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Abstract— Social robots face the fundamental challenge of
detecting and adapting their behavior to the current social
mood. For example, robots that assist teachers in early edu-
cation must choose different behaviors depending on whether
the children are crying, laughing, sleeping, or singing songs.
Interactive robotic applications require perceptual algorithms
that both run in real time and are adaptable to the challenging
conditions of daily life. This paper explores a novel approach to
auditory mood detection which was born out of our experience
immersing social robots in classroom environments. We propose
a new set of low-level spectral contrast features that extends a
class of features which have proven very successful for object
recognition in the modern computer vision literature. Features
are selected and combined using machine learning approaches
so as to make decisions about the ongoing auditory mood. We
demonstrate excellent performance on two standard emotional
speech databases (the Berlin Emotional Speech [1], and the
ORATOR dataset [2]). In addition we establish strong baseline
performance for mood detection on a database collected from
a social robot immersed in a classroom of 18-24 months old
children [3]. This approach operates in real time at little
computational cost. It has the potential to greatly enhance the
effectiveness of social robots in daily life environments.

I. MOTIVATION

The development of social robots brings a wealth of sci-

entific questions and technological challenges to the robotics

community [4], [5], [6], [7], [8], [9], [10]. Social environ-

ments are complex, highly uncertain, and rapidly evolving,

requiring subtle adaptations at multiple time-scales. A case

in point is the use of robots in early childhood education, an

area of research that we have been pursuing for the past 3

years as part of the RUBI project [3]. At any given moment

the students in a classroom may be crying, laughing, dancing,

sleeping, overly excited, or bored. Depending on the mood

the robot must choose different behaviors so as to assist

the teachers in achieving their educational goals. In addition

much of the work of teachers in early education occurs at

mood transition times, e.g., transition from play time to sleep

time. Social robots capable of recognizing the current mood

could potentially assist the teachers during these transition

periods.

The goal of the RUBI project is to explore the potential

use of social robots to assist teachers in early childhood

education environments [3], [11]. As part of the project

for the last three years we have conducted more than 1000

hours of field studies immersing social robots at the Early

Childhood Education Center at UCSD. A critical aspect of

these field studies is to identify the perceptual problems that

social robots may face in such environments and to develop

perceptual primitives for those such problems.

One of the phenomena we identified from early on is that

over the course of a day the mood of the classroom goes

through dramatic changes and that much of the work of

the teacher occurs when they need to maintain a desired

mood, or to make mood transitions, e.g. transitioning from

playtime to naptime. Human teachers are indeed masters at

detecting, influencing, and operating within the classroom

moods. As such we identified detection of such moods as a

critical perceptual primitive for social robots.

Here we investigate a novel approach to detecting social

mood based on auditory information. The proposed approach

emerged out of our previous experience developing visual

perception primitives for social robots, and the realization of

the critical role that auditory mood plays in early childhood

education settings. In the following sections we describe the

proposed approach, evaluate it using two standard datasets

from the emotion recognition literature and finally test it on

a mood detection task for a social robot immersed in an early

childhood education center.

Fig. 1. Two of the robots developed as part the RUBI project.
Top: RUBI-1, the first prototype was for the most part remote
controlled. Bottom: RUBI-3 (Asobo) the third prototype teaches
children autonomously for weeks at a time

II. AUTOMATIC RECOGNITION OF AUDIO CATEGORIES

Recognition of audio categories has recently become an

active area of research in both the machine perception and

robotics communities. Problems of interest include recogni-

tion of emotion in a user’s voice, music genre classification,

language identification, person identification, and in our case,

auditory mood recognition. The robotics community has

also recognized the importance of this area of research. For

example, in [12] auditory information is used to determine

the environment a robot is operating in (e.g. street, elevator,

hallway). Formally all these problems reduce to predicting a

category label for given audio samples and thus are a prime

target for modern machine learning methods.
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In this paper we explore an approach to recognition of

auditory categories inspired by machine learning methods

that have recently revolutionized the computer vision lit-

erature [13], [14]. It is interesting to note that historically

machine perception in the auditory and visual domain have

evolved in similar ways. Early approaches to object detection

in computer vision were typically based on compositions of

a small set of high-level, hand-coded feature detectors. For

example human faces were found by combining the output

of hand-coded detectors of eyes and other facial features

[15]. Instead, modern approaches rely on a large collection

of simple low-level features that are selected and composed

using machine learning methods.

Similarly, much of the pioneering work on recognition of

auditory categories was initially based on the composition

of a small collection of hand-coded high-level features (e.g.,

pitch detection, glottal velocity detection, formant detec-

tion, syllable segmentation) [16], [17], [18]. An alternative

approach, which is the one we explore in this document,

is based on the use of machine learning methods on a

large collection of simple, light-weight features. While such

methods have been recently explored with some success [19],

here we introduce significant changes. For example, while

[19] uses learning methods to select from a pool of 276

low-level audio features, here we utilize a new collection

of 2, 000, 000 light-weight spatio-temporal filters, orders of

magnitude larger than what has appeared in the previous

literature. The potential advantage of the approach proposed

here is three-fold: (1) It removes the need to engineer domain

specific features such as glottal velocity that apply only

to human speech. This characteristic is vital for auditory

mood detection in which salient auditory phenomena are

not constrained to human speech. (2) The approach relies

on general purpose machine learning methods and thus

could be applied to a wide variety of tasks and category

distinctions. (3) The pool of auditory features was designed

to be computationally lightweight and to afford real-time

detection in current hardware, a critical issue for social robot

applications.

Figure 2 describes the steps involved in the proposed

approach. First the auditory signal is preprocessed and con-

verted into a Sonogram, which is an image-like representa-

tion of the acoustic signal. A bank of spatio-temporal filters

is then applied to the Sonogram image and combined to make

a set of binary classifiers. The output of these classifiers are

then combined into an n-category classifier.

III. FRONT END: AUDITORY SIGNAL PROCESSING

We use a popular auditory processing front end, motivated

by human psychoacoustic phenomena. It converts the raw

audio-signal into a 2-dimensional Sonogram, where one

dimension is time and the other is frequency band, and the

value for each time × frequency combination is the perceived

loudness of the sound. To obtain the Sonogram, Short Term

Fast Fourier Transforms (STFT) are first computed over 50

millisecond windows overlapping by 25 ms and modulated

by Hanning function. The energy of the different frequencies

Train-Time Algorithm

1) Compute 2-d Sonogram image from the raw audio

signals. (see Figure 3)

2) Use Gentle-Boost to choose a set of Spatio-Temporal

Box Filters to solve multiple binary classification prob-

lems.

3) Combine the output of the binary classifiers us-

ing multinomial logistic regression to produce an n-

category classifier.

Run-Time Algorithm

1) Compute 2-d Sonogram image from the raw audio

signals. signal (see Figure 3)

2) Apply bank of Spatio-Temporal Box Filters selected

during the training process.

3) Combine output of the filters into binary classifiers.

4) Combine output of binary classifiers into n-category

classifier.

Fig. 2: General Description of the Approach at Train-time

and Run-time

are then integrated into 24 frequency bands according to

the Bark model [20], which uses narrow bands in low

frequency regions and broader bands in high frequency

regions. The energy values from the 24 Bark bands are then

transformed into psychoacoustical Sone units of perceived

loudness. This is done by transforming the energy of each

band into decibels, transforming decibel values into Phon

units using the Fletcher-Munson equal-loudness curves [20],

and finally applying the standard phon-to-sone non-linearity

to convert into Sone units [20]. The main advantage of

working with Sone units is that they are directly proportional

to the subjective impression of loudness in humans [20].

The result of these transformations is a 2-d, image-like

representation of the original signal. An example of a trans-

formed audio signal is shown in figure 3.

IV. SPATIO-TEMPORAL BOX FILTERS

Box filters [21], [22], [23] are characterized by rectangular,

box-like kernels, a property that makes their implementation

in digital computers very efficient. Their main advantage over

other filtering approaches, such as those involving Fourier

Transforms, is apparent when non shift-variant filtering op-

erations are required [23]. Box Filters became popular in

the computer graphics community [21], [22], [23] and have

recently become one of the most popular features used in

machine learning approaches to computer vision [13]. In this

paper we propose a spatio-temporal generalization of Box

Filters (STBF) designed for real-time machine perception

problems in the auditory domain. STBFs are designed to

capture critical properties of signals in the auditory domain.

The first is periodic sampling in time to capture properties

such as beat, rhythm, and cadence. The second is the tem-

poral integration of filter outputs via five summary statistics:

mean, min, max, standard deviation, and quadrature pair.

All but the last are self-explanatory. Quadrature pairs are a

popular approach in the signal processing literature to detect
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Fig. 3: Depicted above is the original 1-d temporal audio signal (left), the Sonogram (middle) and a STBF superimposed

on a Sonogram (right). The STBF output serves as the input to the learning framework described in section IV-A.

modulation patterns in a phase independent manner. In our

case each STBF has a quadrature pair which is identical to

the original STBF but phase shifted by half a period. Each of

these summary statistics can be seen as a way of converting

local evidence of the auditory category to a global estimate.

We use six types of box filter configurations (see Figure 4).

The specific configuration of the box filters explored in

this document is taken directly from the computer vision

literature [13], because they appear to compute quantities

important for describing a Sonogram. In the vision literature,

the response of the box filter to an image patch is given by

the sum of the pixel brightnesses in the white area minus

the sum of the pixel brightnesses in the black area (pixels

not encompassed by the box filter are ignored). Similarly,

the response of a Box filter to portion of a Sonogram is the

sum of the spectral energies of the frequency / time cells

that fall in the white region minus the sum of the spectral

energies of the cells fall in the black region. In the auditory

domain these filters compute partial derivatives with respect

to time or frequency band of the spectral energy. For instance

filters of type 2 compute the partial derivative of loudness

with respect to time in a particular frequency band. Filters

of type 3 compute the second partial derivative with respect

to frequency and time. Filters of type 4 compute the the

partial derivative of loudness with respect to frequency at a

specific time location. These low-level time and frequency

derivatives have been shown to be useful features in sound

classification.

Figure 3 shows one of the extensions studied in this

document, in this case a simple filter is periodically applied

to a Sonogram. The total number of features used in this

work is approximately 2, 000, 000. All combinations of the

5 summary statistics, 20 sampling intervals, and 20, 000
basic box filters are considered.

A. Training

We use Gentle-Boost [24] to construct a strong classifier

that combines a subset of all possible STBFs. Gentle-Boost

is a popular method for sequential maximum likelihood

estimation and feature selection. At each round of boosting,

a transfer function, or “tuning curve”, is constructed for each
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Fig. 4: Shown above are several examples of spatio temporal

box filters. Each of the six basic features are shown. For each

simple filter, the sum of the pixels in the black rectangle are

subtracted from the sum of the pixels in the white rectangle.

The output of each repetition of the simple filter yields a

time series that is fed into the summary statistic specific to

the particular spatio-temporal feature.

STBF which maps feature response to a real number in

[−1, 1]. Each tuning curve is computed using non-parametric

regression methods to be the optimal tuning curve for the

corresponding STBF at this round of boosting (see [25] for

details). The feature + tuning curve that yields the best

improvement in the Gentle-Boost loss function is then added

into the ensemble, and the process repeats until performance

no longer improves on a holdout set. In this way, Gentle-

Boost simultaneously builds a classifier and selects a subset

of good STBFs.

At each round of boosting, an optimal tuning curve is

constructed and training loss is computed for each feature

under consideration for being added to the ensemble. To

speed up search for the best feature to add (since brute-force

search through all 2 × 106 possible features would be very

expensive) we employ a search procedure known as Tabu

Search [26]. First, a random set of n filters are selected and
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evaluated on the training set, and are used to initialize the

“tabu list” of filters already evaluated in this round. The top

k ≤ n of these filters are then used as the starting points for a

series of local searches. From each starting filter, a set of new

candidate filters are generated by replicating the filter and

slightly modifying its parameters (sampling interval, phase,

etc.). If the best feature from this set improves the loss, that

feature is retained and the local search is repeated until a

local optimum is reached.

The amount of time needed to train a classifier scales

linearly with the number of examples. On a standard desktop

computer it takes approximately 1 hour to train a classifier

on a dataset of audio that is roughly 40 minutes in length.

V. EVALUATION

In order to benchmark the proposed approach we per-

formed experiments on two standard datasets of emotional

speech and one on data we collected ourselves from a

preschool. Once we confirmed that the approach produced

competitive performance we evaluated it on a mood detection

task in a social robot immersed at an early childhood

education center.

A. Recognition of Emotion from Speech: Berlin Dataset

First the system was tested on the Berlin Emotional

Database [1]. The dataset consists of acted emotion from five

female and five male German actors. Each utterance in the

database was classified by human labelers into seven emo-

tional categories: anger, boredom, disgust, fear, joy, neutral,

and sadness. Five long utterances and five short utterances are

given by each speaker for each of seven emotional categories.

Speech samples that are correctly classified by at least 80%

of the human labelers were selected for training and testing.

To ensure speaker independence, we performed 10-fold

leave one out cross validation. That is we trained our system

10 times each time leaving one speaker out of the training

set and testing performance on the speaker left out. Each

classifier consisted of 15 STBFs selected by the Gentle-

Boost algorithm. In order to make a multi-class decision, we

trained all possible non-empty subsets of emotions versus the

rest. For a seven-way classification experiment this makes a

total of 63 binary classifiers. To make the final classification

decision, multinomial ridge logistic regression [27] was

applied to the continuous outputs of each of the 63 binary

detectors. The confusion matrix of the final system on the

hold out set is presented in table I. The overall recognition

rate on this seven-way classification task was 75.3%. These

results are superior to several other published approaches

[28]. Although it falls short of the best in the literature

performance of 82.7% [29], we believe this is because the

work in [29] used many optimizations to tailor their system to

classification of human speech, a route that we wish to avoid

for the sake generality. Also of note is that our approach

is quite novel, and performed well despite this being our

first attempt to employ these features. Thus we believe this

approach shows great potential for improvement as we begin

exploring the parameters of the technique in greater detail.

The lightweight nature of STBFs allows us to easily

compute the responses of each of the 63 classifiers in real-

time. Even using an inefficient run-time implementation this

system can provide an estimate of the current emotion every

50 ms on a standard desktop.

B. Determining Emotional Intensity : Orator dataset

The ORATOR dataset [2] contains audio from 13 actors

and 14 non-actors reciting a monologue in German. The

actors were instructed to deliver the monologue as if they

were in a variety of settings, such as talking to a close friend

or delivering a speech. The non actors spoke spontaneously.

Contrary to the Berlin dataset, in ORATOR the specific

emotion categories were not explicitly prompted, but rather

were situationally based. Single sentence segments of the

original monologue were labeled by non-German speaking

native English speakers. Each labeler was asked to rate

the speech sample on seven different emotional dimensions:

agitation, anger, confidence, happiness, leadership, pleasant-

ness, and strength. This highlights another key difference

between Berlin and ORATOR. In the Berlin dataset each

audio clip belongs to one of a mutually exclusive set of

emotions, however, the ORATOR emotions are not mutually

with each monologue being rated on a continuum for each of

emotional dimension. The resulting dataset consists of 150
audio samples of approximately 6 seconds each, labeled by

a total of 20 labelers on 7 different emotional dimensions.

We trained a series of binary detectors to distinguish

the top n versus the bottom n samples in each emotional

dimension. By increasing the value of n the task becomes

harder since the system is forced to correctly discriminate

more subtle differences. We used two different values of n:

25 and 50 which correspond to using one third and two thirds

of the original samples respectively. The consensus label for

each sample was computed by taking the mean judgment

across all labelers.

Table II shows the results of 14 binary classification

experiments. Our approach shows performance comparable

to that of the average human labeler on each task, which is

considerably better that the previously reported performance

on this dataset [2]. In addition to being able to successfully

place a binary label on each emotional axis, the approach also

achieved human-like performance at estimating continuous

emotional intensity, i.e., the correlation coefficients between

the detector outputs and the continuous emotion labels on an

hold-out set were comparable to those of individual coders

(See Table III). This ability is crucial for social robotics

applications where the degree of a specific social mood is

desired.

We computed several descriptive statistics of the learned

features for solving this task. The most popular temporal

integration function is mean, followed by the quadrature pair.

This suggests that some form of phase invariance may be

critical for learning the emotional characteristics of speech.

The most popular frequency bands were in the range of

100 − 200 Hertz, which contain the pitch of the average

conversational male and female voice.
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Anger Boredom Disgust Fear Happy Neutral Sadness
Anger .9051 0 0 .0238 .071 0 0
Boredom .0281 .7817 .0412 .0094 0 .0677 .0720
Disgust .1492 .0589 .6061 .0232 .0419 .0278 .0929
Fear .0909 0 .0166 .6278 .0302 .1405 .0939
Happy .3782 0 .0185 .0370 .4804 .0859 0
Neutral .0219 .1334 0 .0414 .0452 .7581 0
Sadness 0 .0953 .0152 0 0 .0231 .8665

TABLE I

A CONFUSION MATRIX FOR THE BERLIN EMO DATABASE. THE CELL IN THE ITH ROW AND JTH COLUMN REPRESENTS THE FRACTION OF SAMPLES

WITH OF EMOTION I CLASSIFIED AS EMOTION J. THE RECOGNITION RATE USING 10-FOLD LEAVE ONE SPEAKER OUT CROSS VALIDATION IS 75.3%.

agitated angry confident happy leadership pleasant strong
STBFs (25 vs. 25) .133 .033 .133 .2 .1 .2 .133
average labeler (25 vs. 25) .082 .124 .123 .162 .105 .211 .142
STBFs (50 vs. 50) .2166 .233 .2166 .266 .233 .233 .1833
average labeler (25 vs. 25) .1885 .244 .183 .2225 .181 .2905 .2115

TABLE II

COMPARISON ON THE ORATOR DATASET OF THE PERFORMANCE OF VARIOUS APPROACHES ON THE BINARY CLASSIFICATION TASK OF RECOGNIZING

THE TOP N EXAMPLES OF A SPECIFIC EMOTIONAL CATEGORY FROM THE BOTTOM N EXAMPLES OF THAT CATEGORY. THE QUANTITY REPORTED IS

THE BALANCED ERROR RATE (THE PERCENT CORRECT WHEN THE TRUE POSITIVE RATE EQUALS THE TRUE NEGATIVE RATE). NOTE THAT LOWER

NUMBERS ARE BETTER SINCE THAT IMPLIES A PARTICULAR APPROACH WAS BETTER ABLE TO MODEL THE CONSENSUS OF THE 20 HUMAN LABELERS.

agitated angry confident happy leadership pleasant strong
STBFs .48 .6 .53 .42 .5 .43 .52
average labeler .43 .43 .49 .32 .42 .23 .41

TABLE III

THE FIRST ROW SHOWS THE CORRELATION COEFFICIENT BETWEEN THE OUTPUT OF THE TRAINED CLASSIFIER AND THE AVERAGE INTENSITY

ASSIGNED BY THE LABELERS (RECALL THAT EACH LABELER PROVIDED AN ESTIMATE OF INTENSITY FOR EACH EMOTIONAL DIMENSION). THE

SECOND ROW SHOWS THE AVERAGE CORRELATION COEFFICIENT BETWEEN THE INTENSITY RATING OF A PARTICULAR LABELER AND THE AVERAGE

INTENSITY ASSIGNED BY ALL OF THE LABELERS.

C. Detecting Mood in a Preschool Environment

The original motivation for our work was to develop

perceptual primitives for social robots. Here we present a

pilot study to evaluate the performance of our approach in

an actual robot setting. The study was conducted at Room 1

of the Early Childhood Education Center (ECEC) at UCSD

and it was part of the RUBI project, whose goal is to explore

the use of social robots in early childhood education. The

experiment was conducted on a robot, named Asobo, that

has been autonomously operating in Room 1 of ECEC for

weeks at a time, teaching the children materials targeted by

the California Department of Education.

Through discussions with the teachers at Room 1 we

identified three basic moods: crying, singing / dancing, and

background (everything else). Detection of these moods

could result in new robot abilities with tangible benefits: (1)

The robot could help reduce crying. (2) The robot could

help improve the atmosphere in the classroom by dancing

and singing when other children are dancing and singing. (3)

The robot could avoid inappropriate behaviors, like dancing

and singing when the teachers are reading to the children.

We collected a database of audio from one full day at

ECEC and coded into the three moods described above. We

extracted non-overlapping audio segments of eight seconds

each. There were 79 examples of crying, 72 examples of

playing and singing, and 151 examples from the background

category. We used 80% of each of these categories and 20%

for testing. In order to test the time accuracy tradeoff, we

ran our detector with various length intervals sampled from

the test set. For instance, to test the performance using 4

seconds of audio, a sliding window of duration 4 seconds

was slid over all audio samples in the test set.

Figure 5 shows the time/accuracy tradeoff function of the

system. When given 8 second audio segments, the system

achieves an accuracy of 90%. As expected the performance

declines if shorter audio segments are used, and it is basically

at chance with less than 600 millisecond segments.

The obtained levels of performance are very encouraging

considering this was a non-trivial task in a very challenging

environment. We are currently in the process of developing

new behaviors for Asobo to respond to the perceived mood.

Preliminary anecdotal evidence is encouraging. For example,

we observed a child immediately stopped crying when Asobo

asked “Are you OK?”. This behavior could be made more

effective if a system to localize the source of audio signals

was integrated in to the system [30]. In this case ASOBO

could direct his gaze to the crying child before offering his

concern.

In addition, the mood detector could also be potentially

used for robots to learn on their own how to behave so
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on the three-way classification task as a function of the time
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half a second for classification results in a decision slightly

above chance. The maximum performance is attained when

using a 7.8-second sample.

as to accomplish classroom goals. For example, reduction

of crying and increase of playing could be used as a

reinforcement signal for the robot to learn to improve the

atmosphere of the classroom.

VI. CONCLUSION

We identified automatic recognition of mood as a critical

perceptual primitive for social robots, and proposed a novel

approach for auditory mood detection. The approach was

inspired by the machine learning techniques for object recog-

nition that have recently proven so successful in the visual

domain. We proposed a family of spatio-temporal box filters

that differ in terms of kernel, temporal integration method,

and tuning curve. The advantage of the proposed approach

is that it removes the need to engineer high-level domain

specific feature detectors, such as glottal velocity detectors,

that apply only to human speech. Instead we let machine

learning methods select and combine light-weight, low-level

features from a large collection. In addition the filters are

designed to be computationally efficient thus allowing real

time mood detection at little computational cost, an aspect

critical for robot applications.

The approach provided excellent performance on the prob-

lem of recognizing emotional categories in human speech,

comparing favorably to previous approaches in terms of

accuracy while being much more general. A pilot study in

a classroom environment also confirmed the very promising

performance of the approach.

In the near future, and as part of the RUBI project, we

are planning to incorporate the mood detector for the robot

Asobo to operate as a sort of social “Moodstat”, i.e. a device

that helps achieve a desired mood, in an analogous way as

thermostats help maintain a desired temperature level.
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