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Abstract— A significant challenge in programming robots by 

demonstration is to accurately capture the user’s intentions, so 
that sensor differences can be managed during playback.  
Sensor difference can be caused by: natural sensory data 
variations, minor variations in the task conditions, significant 
changes in the task scenario, or because the task requires a new 
set of actions to be executed. This paper presents a design for a 
programming by demonstration system that focuses on the 
important goal of capturing the intentions of the user during 
the demonstration. A gesture interface for a large touch screen 
is used during demonstration, to capture more clearly the 
user’s intentions for robot movements, and also during a pre-
playback session to capture the user’s intentions regarding 
sensor data. 

I. INTRODUCTION 
NDENIABLY in a not too distant future, service robots 
will be part of our everyday life. They will help us to 

accomplish many diverse tasks, at work and in the home. 
The great variety of tasks they may have to accomplish 
means that it will not be possible for robot tasks to be pre-
programmed [1]. Robot assistants will constantly have to 
learn new tasks from their human users. However, most end 
users are not programmers and cannot be expected to 
programme their robots using common programming 
languages. End users must be able to make robots do what 
they want in an intuitive manner. The Programming by 
Demonstration (PbD) paradigm is a possible solution [2]-
[4]. 

A. The PbD Principle 
PbD has two main phases: the demonstration of the task 

by the human user, where the task is recorded from the 
robot’s sensor data and actuator controls, and task playback. 
Arc welding and assembly line paint spraying are examples: 
a human operator can first perform the task while a motion 
sensor records the trajectories for later playback [5]. 
Fetching objects can also by taught by PbD [6].  

Research in PbD faces diverse problems, such as 
identifying what to imitate in a task and how to imitate it [7]. 
It is important to identify the user’s intentions in the 
demonstration and then provide reasoning methods to ensure 
                                                           

  Manuscript received September 14, 2007.  
 D. Brageul, S. Vukanovic and B. MacDonald are with the Department 

of Electrical and Computer Engineering, University of Auckland, New 
Zealand (phone: +6493737599x88157; fax: +6493737461; e-mail: 
b.macdonald@auckland.ac.nz).  

the robot achieves the intended goals during playback. In 
general this requires a third important aspect to PbD, which 
is the representation and generalisation of the recorded task 
in a form that is robust to the diverse range of environmental 
conditions that may prevail during playback. 

B. Key Problem: Capturing User Intentions 
 Capturing the user intention is the first key point for a 

robust PbD system: without knowledge of the user intention, 
the PbD system performs pure imitation and thus, in most 
cases, the robot will not be able to repeat the task if the 
environment changes [8], [9]. For example, for a fetching 
task, the position of the objects to fetch might change 
between the demonstration and the playback of the task. If 
the user intention could be understood from a demonstration, 
then this information could be used to generate a programme 
representation that responds to environment changes in an 
appropriate manner. The programs generated could then be 
used to perform the demonstrated tasks in different 
environments. Possible solutions to take into account the 
user intention include averaging over several demonstrations 
[4] and good user interaction [8]. The next key step for a 
robust PbD system is to reason about the intentions during 
the playback phase. This paper focuses on the capture of 
user intentions when demonstrating navigational tasks. 

C. Overview of Our Approach 
In this paper, we introduce the concept of a PbD system 

based on “cognitive” PbD, and spbd, its implementation. By 
“cognitive” we mean that our system tries to respond to 
environment changes during the playback of a task by 
reasoning over the knowledge learnt about the user 
intentions during the demonstration, and from pre-playback 
interactions with the user that further clarify what they want. 
Teaching a task by demonstration is thus achieved by an 
addition to the PbD process, so there are now three main 
phases: 

1) The demonstration. The user controls the robot’s 
trajectories by pointing at the desired locations in a graphical 
user interface, which displays a view of the robot’s working 
space on a large touch screen. Meanwhile, spbd records the 
robot’s moves and its perceptions of the environment 
through sensors and actuators. This knowledge is 
represented by user understandable predicates, such as 
clear(front), or obstacle(left, far). Our work enhances the 
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demonstration phase by creating additional ways for the user 
to express his or her intentions, e.g. the robot waypoints can 
be edited. 

2) Identification of the user intention. This stage relies 
heavily on user interaction and follows the demonstration. It 
is a pre-playback session, where the task is visualised step 
by step so that the user can clarify their intention by 
selecting predicates relevant to the task. High-level tasks can 
also be taught by combining simpler tasks in this step. 

3) The playback. During this phase, the selected 
predicates are considered as goals to be achieved and basic 
planning techniques are applied to make the robot work 
toward those goals in order to repeat the task. 

The rest of this paper is organised as follows: Section II 
gives an overview of relevant PbD research. Section III 
introduces our proposed model of cognitive PbD, and. 
Section IV details the demonstration process. Section V 
explains how programmes are constructed, whereas Section 
VI shows how the user’s intention is captured. Experiments 
are shown in Section VII. Section VIII analyses our system 
and finally Section IX summarises this paper and proposes 
future work. 

II. LITERATURE SURVEY 
A task is usually considered as a sequence of low level 

skills, such as grasping or moving to a given position. For 
example, a task can be pouring the content from one 
container to another [10] or laying a table [3]. The sequence 
of skills can be represented using STRIPS-like pre and post-
conditions, such as in [1] and [10]. Demonstrations can be 
internally represented as effects on the environment, 
trajectories, operations and object positions [2].  

The demonstration can be performed by the user 
themselves, while the robot gathers data through powerful 
sensors such as data-gloves [10], cameras or haptic devices. 
The robot can also be controlled through an external master 
system such as keyboards, graphical interfaces or teach 
pendants and experiences the demonstration through its 
internal and external sensors [4], [10]. 

Correctly inferring the user intention (see section I) has 
been recognised as a key problem [8], [9]. This is a difficult 
process, especially when the user only performs one 
demonstration. In those systems, the only demonstration 
given is inherently specific to the environment in which it 
was performed. A possible solution is to give multiple 
demonstrations of the same task ([10] and [4]); but it could 
possibly annoy the user [1].  

However, the responsibility to determine what is relevant 
or irrelevant in a demonstration should not be left entirely to 
the imitator [4]. Interactive PbD systems are more able to 
avoid errors and generate the programmes that will best 
perform the tasks as expected by the user [11]. [11] and [8] 
use 3D-icons to help the user specifying their intention in a 

3D simulation window. In [1], after a demonstration the 
user is asked to check whether the segmentation of a 
manipulation task is correct and has the possibility to modify 
the generated programme. The newly acquired task can be 
simulated in a 3D interface before being accepted 

Multi modal interfaces, which interact with the user 
through several input modalities such as speech, gesture, 
vision, or contact with the robot, allow a more intuitive user 
interaction [9], [4]. In [9], speech and hand gestures are used 
to provide feedback both during and after the demonstration 
of a task with a vacuum cleaning robot. In [4], a robot learns 
and generalises a task over multiple demonstrations, with the 
additional help of vocal cues during the demonstrations and 
feedback cues after demonstrations, which allow the robot to 
refine the task representation. 

III. PRESENTATION OF SPBD 
The simple programming by demonstration system (spbd) 

implemented at the University of Auckland Robotics Lab 
has methods for demonstrating tasks and playing back 
previously recorded tasks. The typical usage of the system is 
shown in Fig. 1. The data from the demonstration phase is 
captured, possibly transformed, and stored in a given 
programme representation. This programme can then be 
further refined by the user manually selecting the important 
detail and discarding possible mistakes. During the playback 
phase, a programmed task is selected for execution, its 
programme representation is interpreted, and it is played 
back on the robot. Spbd uses the Player software interface to 
robot hardware [12]. 

 
Fig. 1.  Components of spbd involved in the three main phases of our PbD 
approach.  
 

In addition to task recording and playback, spbd allows 
different data transformations and different programme 
representations to be defined (programme representation is 
discussed in Section V). Transformation of sensor data 
(which is often real-valued numerical data) into a more 
suitable form is important since robots’ perceptions must be 
rendered using the augmented reality system and shown on 
the touch screen. Furthermore, the process of data 
transformation enables the removal of natural variation in 
the robot's sensors. Cognitive decisions can then be made 
based on accurate data during playback. 
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Spbd transforms the sensor data into logical predicates, 

which specify the properties of objects in the robot's 
environment, or a relation between a number of objects. For 
example, the distance from a robot to some object x in its 
environment can be encoded as a predicate near(robot, x). 
Using this symbolic representation, the robot's perceptions 
can be described concisely and shown graphically and 
textually on the touch screen.  

Methods for obtaining symbolic knowledge (such as 
predicates) from numerical sensor data usually involve 
sorting the incoming sensor data into predefined labeled 
categories [13], [14], and [15]. In our approach, models of 
significant sensor data patterns were designed manually, to 
make them more understandable. Each sensor model has a 
predicate associated with it. During demonstrations and 
playback, the defined models are continuously queried with 
sensor readings from the environment. If the readings match 
a particular model, a predicate corresponding to that model 
is produced. Each model contains parameters that guide the 
matching process. For example, the parameter of the model 
producing the near(robot, x) predicate can be a range of 
real-valued distances. The robustness of a given predicate to 
sensor variations can thus be tuned by adjusting the 
parameters of the model associated with that predicate.  

IV. DEMONSTRATION AND ROBOT CONTROL 
During a demonstration, the user interacts with the robot 

via a touch-screen interface. This interface shows a view of 
the robot's working space from an overhead camera and 
provides the user with basic trajectory planning commands. 
Virtual aids, such as a grid and a visualisation of the 
trajectories. overlay the camera image to assist the user (see 
Fig. 2). 

To guide the robot through a demonstration, the user 
simply points on the touch screen to where the robot should 
go. The robot's trajectory can be modified by dragging the 
visualised trajectories at any time, even during execution. 

The robot’s pose is regularly corrected using image 
processing to track a marker on its back (see Fig. 2). This 
camera tracker has been implemented by [16] and makes use 
of ARToolkitPlus [17]. 

 

 
Fig. 2.  The robot control interface. The trajectories given by the user are 
represented by augmented reality aids. 
 

 
Fig. 3.  Intention capture phase. The purple dots represent different 
transitions. For the selected transition, the predicates are displayed textually 
and graphically. 

V. PROGRAMME CONSTRUCTION 
A programme is constructed as a sequence of states. The 

robot's motor states can be: not moving (neutral), moving 
forward, moving backward, turning left, and turning right. 
An assumption is made that significant events during 
demonstration occur when a change in the robot's state takes 
place. Hence, predicates that occur at the transition of the 
robot's states are recorded during demonstration. 

When a demonstration concludes, the user is prompted to 
select which predicates best describe the experiences that the 
system should retain. For example, consider a task move-
forward-until-obstacle, in Fig. 4. The robot moves forward 
from rest and continues until it reaches an obstacle. The 
sequence of states that the robot experiences is neutral, 
forward, and neutral, where the first neutral state indicates 
the initial rest state, and the second neutral state indicates 
the state that the robot enters when is senses the obstacle. 
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Fig. 4.  States of the move-forward-until-obstacle task. 

 
To complete the move-forward-until-obstacle task, 

predicates are added to transitions between its states. In 
spbd, the robot remains in its current state until all the 
predicates on the transition to its next state are satisfied. In 
the move-forward-until-obstacle task, the transition between 
the first neutral state and the forward state should contain no 
predicates, as the robot moves forward from rest 
unconditionally. The transition between the forward state 
and the second neutral state may contain the predicate 
near(robot, x), indicating that the robot is near some 
obstacle x. 

If the system knows how to achieve a predicate during 
playback, a higher-level command is issued instead of 
repeating the demonstrated motor states. For instance, if the 
user wants the robot to go from a point A to another point B, 
then they need to keep only the last transition (between the 
forward and neutral states), select the predicate at(B), and 
discard the other, now irrelevant, transitions on the 
trajectory between A and B. In this instance, a higher-level 
goto(B) command will be used during playback. 

Once several small tasks have been demonstrated, they 
can be manually combined into higher-level tasks by 
arranging them into programme structures. Currently, spbd 
allows three programme structures to be constructed: an 
“and” structure executes its component tasks in sequence, 
one after the other; an “or” structure selects one and only 
one of its component tasks for execution; and a “loop” 
structure, which repeatedly executes the component task. 

After a demonstration, the user can also specify some 
predicates (or their negations) as breaking conditions. 
During the playback, spbd constantly checks if any of the 
specified breaking conditions is satisfied. If this is the case, 
the playback is interrupted. This also interrupts the playback 
of any parent task looping on this task. 

VI. CAPTURING THE USER INTENT 

A. Motivation 
Aside from providing an easy and intuitive robot control 

method, our interface aims to assist the user during the 
interaction phase, in which they have to give ‘clues’ to spbd, 
so that the system is able to understand the user intention 
and thus play back the task with a maximum fidelity. This 
phase mainly consists of selecting the relevant predicates for 
each transition recorded during the demonstration of the 
task. To help the user have a better understanding of the 

predicates generated by spbd and assist them during the 
selection process, the interface displays a visual represen-
tation of those transitions and predicates (see Fig. 3). 

B. Work Flow 
When the demonstration of a task ends, coloured dots pop 
up on the interface at the locations where all the different 
transitions happened during the recording. By graphically 
navigating through all the transitions on the touch screen, 
the user is visually “replaying” the task that has just been 
demonstrated and thus has a better understanding of what 
happened. Transitions are selected by touching the coloured 
dots. When a dot is selected, the predicates for the 
associated transition are displayed in two ways: textually in 
a listbox and graphically on top of the camera image. The 
graphical representation shows the robot’s pose during the 
transition as well as the predicates representing the robot’s 
perception of its environment at this time. The graphic 
representation of the predicates is quite basic: it consists of 
simple geometric shapes. Amongst the predicates 
represented are the robot’s pose and nearby obstacles (see 
Fig. 3). The user selects relevant predicates by touching 
either the graphical presentation or the list in the listbox. 
Spbd allows the selected predicates to be modified. The user 
also has the option to discard the selected transition 
altogether. Finally, when several tasks have been 
demonstrated, the user can select and combine them using 
“and”, “or”, and “loop” structures. 

VII. EXPERIMENTS 
Experiments have been carried out using both real robots 

(ActivRobots' 3-DX Pioneers) and Stage [12], a robot 
simulator. Stage and spbd ran on a 3GHz Pentium machine 
with 1GB of RAM. The following predicates were available 
in the example tasks: 
at(x,y): the robot’s location is (x,y) 
orientation(angle): the robot’s orientation is angle 
moved by(xx): the robot has moved by xx meters since its 

last neutral state 
turned by(xx): the robot has turned by an angle of xx 

degrees since its last neutral state 
objectSpotted(xx, center): the object xx is straight in front 

of the robot 
adjacent(front): an obstacle is adjacent close to the robot’s 

front 

A. Trajectory Following 
This is a basic task in which the robot repeats a trajectory 

consisting of absolute and relative points. Absolute points 
typically correspond to commands such as goto(x, y) or 
turnToOrientation(90°). Relative points can be assimilated 
to move by(x cm) or turn by(xx°) type commands. 

As an example, consider the case where the robot has to 
follow a pattern representing the number “4,” on the floor 
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and then go to a particular location, say (0,0). This task is 
easily demonstrated just by pointing at the desired locations, 
e.g. the vertices of the pattern and the point (0,0). The 
pattern is an example of a relative trajectory, so to repeat this 
first part of the task the user has to select predicates 
reflecting this relative character (moved by, turned by). 
The second part of the task being an absolute trajectory, the 
user can discard all the transitions that might have been 
recorded between the end of the demonstration of the pattern 
and the moment the robot reached the location (0,0). Only 
the last transition, when the robot passes from a ‘forward’ 
state to a ‘neutral’ state has to be kept, and the predicate 
at(0,0) has to be selected (see Fig. 5). 

 
Fig. 5.  Finite state machine representation of the trajectory following task. 
The boxes represent the commands that will be sent to the robot. The 
predicates in blue represent the conditions to go to the next instruction. 

B. Naïve Object Tracking 
For this task the robot follows a given object, by 

repeatedly turning to face the object and then moving 
forward. The robot also has to stop the whole execution of 
the task when it touches the object. To simulate object 
recognition, we used image processing to recognise 
ARToolkitPlus markers. To demonstrate this task, the user 
can first demonstrate a tracking step subtask, in which they 
just make the robot turn until it faces the object to track and 
then make it move forward a little, say 20 cm. Then, the user 
has to select the adequate predicates: the robot has to stop 
turning when it faces the object (objectSpotted(xx, center)) 
and then it stops moving forward after 20 cm (moved 
by(0.20)). To force the robot to stop the playback when it 
touches the object, the user can define the predicate 
adjacent(front) as a breaking condition (see Section VI). 
(Note that if this predicate has not been generated during the 
demonstration, the user has to create it themselves.) This 
tracking step subtask has then to be combined into a naïve 
tracking task using a “Loop” operator. Fig. 6 shows a 
representation of the naïve tracking task. 

 
Fig. 6.  Tree like representation of the naïve tracking task. The breaking 
condition is illustrated in red. 

C. Brave Patrolling 
In this task, the robot repeatedly patrols, i.e. follows a 

given trajectory, until it detects an intruder object. Then, the 
robot begins chasing the intruder. Consider the case where 
the robot has to patrol following a triangle pattern which 
absolute coordinates are (0,0), (10,0) and (5,5).  

To demonstrate this task, the user can first demonstrate a 
patrol step subtask, in which the robot is shown how to 
patrol along the wanted path. After specifying the predicate 
objectSpotted(xx, center) as a breaking condition for this 
task, it is then combined into a patrol subtask using a 
“Loop” operator. Finally, the patrol and the naive tracking 
are combined together using an “And” operator. The result 
is that when the predicate objectSpotted(xx, center) is 
generated, during an iteration of the patrol loop, then both 
patrol step and patrol are interrupted, and naïve tracking is 
executed (see Fig. 7). 

 
Fig. 7.  Representation of the brave patrolling task.  

VIII. ANALYSIS 

A. Strengths 
The representation of tasks is flexible and allows subtasks 

to be combined together, and allows the user to modify the 
task step by step without being involved in programming 
details. The gesture interface allows the user to interact with 
the representation to a greater degree than a traditional 
demonstration method, because the medium of 
demonstration is the same as the medium of interaction 
about intentions. The pre-playback run throughs are 
effective because of (a) the flexible, concrete representation 
given to the user, and (b) the gesture interface, enabling the 
user to effectively help build the programme step by step. 
The playback process is flexible in that it focuses on sensory 
data matches to make sure the playback actions are 
appropriate. The gesture interface itself is an easy way to 
specify way points, and to create a set of waypoints that are 
easy to see and can be manipulated afterwards. The gesture 
interface also leads naturally to the pre-playback interface. 

B. Weaknesses 
In spbd, the user must compose high level tasks by 

themselves. On one hand, this ensures an accurate control 
over execution during playback, especially for tasks that 
require different actions to be executed depending on the 
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environment state. On the other hand, this can be 
inconvenient for the user. Maybe the segmentation should be 
done by the system and supervised by the user. 

Currently it is not possible for the user to create a branch 
during one subtask, to another subtask. Branches can only 
be created at the end of a subtask; a breaking condition can 
be specified but not a branch for normal execution. What is 
needed in our future development is to provide an exception 
structure that the user can invoke graphically.  

Another problem is that the demonstrated tasks cannot be 
reused with different parameters. Consider the example 
where the user wants to teach the robot to follow a square 
pattern. This can be done easily using our system; however 
this task can be repeated only to follow a square of the 
precisely the same dimensions as the one in the 
demonstration. To make the robot execute a square pattern 
with different dimensions, another task must be taught. A 
solution may be to introduce variables. After the 
demonstration of a task, the user could for instance indicate 
to the system that certain of the predicates’ arguments are 
actually modifiable when the task is loaded into the system 
for playback. However end users who are not familiar with 
the concept of variables could perhaps be confused. 

IX. CONCLUSION 
In this paper, we introduced spbd, a PbD system for 

navigational tasks, as well as a touch screen gesture 
interface that uses augmented reality techniques to ease the 
user interaction with spbd. An important contribution of the 
work is that the user is able to easily interact with the task 
representation, to refine it before playback. Our system has 
successfully been used to demonstrate simple tasks by 
demonstration, without using a low level programming 
language. The main contribution of this work is a technique 
for capturing much more of the user’s intentions than a PbD 
system without the gesture interface. The underlying 
representation helps capture the user intentions and we 
expect future work to include more reasoning about the 
intentions during playback. 

Additional future work includes introducing variables and 
other features, such as obstacle avoidance during the 
playback and identification of the user’s intentions with 
multiple demonstrations of the same task. A simulation 
environment, such as Stage, could also be used to allow the 
user to check safely whether the selected predicates reflect 
their intentions before accepting them. Scaling up the 
approach (e.g. involving manipulation tasks) remains an 
open issue. 
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