

π
Abstract— A significant challenge in programming robots by

demonstration is to accurately capture the user’s intentions, so
that sensor differences can be managed during playback.
Sensor difference can be caused by: natural sensory data
variations, minor variations in the task conditions, significant
changes in the task scenario, or because the task requires a new
set of actions to be executed. This paper presents a design for a
programming by demonstration system that focuses on the
important goal of capturing the intentions of the user during
the demonstration. A gesture interface for a large touch screen
is used during demonstration, to capture more clearly the
user’s intentions for robot movements, and also during a pre-
playback session to capture the user’s intentions regarding
sensor data.

I. INTRODUCTION
NDENIABLY in a not too distant future, service robots
will be part of our everyday life. They will help us to

accomplish many diverse tasks, at work and in the home.
The great variety of tasks they may have to accomplish
means that it will not be possible for robot tasks to be pre-
programmed [1]. Robot assistants will constantly have to
learn new tasks from their human users. However, most end
users are not programmers and cannot be expected to
programme their robots using common programming
languages. End users must be able to make robots do what
they want in an intuitive manner. The Programming by
Demonstration (PbD) paradigm is a possible solution [2]-
[4].

A. The PbD Principle
PbD has two main phases: the demonstration of the task

by the human user, where the task is recorded from the
robot’s sensor data and actuator controls, and task playback.
Arc welding and assembly line paint spraying are examples:
a human operator can first perform the task while a motion
sensor records the trajectories for later playback [5].
Fetching objects can also by taught by PbD [6].

Research in PbD faces diverse problems, such as
identifying what to imitate in a task and how to imitate it [7].
It is important to identify the user’s intentions in the
demonstration and then provide reasoning methods to ensure

 Manuscript received September 14, 2007.
 D. Brageul, S. Vukanovic and B. MacDonald are with the Department

of Electrical and Computer Engineering, University of Auckland, New
Zealand (phone: +6493737599x88157; fax: +6493737461; e-mail:
b.macdonald@auckland.ac.nz).

the robot achieves the intended goals during playback. In
general this requires a third important aspect to PbD, which
is the representation and generalisation of the recorded task
in a form that is robust to the diverse range of environmental
conditions that may prevail during playback.

B. Key Problem: Capturing User Intentions
 Capturing the user intention is the first key point for a

robust PbD system: without knowledge of the user intention,
the PbD system performs pure imitation and thus, in most
cases, the robot will not be able to repeat the task if the
environment changes [8], [9]. For example, for a fetching
task, the position of the objects to fetch might change
between the demonstration and the playback of the task. If
the user intention could be understood from a demonstration,
then this information could be used to generate a programme
representation that responds to environment changes in an
appropriate manner. The programs generated could then be
used to perform the demonstrated tasks in different
environments. Possible solutions to take into account the
user intention include averaging over several demonstrations
[4] and good user interaction [8]. The next key step for a
robust PbD system is to reason about the intentions during
the playback phase. This paper focuses on the capture of
user intentions when demonstrating navigational tasks.

C. Overview of Our Approach
In this paper, we introduce the concept of a PbD system

based on “cognitive” PbD, and spbd, its implementation. By
“cognitive” we mean that our system tries to respond to
environment changes during the playback of a task by
reasoning over the knowledge learnt about the user
intentions during the demonstration, and from pre-playback
interactions with the user that further clarify what they want.
Teaching a task by demonstration is thus achieved by an
addition to the PbD process, so there are now three main
phases:

1) The demonstration. The user controls the robot’s
trajectories by pointing at the desired locations in a graphical
user interface, which displays a view of the robot’s working
space on a large touch screen. Meanwhile, spbd records the
robot’s moves and its perceptions of the environment
through sensors and actuators. This knowledge is
represented by user understandable predicates, such as
clear(front), or obstacle(left, far). Our work enhances the

U

An Intuitive Interface for a Cognitive Programming By
Demonstration System

David Brageul, Slobodan Vukanovic, Bruce A. MacDonald, Senior Member, IEEE

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3570

demonstration phase by creating additional ways for the user
to express his or her intentions, e.g. the robot waypoints can
be edited.

2) Identification of the user intention. This stage relies
heavily on user interaction and follows the demonstration. It
is a pre-playback session, where the task is visualised step
by step so that the user can clarify their intention by
selecting predicates relevant to the task. High-level tasks can
also be taught by combining simpler tasks in this step.

3) The playback. During this phase, the selected
predicates are considered as goals to be achieved and basic
planning techniques are applied to make the robot work
toward those goals in order to repeat the task.

The rest of this paper is organised as follows: Section II
gives an overview of relevant PbD research. Section III
introduces our proposed model of cognitive PbD, and.
Section IV details the demonstration process. Section V
explains how programmes are constructed, whereas Section
VI shows how the user’s intention is captured. Experiments
are shown in Section VII. Section VIII analyses our system
and finally Section IX summarises this paper and proposes
future work.

II. LITERATURE SURVEY
A task is usually considered as a sequence of low level

skills, such as grasping or moving to a given position. For
example, a task can be pouring the content from one
container to another [10] or laying a table [3]. The sequence
of skills can be represented using STRIPS-like pre and post-
conditions, such as in [1] and [10]. Demonstrations can be
internally represented as effects on the environment,
trajectories, operations and object positions [2].

The demonstration can be performed by the user
themselves, while the robot gathers data through powerful
sensors such as data-gloves [10], cameras or haptic devices.
The robot can also be controlled through an external master
system such as keyboards, graphical interfaces or teach
pendants and experiences the demonstration through its
internal and external sensors [4], [10].

Correctly inferring the user intention (see section I) has
been recognised as a key problem [8], [9]. This is a difficult
process, especially when the user only performs one
demonstration. In those systems, the only demonstration
given is inherently specific to the environment in which it
was performed. A possible solution is to give multiple
demonstrations of the same task ([10] and [4]); but it could
possibly annoy the user [1].

However, the responsibility to determine what is relevant
or irrelevant in a demonstration should not be left entirely to
the imitator [4]. Interactive PbD systems are more able to
avoid errors and generate the programmes that will best
perform the tasks as expected by the user [11]. [11] and [8]
use 3D-icons to help the user specifying their intention in a

3D simulation window. In [1], after a demonstration the
user is asked to check whether the segmentation of a
manipulation task is correct and has the possibility to modify
the generated programme. The newly acquired task can be
simulated in a 3D interface before being accepted

Multi modal interfaces, which interact with the user
through several input modalities such as speech, gesture,
vision, or contact with the robot, allow a more intuitive user
interaction [9], [4]. In [9], speech and hand gestures are used
to provide feedback both during and after the demonstration
of a task with a vacuum cleaning robot. In [4], a robot learns
and generalises a task over multiple demonstrations, with the
additional help of vocal cues during the demonstrations and
feedback cues after demonstrations, which allow the robot to
refine the task representation.

III. PRESENTATION OF SPBD
The simple programming by demonstration system (spbd)

implemented at the University of Auckland Robotics Lab
has methods for demonstrating tasks and playing back
previously recorded tasks. The typical usage of the system is
shown in Fig. 1. The data from the demonstration phase is
captured, possibly transformed, and stored in a given
programme representation. This programme can then be
further refined by the user manually selecting the important
detail and discarding possible mistakes. During the playback
phase, a programmed task is selected for execution, its
programme representation is interpreted, and it is played
back on the robot. Spbd uses the Player software interface to
robot hardware [12].

Fig. 1. Components of spbd involved in the three main phases of our PbD
approach.

In addition to task recording and playback, spbd allows
different data transformations and different programme
representations to be defined (programme representation is
discussed in Section V). Transformation of sensor data
(which is often real-valued numerical data) into a more
suitable form is important since robots’ perceptions must be
rendered using the augmented reality system and shown on
the touch screen. Furthermore, the process of data
transformation enables the removal of natural variation in
the robot's sensors. Cognitive decisions can then be made
based on accurate data during playback.

Robot

Data
Transformation

Programme
Storage

AR System with
Touch Screen

Interface

 Programme
Interpretation

Refinement Sensor
Data

 Programme
 Representation Control

Inputs

Demonstration User Intention Identification

Playback

Predicates

3571

Spbd transforms the sensor data into logical predicates,

which specify the properties of objects in the robot's
environment, or a relation between a number of objects. For
example, the distance from a robot to some object x in its
environment can be encoded as a predicate near(robot, x).
Using this symbolic representation, the robot's perceptions
can be described concisely and shown graphically and
textually on the touch screen.

Methods for obtaining symbolic knowledge (such as
predicates) from numerical sensor data usually involve
sorting the incoming sensor data into predefined labeled
categories [13], [14], and [15]. In our approach, models of
significant sensor data patterns were designed manually, to
make them more understandable. Each sensor model has a
predicate associated with it. During demonstrations and
playback, the defined models are continuously queried with
sensor readings from the environment. If the readings match
a particular model, a predicate corresponding to that model
is produced. Each model contains parameters that guide the
matching process. For example, the parameter of the model
producing the near(robot, x) predicate can be a range of
real-valued distances. The robustness of a given predicate to
sensor variations can thus be tuned by adjusting the
parameters of the model associated with that predicate.

IV. DEMONSTRATION AND ROBOT CONTROL
During a demonstration, the user interacts with the robot

via a touch-screen interface. This interface shows a view of
the robot's working space from an overhead camera and
provides the user with basic trajectory planning commands.
Virtual aids, such as a grid and a visualisation of the
trajectories. overlay the camera image to assist the user (see
Fig. 2).

To guide the robot through a demonstration, the user
simply points on the touch screen to where the robot should
go. The robot's trajectory can be modified by dragging the
visualised trajectories at any time, even during execution.

The robot’s pose is regularly corrected using image
processing to track a marker on its back (see Fig. 2). This
camera tracker has been implemented by [16] and makes use
of ARToolkitPlus [17].

Fig. 2. The robot control interface. The trajectories given by the user are
represented by augmented reality aids.

Fig. 3. Intention capture phase. The purple dots represent different
transitions. For the selected transition, the predicates are displayed textually
and graphically.

V. PROGRAMME CONSTRUCTION
A programme is constructed as a sequence of states. The

robot's motor states can be: not moving (neutral), moving
forward, moving backward, turning left, and turning right.
An assumption is made that significant events during
demonstration occur when a change in the robot's state takes
place. Hence, predicates that occur at the transition of the
robot's states are recorded during demonstration.

When a demonstration concludes, the user is prompted to
select which predicates best describe the experiences that the
system should retain. For example, consider a task move-
forward-until-obstacle, in Fig. 4. The robot moves forward
from rest and continues until it reaches an obstacle. The
sequence of states that the robot experiences is neutral,
forward, and neutral, where the first neutral state indicates
the initial rest state, and the second neutral state indicates
the state that the robot enters when is senses the obstacle.

3572

Fig. 4. States of the move-forward-until-obstacle task.

To complete the move-forward-until-obstacle task,

predicates are added to transitions between its states. In
spbd, the robot remains in its current state until all the
predicates on the transition to its next state are satisfied. In
the move-forward-until-obstacle task, the transition between
the first neutral state and the forward state should contain no
predicates, as the robot moves forward from rest
unconditionally. The transition between the forward state
and the second neutral state may contain the predicate
near(robot, x), indicating that the robot is near some
obstacle x.

If the system knows how to achieve a predicate during
playback, a higher-level command is issued instead of
repeating the demonstrated motor states. For instance, if the
user wants the robot to go from a point A to another point B,
then they need to keep only the last transition (between the
forward and neutral states), select the predicate at(B), and
discard the other, now irrelevant, transitions on the
trajectory between A and B. In this instance, a higher-level
goto(B) command will be used during playback.

Once several small tasks have been demonstrated, they
can be manually combined into higher-level tasks by
arranging them into programme structures. Currently, spbd
allows three programme structures to be constructed: an
“and” structure executes its component tasks in sequence,
one after the other; an “or” structure selects one and only
one of its component tasks for execution; and a “loop”
structure, which repeatedly executes the component task.

After a demonstration, the user can also specify some
predicates (or their negations) as breaking conditions.
During the playback, spbd constantly checks if any of the
specified breaking conditions is satisfied. If this is the case,
the playback is interrupted. This also interrupts the playback
of any parent task looping on this task.

VI. CAPTURING THE USER INTENT

A. Motivation
Aside from providing an easy and intuitive robot control

method, our interface aims to assist the user during the
interaction phase, in which they have to give ‘clues’ to spbd,
so that the system is able to understand the user intention
and thus play back the task with a maximum fidelity. This
phase mainly consists of selecting the relevant predicates for
each transition recorded during the demonstration of the
task. To help the user have a better understanding of the

predicates generated by spbd and assist them during the
selection process, the interface displays a visual represen-
tation of those transitions and predicates (see Fig. 3).

B. Work Flow
When the demonstration of a task ends, coloured dots pop
up on the interface at the locations where all the different
transitions happened during the recording. By graphically
navigating through all the transitions on the touch screen,
the user is visually “replaying” the task that has just been
demonstrated and thus has a better understanding of what
happened. Transitions are selected by touching the coloured
dots. When a dot is selected, the predicates for the
associated transition are displayed in two ways: textually in
a listbox and graphically on top of the camera image. The
graphical representation shows the robot’s pose during the
transition as well as the predicates representing the robot’s
perception of its environment at this time. The graphic
representation of the predicates is quite basic: it consists of
simple geometric shapes. Amongst the predicates
represented are the robot’s pose and nearby obstacles (see
Fig. 3). The user selects relevant predicates by touching
either the graphical presentation or the list in the listbox.
Spbd allows the selected predicates to be modified. The user
also has the option to discard the selected transition
altogether. Finally, when several tasks have been
demonstrated, the user can select and combine them using
“and”, “or”, and “loop” structures.

VII. EXPERIMENTS
Experiments have been carried out using both real robots

(ActivRobots' 3-DX Pioneers) and Stage [12], a robot
simulator. Stage and spbd ran on a 3GHz Pentium machine
with 1GB of RAM. The following predicates were available
in the example tasks:
at(x,y): the robot’s location is (x,y)
orientation(angle): the robot’s orientation is angle
moved by(xx): the robot has moved by xx meters since its

last neutral state
turned by(xx): the robot has turned by an angle of xx

degrees since its last neutral state
objectSpotted(xx, center): the object xx is straight in front

of the robot
adjacent(front): an obstacle is adjacent close to the robot’s

front

A. Trajectory Following
This is a basic task in which the robot repeats a trajectory

consisting of absolute and relative points. Absolute points
typically correspond to commands such as goto(x, y) or
turnToOrientation(90°). Relative points can be assimilated
to move by(x cm) or turn by(xx°) type commands.

As an example, consider the case where the robot has to
follow a pattern representing the number “4,” on the floor

3573

and then go to a particular location, say (0,0). This task is
easily demonstrated just by pointing at the desired locations,
e.g. the vertices of the pattern and the point (0,0). The
pattern is an example of a relative trajectory, so to repeat this
first part of the task the user has to select predicates
reflecting this relative character (moved by, turned by).
The second part of the task being an absolute trajectory, the
user can discard all the transitions that might have been
recorded between the end of the demonstration of the pattern
and the moment the robot reached the location (0,0). Only
the last transition, when the robot passes from a ‘forward’
state to a ‘neutral’ state has to be kept, and the predicate
at(0,0) has to be selected (see Fig. 5).

Fig. 5. Finite state machine representation of the trajectory following task.
The boxes represent the commands that will be sent to the robot. The
predicates in blue represent the conditions to go to the next instruction.

B. Naïve Object Tracking
For this task the robot follows a given object, by

repeatedly turning to face the object and then moving
forward. The robot also has to stop the whole execution of
the task when it touches the object. To simulate object
recognition, we used image processing to recognise
ARToolkitPlus markers. To demonstrate this task, the user
can first demonstrate a tracking step subtask, in which they
just make the robot turn until it faces the object to track and
then make it move forward a little, say 20 cm. Then, the user
has to select the adequate predicates: the robot has to stop
turning when it faces the object (objectSpotted(xx, center))
and then it stops moving forward after 20 cm (moved
by(0.20)). To force the robot to stop the playback when it
touches the object, the user can define the predicate
adjacent(front) as a breaking condition (see Section VI).
(Note that if this predicate has not been generated during the
demonstration, the user has to create it themselves.) This
tracking step subtask has then to be combined into a naïve
tracking task using a “Loop” operator. Fig. 6 shows a
representation of the naïve tracking task.

Fig. 6. Tree like representation of the naïve tracking task. The breaking
condition is illustrated in red.

C. Brave Patrolling
In this task, the robot repeatedly patrols, i.e. follows a

given trajectory, until it detects an intruder object. Then, the
robot begins chasing the intruder. Consider the case where
the robot has to patrol following a triangle pattern which
absolute coordinates are (0,0), (10,0) and (5,5).

To demonstrate this task, the user can first demonstrate a
patrol step subtask, in which the robot is shown how to
patrol along the wanted path. After specifying the predicate
objectSpotted(xx, center) as a breaking condition for this
task, it is then combined into a patrol subtask using a
“Loop” operator. Finally, the patrol and the naive tracking
are combined together using an “And” operator. The result
is that when the predicate objectSpotted(xx, center) is
generated, during an iteration of the patrol loop, then both
patrol step and patrol are interrupted, and naïve tracking is
executed (see Fig. 7).

Fig. 7. Representation of the brave patrolling task.

VIII. ANALYSIS

A. Strengths
The representation of tasks is flexible and allows subtasks

to be combined together, and allows the user to modify the
task step by step without being involved in programming
details. The gesture interface allows the user to interact with
the representation to a greater degree than a traditional
demonstration method, because the medium of
demonstration is the same as the medium of interaction
about intentions. The pre-playback run throughs are
effective because of (a) the flexible, concrete representation
given to the user, and (b) the gesture interface, enabling the
user to effectively help build the programme step by step.
The playback process is flexible in that it focuses on sensory
data matches to make sure the playback actions are
appropriate. The gesture interface itself is an easy way to
specify way points, and to create a set of waypoints that are
easy to see and can be manipulated afterwards. The gesture
interface also leads naturally to the pre-playback interface.

B. Weaknesses
In spbd, the user must compose high level tasks by

themselves. On one hand, this ensures an accurate control
over execution during playback, especially for tasks that
require different actions to be executed depending on the

3574

environment state. On the other hand, this can be
inconvenient for the user. Maybe the segmentation should be
done by the system and supervised by the user.

Currently it is not possible for the user to create a branch
during one subtask, to another subtask. Branches can only
be created at the end of a subtask; a breaking condition can
be specified but not a branch for normal execution. What is
needed in our future development is to provide an exception
structure that the user can invoke graphically.

Another problem is that the demonstrated tasks cannot be
reused with different parameters. Consider the example
where the user wants to teach the robot to follow a square
pattern. This can be done easily using our system; however
this task can be repeated only to follow a square of the
precisely the same dimensions as the one in the
demonstration. To make the robot execute a square pattern
with different dimensions, another task must be taught. A
solution may be to introduce variables. After the
demonstration of a task, the user could for instance indicate
to the system that certain of the predicates’ arguments are
actually modifiable when the task is loaded into the system
for playback. However end users who are not familiar with
the concept of variables could perhaps be confused.

IX. CONCLUSION
In this paper, we introduced spbd, a PbD system for

navigational tasks, as well as a touch screen gesture
interface that uses augmented reality techniques to ease the
user interaction with spbd. An important contribution of the
work is that the user is able to easily interact with the task
representation, to refine it before playback. Our system has
successfully been used to demonstrate simple tasks by
demonstration, without using a low level programming
language. The main contribution of this work is a technique
for capturing much more of the user’s intentions than a PbD
system without the gesture interface. The underlying
representation helps capture the user intentions and we
expect future work to include more reasoning about the
intentions during playback.

Additional future work includes introducing variables and
other features, such as obstacle avoidance during the
playback and identification of the user’s intentions with
multiple demonstrations of the same task. A simulation
environment, such as Stage, could also be used to allow the
user to check safely whether the selected predicates reflect
their intentions before accepting them. Scaling up the
approach (e.g. involving manipulation tasks) remains an
open issue.

ACKNOWLEDGMENT
Dr Toby Collett provided the essential tools for the
augmented reality used in our work, and also provided much

appreciated assistance during the development.

REFERENCES
[1] M. Ehrenmann, R. Zöllner, O. Rogalla, and R. Dillmann.

Programming service tasks in household environments by human
demonstration. In Robot and Human Interactive Communication, Sept
2002. Proc. 11th IEEE Int. Workshop on, pp. 460–467.

[2] R. Dillmann, O. Rogalla, M. Ehrenmann, R. Zöllner, and M.
Bordegoni (1999, Octobre). Learning robot behaviour and skills based
on human demonstration and advice: the machine learning paradigm.
In 9th Int. Symp. of Robotics Research (ISSR’99), pp. 229–238.

[3] R. Zöllner, M. Pardowitz, S. Knoop, and R. Dillmann (2005, 18-22
April). Towards cognitive robots: Building hierarchical task
representations of manipulations from human demonstration. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, Spain, pp. 1535–1540.

[4] M. N. Nicolescu and M. J. Matarić (2003). Natural methods for robot
task learning: instructive demonstrations, generalization and practice.
In AAMAS ’03: Proc. of the second international joint conference on
Autonomous agents and multiagent systems, New York, NY, USA,
pp. 241–248. ACM Press.

[5] R. Voyles R. and P. Khosla (1999, 10-15 May). Gesture-based
programming: a preliminary demonstration. In Robotics and
Automation, 1999. Proceedings. 1999 IEEE International Conference
on, Volume 1, Detroit, Michigan, USA, pp. 708–713.

[6] Y. Kuno, M. Yoshizaki, and A. Nakamura. Vision-Speech System
Becoming Efficient and Friendly through Experience. 2003.

[7] A. Billard and R. Siegwart,, “Robot learning from demonstration”,
Robotics and Autonomous Systems, 2004, 47, 65-67

[8] H. Friedrich, R. Dillmann, and O. Rogalla (1999). Interactive robot
programming based on human demonstration and advice. In H. I.
Christensen, H. Bunke, and H. Noltemeier (Eds.), Sensor Based
Intelligent Robots, Volume 1724 of LCNS, pp. 96–119. Springer.

[9] S. Iba, C. J. J. Paredis, and P. K. Khosla (2005). Interactive
multimodal robot programming. The International Journal of Robotics
Research 24 (1), 83–104.

[10] K. Ogawara, J. Takamatsu, H. Kimura, and K. Ikeuchi (2002, 11-15
May). Generation of a task model by integrating multiple observations
of human demonstrations. In Robotics and Automation, 2002.
Proceedings. ICRA ’02. IEEE Int. Conf.on, Vol. 2, pp. 1545–1550

[11] H. Friedrich, H. Hofmann, and R. Dillmann (1997, 10-11 July). 3d-
icon based user interaction for robot programming by demonstration.
In Computational Intelligence in Robotics and Automation, 1997.
CIRA’97., Proc., 1997 IEEE Int. Symposium on, pp. 240–245.

[12] B. P. Gerkey, R. T. Vaughan, and A. Howard. “The Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems”. In
Proc. Int. Conf. on Advanced Robotics, pages 317–323, 2003.

[13] M. T. Rosenstein and P. R. Cohen, “Concepts From Time Series”. In
Proc. of the 15th National Conf. on Artificial Intelligence, pp 739–
745, Menlo Park, CA, USA, 1998. AAAI.

[14] T. Oates, M. D. Schmill, and P. R. Cohen, “Identifying Qualitatively
Different Experiences: Experiments with a Mobile Robot”. In Proc. of
the 16th Int. Joint Conf. on AI, 1999.

[15] L. Firoiu and P. Cohen “Abstracting from Robot Sensor Data using
Hidden Markov Models”. In Proc. of the 16th Int. Conf. on Machine
Learning, pp 106–114, San Francisco, CA, USA, 1999. Morgan
Kaufmann Publishers Inc.

[16] T. Collett and B. MacDonald. “Augmented reality visualisation for
player”. In Proc. Int. Conf. on Advanced Robotics, pp. 3954–3959,
Orlando, May 15–19 2006.

[17] D. Wagner and D. Schmalstieg. ARToolKitPlus for pose tracking on
mobile devices. In M. G. H. Grabner (Ed.), Proc. of 12th Computer
Vision Winter Workshop (CVWW07), St. Lambrecht, Austria, 2007.

3575

