate the cosine and sine of the angle of rotation
by 1 and the angle, respectively. As a precaution, we always
verify the fidelity of this approximation to ensure that the
solution is still qualitatively consistent.

We will now outline the derivation for this variant’s
solution. Given each point p in the observation (with N total
number of points) and each point q in the reference, we
attempt to minimize the error magnitude E by computing
the rotational matrix R with angle θ and the translational
vector T .

E = Σ∀p(Rp+ T − q)2 · [1; 1; 1]

The rotation matrix R is approximated as follows:

R =
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1
'

1 −θ 0
θ 1 0
0 0 1

After expanding E, taking its derivatives with respect to
θ, and equating to zero,

Σ(p2
x + p2

y)θ − Σ(py)Tx + Σ(px)Ty = Σ(pxqy − pyqx)

Similarly, taking derivatives of E with respect to Tx, Ty and
Tt, and equating to zero as before, we have:

−Σ(py)θ +NTx = Σ(qx)− Σ(px)
Σ(px)θ +NTy = Σ(qy)− Σ(py)

NTt = Σ(qt)− Σ(pt)

Solving the above equations for the unknowns, we have:

θ = [NΣ(pxqy)−NΣ(pyqx)]−Σ(px)Σ(qy)+Σ(py)Σ(qx)
[NΣ(p2x)+NΣ(p2y)−Σ(px)2−Σ(py)2]

Tx = Σ(py)θ+Σ(qx)−Σ(px)
N

Ty = −Σ(px)θ+Σ(qy)−Σ(py)
N

Tt = Σ(qt)−Σ(pt)
N

The scaling variant, on the other hand, produces a linear
optimization rule and thus returns an exact solution. We
provide a similar outline to obtain a, the scale factor, and
T , the translational vector, by minimizing E:

E = Σ∀p([a; a; 1]p+ T − q)2 · [1; 1; 1]

We solve a system of equations, similar to the one above,
for a and T :

a = [NΣ(pxqx)+NΣ(pyqy)−Σ(px)Σ(qx)−Σ(py)Σ(qy)]
[NΣ(p2x)+NΣ(p2y)−Σ(px)2−Σ(p2y)]

Tx = −Σ(px)a+Σ(qx)
N

Ty = −Σ(py)a+Σ(qy)
N

Tt = Σ(qt)−Σ(pt)
N

E. Algorithmic flow

After pre-processing the observation cloud, we first set the
optimization type to translation and rotation. Since the data
has just been scaled in the pre-processing stage, naturally
this variant produces a better result than the scaling version.
The algorithm iterates until the difference in overall normal-
ized error magnitude between two successive iterations falls
below a threshold. At this stage, we trim the edges of the
observation cloud and perform a translational and scaling
optimization on the data. If this recovery attempt results in
an improved match, we switch back to the rotational variant
and begin the loop anew. Otherwise, we terminate the process
and return the final error metric vector.

The result obtained by comparing an observation to a
reference may not be identical to that obtained by comparing

3560

Fig. 4. Triangle gesture compared against the Square gesture, demonstrat-
ing the need for inverse matching.

the reference to the observation. In order to account for this
asymmetry, we compute an inverse error metric vector by
matching the reference to the final observation cloud. We
define the average error magnitude as the arithmetic mean
of the two magnitudes. The last step in the algorithm can be
justified by the following example: assume the observation
consists of a right-angle triangle and the reference represents
a square, as seen in Fig. 4. The forward ICP loop will yield
a very small error vector. However, the same cannot be said
for the reverse ICP loop, since the forth vertex on the square
will have no homologue in the observation cloud, and thus
will increase the overall error magnitude.

As mentioned previously, we compare the observation
with each reference cloud several times, once for each trans-
formed variant of the data. At the end, we select the reference
variant with the smallest error magnitude, and then select the
best-matching reference shape using the same criterion. If
the resulting error magnitude performs better than a certain
acceptance threshold, we output the appropriate gesture to
which the observation cloud corresponds to.

F. Choice of Reference Data

For each gesture, we systematically pick out a reference
cloud from a set of training data. The selection mechanism
is achieved by evaluating each cloud against the rest of
the data using our algorithm and picking the one with
the smallest average error. We have experimented with two
other types of references as well. In the first of these, we
average the data by first selecting a cloud with an average
number of points in the training set. We then locate for
each point in this cloud the closest points on the other
clouds and finally average these point matches. However,
because no two gestures are produced at the same rhythm,
the temporal component completely distorts the positional
values. As result, the averaged cloud generally no longer
manifests the original shape. In the second approach, where
we attempt to smooth the trajectory of the reference clouds
manually, produces poor results. Since the observation data
is not smoothed (to ensure real time performance), matching
smoothed reference trajectories with the raw observations
results in significantly poorer matching.

G. Experimental Validation

To rapidly prototype our system, we have implemented the
algorithm using MATLAB. Currently, the detection speed
is approximately 0.5 second, with the database containing
5 different reference shapes, each with 6 transformation
variants. This result is not ideal, but it does satisfy our goals

Fig. 5. Set of RoboChat Gestures used in our assessment.

for this prototype. Currently, we begin capturing gesture
motions when two fiducial markers are detected by the
robot’s camera. Similarly, we stop the data capture and send
the observation cloud to the ICP algorithm when the robot
sees less than two markers for longer than a pre-determined
timeout.

V. EXPERIMENTAL RESULTS

A. Parameter Influence

Despite being algorithmically simple, the ICP code con-
tains a number of parameters, which all can be fine-tuned
to increase the performance of the overall system. The most
important parameter is arguably the maximum allowed tem-
poral distance, which is required to prevent nearby point pairs
with distant temporal values to be associated. However, we
have found that this threshold is very user-dependent, most
likely due to the fact that every subject has a different sense
of rhythm when performing the gestures. The importance of
this value also depends on the roster of recognizable gestures.
For example, we allowed in our experiments both the square
and the hourglass shape. The temporal parameter can always
be set to distinguish these two trajectories apart, but the
numerical value of this parameter is different for each user.

(a) Per user performance data(all gestures/user).

(b) Per gesture performance data(all users/gesture).

Fig. 6. RoboChat Gestures best-match performance data.

We use two more values to determine the termination
criteria for the overall ICP data flow – the minimum improve-
ment in error magnitudes between consecutive iterations,
and a maximum number of iterations allowed. These two

3561

numbers do influence the correctness of the outcome (i.e.
how accurately a gesture match can be made), but they
mostly impact the speed of the algorithm.

Finally, the gesture acceptance threshold represents the
largest overall error magnitude for which an observation
cloud is deemed to match a reference shape. This value
depends on the quality of the selected reference cloud,
on the trajectory of the observation, and also on the user
tracing the gestures. A badly chosen reference cloud might
yield relatively large error magnitudes, and ultimately cause
some observations to be falsely matched. Additionally, if the
observation is not traced similarly to the chosen reference
trajectories, it may result in a false positive or no detection at
all. Finally, each user has a different way of drawing gestures,
and thus the tolerances in the similarity of the shapes are
necessarily different as well.

B. Data Gathering Setup

The RoboChat Gestures system was assessed using data
sets provided by five volunteers. Each subject was given the
instruction to draw the following shapes: triangle, square,
hourglass (cross), half-arrow, and finally the segmented ver-
sions of the numbers 2 & 5 (Fig. 5). The participants were
instructed to actively pause at each vertex. The subjects were
shown the output of the camera used in the sessions, to let
them know when their markers were out of the camera’s field
of view. However, most users commented that they did not
look at this view, but rather at the visual feedback given each
time a pair of fiducial markers were detected by the system.
The latter form of feedback is more realistic in practice,
because it can be implemented on the actual robotic platform
as a simple visual or audible feedback.

C. Performance Assessment

We have collected over 200 point clouds from the five
participants. Our ICP algorithm yields an average success
rate of 90% for matching the correct shape, as seen in
Fig. 6(a) and 6(b). However, this rate increased to 96% if we
account for observations which correctly match the runner-
up reference shape, as seen in Fig. 7(a) and 7(b). Since these
runner-up matches have a very small difference in their error
magnitudes between the first and second match, we believe
that we can increase the overall performance of the system by
applying a Hidden Markov Model on the suggested semantic
meanings of the gestures after detection.

As mentioned previously, each user has a different toler-
ance when tracing out trajectories. This difference is clearly
reflected in the maximum error magnitudes for correct ges-
ture matches, as seen in Fig. 8. However, we can also observe
from Fig. 7(a) that the algorithm is still sufficiently robust to
yield very close results across all users when the runner-up
gestures are considered.

Additionally, there is a distinct gap between the average
correct match error magnitude of 0.0040 and the average
(incorrect match) runner-up magnitude of 0.01689. This
result is very promising, since this implies that the gesture

(a) Per user performance data(all gestures/user).

(b) Per gesture performance data(all users/gesture).

Fig. 7. RoboChat gestures second-best-match performance data.

acceptance threshold has quite a bit of flexibility in term of
its value, at least for gestures drawn by these five subjects.

Although it might seem that our system fails 10 per
cent of the time when considering solely the best match, in
reality the presented performance assumes that the gesture
acceptance threshold is large, and thus does not discard any
gestures at all. By tightening this threshold, the algorithm be-
gins to reject matches with high error magnitudes, which are
most likely to be the incorrect ones. Fig. 9(a) clearly indicates
that the algorithm can successfully detect all gestures with an
error magnitude below 0.01. At this value, Fig. 9(b) shows
that only 10 per cent of the observations were classified
as not being gestures. These are the true performances of
our ICP algorithm, which is much more promising than our
previous results seem to suggest.

The plot in Fig. 9(b) show an exponential increase in the
rejection rate as the threshold tightens, and also indicates a
threshold beyond which all gestures are rejected. This gives
us a useful reference to set the gesture acceptance threshold
value.

D. Robot Implementation

The prototype version of the RoboChat Gestures system
has been tested on-board the Aqua underwater swimming
robot [4] in a closed-water trial. While the marker detec-
tion and gesture extraction process took place on-board,
we perform gesture detection using Matlab running off the
robot, by using a fiber optic tether connecting the robot to
a surface operator. While the under water setting did not

Fig. 8. Largest correct match data per user.

3562

(a) Non-rejected gesture detection accuracy.

(b) Ratio of rejected gestures.

Fig. 9. Performance plotted against the gesture acceptance threshold.

permit gathering and analysis of detailed quantitative data,
the gesture detection scheme performed robustly, with little
additional cognitive burden imposed on the diver. These
qualitative results show great promise in the system, and
further experiments and enhancements are currently in the
works.

VI. CONCLUSION

We present a vision-based interaction framework for op-
erating robots in restrictive environments. We found that a
gestural input mechanism alone was too error prone for our
needs (incorrect interpretations could have high risk), but
gestures combined with fiducial targets provided an attractive
combination of ease-of-use, expressive power and robustness
even underwater.

One very important feature for the detection algorithm
to have is the ability to cluster the data clouds and extract
vertices from them. If successfully executed, this step would
significantly reduce the number of points in each cloud, and
hence would drastically improve the speed of the system.
Furthermore, the temporal information would be reduced into
an ordered index for these vertex clouds, and thus would
be possible to pair up gestures performed at significantly
different rhythms, which our current algorithm is incapable
of achieving. To aid in the robust interpretation of complex
gestures, a probabilistic dialog model might be appropriate.
In addition, we are interested in conceptual and practical
feedback mechanisms to allow more robust interaction be-
tween the human and the robot.

In the near future, RoboChat Gestures will be integrated
into the core RoboChat framework, to take advantage of the
expressiveness of gestures, while maintaining the flexibil-

ity of the RoboChat language. Translating the code from
MATLAB to C++ is also in the works, to maximize the
gesture detection speed. In essence, we intend to implement
a natural, robust yet infinitely expressive input interface for
our underwater robot and for other similar machines.

REFERENCES

[1] PhotoModeler Coded Targets Module. http://www.photomodeler.com.
[2] Paul J. Besl and Neil D. Mckay. A method for registration of

3-d shapes. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):239–256, February 1992.

[3] K.G. Derpanis, R.P. Wildes, and J.K. Tsotsos. Hand gesture recog-
nition within a linguistics-based framework. In European Conference
on Computer Vision (ECCV), pages 282–296, 2004.

[4] Gregory Dudek, Michael Jenkin, Chris Prahacs, Andrew Hogue, Ju-
naed Sattar, Philippe Giguère, Andrew German, Hui Liu, Shane Saun-
derson, Arlene Ripsman, Saul Simhon, Luiz Abril Torres-Mendez,
Evangelos Milios, Pifu Zhang, and Ioannis Rekleitis. A visually guided
swimming robot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, Edmonton, Alberta, Canada, August 2005.

[5] Gregory Dudek, Junaed Sattar, and Anqi Xu. A visual language for
robot control and programming: A human-interface study. In Pro-
ceedings of the International Conference on Robotics and Automation
ICRA, Rome, Italy, April 2007.

[6] R. Erenshteyn and P. Laskov R. Foulds L. Messing G. Stern. Recogni-
tion approach to gesture language understanding. In 13th International
Conference on Pattern Recognition, volume 3, pages 431–435, August
1996.

[7] Mark Fiala. Artag, a fiducial marker system using digital techniques.
In CVPR ’05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 2, pages 590–596, Washington, DC, USA, 2005. IEEE
Computer Society.

[8] D. Kortenkamp, E. Huber, and P. Bonasso. Recognizing and inter-
preting gestures on a mobile robot. In 13th National Conference on
Artifical Intelligence, 1996.

[9] Vladimir Pavlovic, Rajeev Sharma, and Thomas S. Huang. Visual
interpretation of hand gestures for human-computer interaction: A
review. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 19(7):677–695, 1997.

[10] I. Poupyrev, H. Kato, and M. Billinghurst. ARToolkit User Manual
Version 2.33. Human Interface Technology Lab, University of Wash-
ington, Seattle, Washington, 2000.

[11] Paul E. Rybski and Richard M. Voyles. Interactive task training
of a mobile robot through human gesture recognition. In IEEE
International Conference on Robotics and Automation, volume 1,
pages 664–669, 1999.

[12] Junaed Sattar, Eric Bourque, Philippe Giguere, and Gregory Dudek.
Fourier tags: Smoothly degradable fiducial markers for use in human-
robot interaction. Computer and Robot Vision, 0:165–174, 2007.

[13] Junaed Sattar, Philippe Giguere, Gregory Dudek, and Chris Prahacs.
A visual servoing system for an aquatic swimming robot. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, Edmon-
ton, Alberta, Canada, August 2005.

[14] M. Skubic, D. Perzanowski, S. Blisard, A. Schultz, W. Adams,
M. Bugajska, and D. Brock. Spatial language for human-robot
dialogs. IEEE Transactions on Systems, Man and Cybernetics, Part
C, 34(2):154–167, May 2004.

[15] J. K. Tsotsos, G. Vergheseand S. Dickinson, M. Jenkin, A. Jepson,
E. Milios, F. Nuflo, S. Stevenson, M. Black adn D. Metaxas, S. Cul-
hane, Y. Ye, , and R. Mannn. PLAYBOT: A visually-guided robot for
physically disabled children. Image Vision Computing, 16(4):275–292,
April 1998.

[16] Iuliu Vasilescu, Paulina Varshavskaya, Keith Kotay, and Daniela Rus.
Autonomous Modular Optical Underwater Robot (AMOUR): Design,
prototype and feasibility study. In International Conference on
Robotics and Automation, Barcelona, Spain, 2005.

[17] S. Waldherr, S. Thrun, and R. Romero. A gesture-based interface for
human-robot interaction. Autonomous Robots, 9(2):151–173, 2000.

3563

