
  

  

Abstract— The social interaction, guidance and support that 
a socially assistive robot can provide a person can be very 
beneficial to patient-centered care. However, there are a 
number of conundrums that must be addressed in designing 
such a robot. This work addresses two main limitations in the 
development of intelligent task-driven socially assistive robots: 
(i) recognition and identification of human gesticulation as a 
source of determining the affective state of a person, and (ii) 
robotic control architecture design and implementation with 
explicit social and assistive task functionalities. In this paper, 
the development of a unique task-driven robotic system capable 
of quantitatively interpreting human body language and in 
turn, effectively responding via task-driven behavior during 
assistive social interaction is presented. In particular, a novel 
gesture identification and classification technique is proposed 
capable of interpreting human gestures as semantically 
meaningful commands for inputs into a multi-layer decision 
making control architecture. The learning-based control 
architecture is then utilized to determine the effective and 
appropriate assistive behavior of the robot.  

I. INTRODUCTION 
S the U.S. prepares for the first round of baby boomers 
to turn 65 in 2011, it must prepare for the approximate 

8 million that could need long term care from nursing homes 
and home health providers by 2040 [1]. To meet these 
challenges, healthcare organizations need to adopt the use of 
advanced information technologies in their patient care 
process. In particular, the development of innovative social 
assistive robots can help minimize the threats of nursing 
shortages, and provide measurable improvements in an 
individual’s health status [2].   

Separate studies utilizing creature-like robots, Pearl, [3], 
and Paro, [4], in nursing homes have demonstrated the 
positive response of elders to these robots, suggesting the 
potential use of assistive robots as robotic aids. In addition 
to creature-like assistive robots, whose interaction functions 
are limited, non-contact human-like interactive assistive 
robots have also been developed. These robots mainly 
consist of a wheeled vehicle carrying a computer monitor 
projecting an image of a software agent or human [i.e., 5,6]. 
To date these robots are unable to engage in intelligent 
emotion-based bi-directional interactions. To address this 
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limitation, this work focuses on the investigation of socially 
assistive robots, with  human-like demeanors, and high level 
affect recognition and identification and decision making 
abilities, capable of natural and believable social interaction 
via verbal and non-verbal communication. In order to 
achieve this type of human-robot interaction (HRI), 
modeling of the relationship that connects human and robot 
intelligence is required. HRI robots can potentially have a 
high degree of autonomy, and cognitive and emotional 
capabilities. For naturalistic social interactions to take place, 
the investigation into the development of novel approaches 
for intelligent robots, capable of identifying, understanding 
and reacting to human intent and affective state is needed. 
Recent studies into human-robot interaction have concluded 
that the need for social intelligence in HRI robots is 
extremely important in a healthcare/eldercare environment 
[7]. 

This paper addresses two main limitations in the 
development of intelligent task-driven non-contact social 
assistive robots: (i) recognition and identification of human 
gesticulation as a source of determining the affective state 
and intent of a person, and (ii) control architecture design 
and implementation with explicit social and assistive task 
functionalities. In this paper, the development of a unique 
task-driven robotic system capable of quantitatively 
interpreting human body language and in turn, effectively 
responding via task-driven behavior during assistive social 
interaction is presented. In particular, a novel gesture 
identification and classification technique proposed by the 
authors capable of interpreting human gestures as 
semantically meaningful commands is used to provide  
inputs into a multi-layer decision making control 
architecture. The learning-based control architecture is then 
utilized to determine the effective and appropriate behavior 
of the robot. The overall proposed system is shown in Fig. 1. 

II. GESTURE IDENTIFICATION AND RECOGNITION  
An important design issue that must be addressed for 

socially assistive robots is the robot’s ability to judge the 
affective state of humans in order to respond accordingly 
during interaction. Non-verbal communication has been 
deemed to be more meaningful than verbal content, 
especially in demonstrating changes in mood/emotional state 
[8].  The use of non-verbal communication for detecting 
human emotional states normally involves the use of vision 
based gesture recognition systems [9-12].  
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Fig. 1: System Overview 
 

     In order to address the limitations of current gesture 
sensing and recognition techniques, we propose the 
development of a unique 3D model based technique that can 
recognize human upper body gestures via varying intensity 
3D images, provided by a 3D camera. The proposed system 
can be utilized as an input modal into a multi-modal human-
robot interaction scheme along with other nonverbal (i.e., 
facial expressions) or verbal (i.e., speech recognition) 
modals for effective recognition of a human’s emotional 
state during interaction.  
 The main advantages of the proposed method are that it 
can directly provide 3D pose information: (i) without the use 
of multiple cameras, (ii) in a non-contact manner without 
restricting the human, and (iii) in real-time to assist in 
minimizing computational complexity.  
 A quantitative model representation of body part motion 
parameters is developed to recognize the movements 
depicted in the 3D images as appropriate gestures. 
 The motion of each body part can be represented by a 
combination of translational and rotational movements used 
to determine gestures that the human makes during 
interaction.  

A. Model Matching  
A multi-stage procedure is utilized in this work for 
determining the appropriate model transformation that 
corresponds to varying depth intensity images taken of a 
human during interaction. This gesture recognition approach 
consists of utilizing a low depth intensity image of the 
human and a high depth intensity image, Fig. 1. Both these 
types of images along with 3D depth information are utilized 
by a 3D model matching algorithm to identify the human 
silhouette and the pose of varying body parts. For a detailed 
explanation of the 3D model matching algorithm identifying 
the body part motion of the human, during interaction with 
the robot, the reader is referred to [13]. 

B.  The Defined Gestures  
The gestures to be identified by the proposed recognition 
technique are derived and modified according to the Davis 
Nonverbal States Scale (DNSS) [14]. DNNS is a coding 
method designed to analyze the positions, gesticulations and 
specific actions displayed by human participants in a one-
on-one conversation. This work presents the first 
application of the DNNS to HRI environments. The 
advantage of the DNSS is its ability to directly correlate a 
person’s gestures to his/her reaction to an encounter [14]. 
The gestures are defined according to: (i) trunk lean and 
orientation; and (ii) arm symmetry, location and orientation. 
Each of these body poses has a range of movement that 
allow the robot to determine the particular gesture of the 
human it is interacting with. For example, trunk orientation 
is defined as: Towards-where the person is oriented facing 
the robot, Neutral-where the trunk is facing slightly away 
from the robot by 3o to 15o and Away-where the trunk is 
oriented more than 15o from the robot. There can be a great 
variety of possibilities for the gestures, i.e., further arm 
arrangements and hand placements, however, the scale can 
be justified by the fact that most people display a limited 
range of positions during interaction and will repeat these 
gestures during the course of the interaction [14].  

III. HRI CONTROL ARCHITECTURE   
In the literature a great deal of focus has been placed on 
low-level control architectures for robots to mimic human 
emotional expressions [15-17], and high-level multi-module 
control strategies utilized to generate emotions from the 
evaluation of the wellbeing of the robot during interaction 
[18-21]. In this paper, the design of a high-level multi-layer 
control architecture that shifts the emphasis from the 
wellbeing of the robot to the human is presented. In 
particular, the behavior of the robot will be determined 
based on the assistive task the robot must complete, where 
the robot’s emotions are utilized to aid task completion. 
Thus, the robot is said to be task-driven as opposed to the 
emotion-driven HRI robots in the literature. Emotions are 
utilized as a secondary consideration to assist the robot in 
accomplishing its tasks.  
     The proposed control architecture is adapted from the 
Cognition and Affect (Cogaff) information processing 
architecture [22] and the emotional control system (ECS) 
[23]. The combined approach consists of modules from the 
two architectures that are best suited for assistive robotic 
applications and will view emotions as parameters of an 
intelligent system used in the decision making process, Fig. 
2. In particular, the reactive and deliberative layers from the 
CogAff architecture are utilized, in which the reactive layer 
is used mainly for interaction situations that require an 
immediate response, whereas the deliberative layer contains 
decision making capabilities that analyze scenarios. The 
ECS architecture, using a drives module and an emotional 
supervisory system, is adapted herein to assist in behavior 
selection.  
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Herein, robot behaviors are considered either emotional or 
non emotional, based on the situation the robot is in. The 
robot control architecture proposed in this work can be 
explained as follows. The inputs to the control system 
include the affective state of the person interacting with the 
robot (as defined herein by gestures) and the robot’s 
internal/external sensory information. The robot’s tasks are 
stored in the long term memory module, Fig. 2. Once the 
robot identifies the person it is interacting with, tasks 
specific to that person will be sent to the drives module. 
Since the focus of this research work is on non-contact 
socially assistive robots, the defined tasks that the robot will 
accomplish during interaction may include monitoring, and 
providing companionship and reminders to patients. The 
drives module will also consist of drives directly related to 
the robot’s health (i.e., power, operation of motors) as 
updated from the robot’s sensors. Dominant drives will then 
be utilized to assist in determining the robot’s emotional 
state via the emotional state system, and the output behavior 
via the reactive or deliberative layer. The emotional state is 
stored in the short term memory.  The priority module 
decides the final behavior of the robot based on the 
precedence of information regarding robot and human health 
and safety during interaction.  

There are two main reasons why the current emotional 
state of the robot should be known during the decision 
making process: (i) the task to be completed does not match 
the current emotion of the robot, i.e., the robot needs to 
provide companionship, the robot should not do so in a 
distress or angry manner, (ii) the emotional state of the robot 
is failing to complete the required task, i.e., the robot needs 
to monitor a resident in a nursing home, if a resident refuses 
to answer the robot’s inquires, the robot must change its 
emotion accordingly in order to complete its task.  

 
 
 
 
 
 
 
 
 

  
 

Fig. 2: Proposed Control Architecture. 
 

Although there have been a number of emotional behavior 
architectures proposed in the literature [i.e., 20-25], few 
have been the subject of extensive implementation and 
analysis. The type of processing mechanisms to be utilized 
in each layer of the control architecture is usually left as the 
responsibility of the designer of the agent/robot. In this 
work, we investigate and evaluate the utilization of 
processing mechanisms in the context of task-driven socially 
assistive robots for our proposed architecture. The overall 

proposed architecture will be integrated and tested on Brian, 
the expressive human-like socially assistive robot capable of 
HRI, developed by Nejat et al. [13], Fig. 1.  
 An assistive robot’s behavior should reflect the task it 
needs to complete and its emotional state should still result 
in the robot completing the task, unless the robot is 
physically incapable (e.g, not enough battery power). Hence, 
the objective is not to have the robot mimic human 
emotions, but to use emotions to assist in determining the 
behavior necessary for the robot to accomplish its tasks. The 
next two sections present the preliminary design of the 
human mood classifier and deliberative layer modules. 

A. Human Mood Classifier: Gesture Classification  
Within the Human Mood Classifier, the Nonverbal 

Interaction and States Analysis (NISA) of the DNSS is 
utilized to code the recognized gestures into a person’s 
accessibility level [14]. In this work, we will utilize the 
human’s accessibility level to reflect a human’s affective 
state. NISA has shown that a significant relationship 
between gesticulation patterns and a person’s accessibility 
can be determined. In particular, the Position Accessibility 
Scale of NISA will be utilized. The scale consists of 4 levels 
of accessibility ranging from Level 1 (least accessible) to 
Level IV (most accessible), which are categorized by the 
body trunk patterns such as towards (T), neutral (N) or away 
(A) from the robot and further divided into 3 sub-levels 
based on additional T,N or A arm patterns. Accessibility 
values will be utilized by the deliberative layer in order to 
assist in appropriately determining the robot’s pro-active 
behavior. Our future work consists of correlating the human 
gestures detected by the robot with speech and facial 
expression detection methods for human mood classification 
based on multi-modal recognition. 

B. Deliberative Layer  
In interactive situations, it is difficult to model and predict, 

a priori, the potential events that will occur between humans 
and robots. Hence, in such situations it is important that the 
robot be able to learn from its own experiences during 
interaction. Within the proposed architecture, the 
deliberative layer will act as the main decision making 
module to allow for task-driven behavior. Our work focuses 
on the utilization and integration of reinforcement learning 
(RL) for robot intelligence. RL has been tested in many 
simulated environments and real-world scenarios [i.e., 26-
28], but has yet to be applied and adapted to the field of 
socially assistive robots. RL has a number of advantages 
when compared to other robot learning and control 
techniques: (i) a priori information about the environment is 
not needed, and (ii) the learning process is on-line.  In 
particular, in this work, we investigate the utilization of Q-
learning.  

In Q-learning a mapping is learned from a state-action 
pair to a value called Q. The mapping represents the reward 
of performing an action in a state. A controller then 
measures the state, chooses the action with the highest Q 
value and executes it [29]. The advantage of this approach is 
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that it is model-less and can be exploration insensitive (Q 
values will converge to optimal values, independent of robot 
behavior during data collection) [29]. 

In particular, since human actions can be unpredictable 
when interacting with the robot, a nondeterministic Q-
learning scheme is investigated, where rewards are 
represented by probability distributions. In this work, a non-
deterministic Q-learning decision making scheme is 
proposed specific for task-driven socially assistive robots, as 
presented in Fig. 3. The robot starts in the current state: 
s0(yHi ,yRi, di), and will perform an action (which results in 
the maximum Q value) that will lead it to satisfy its 
dominant drive, di. yHi represents the accessibility level of 
the human as defined by the DNNS and yRi is defined, 
herein, as the emotional state of the robot. Due to the 
uncertainty of the interaction, the drive may or may not be 
satisfied.  If Action 1 is implemented and the drive is 
satisfied, the robot will reach state s1, ready to perform a 
new set of tasks that will be updated with new emotion and 
drive information (i.e., yHi+1, yRi+1, di+1).  If the drive is 
unsatisfied, the robot will move into state s2, where it will 
attempt to continue to satisfy its current drive, by updating 
its emotional state and the accessibility level of the human. 
For our nondeterministic environment, Q can be determined 
by [30]: 
 ),(max),(),(),( asQassPasrasQ as ′′∑ ′+= ′′γ ,          (2)                                 

where r is the immediate reward function, γ  is the discount 
factor and is set between 0 and 1 (γ expresses preference for 
future awards, i.e., a higher value places more emphasis on 
future awards), s′  is the state resulting from applying action 
a  to state s, and a′  are the actions applicable to the new 
state. ),( assP ′  is the probability of the resultant state based 
on the performed action. Experiments used to verify the 
proposed layer are presented in the next section. 
 
 
 
 
 
 
 
 

Fig. 3: Learning-Based Deliberative Layer 
 
 

 In order to implement the proposed methodology, the 
emotional states, drives and actions of the socially assistive 
robot must be defined.  Ekman identified happiness, 
sadness, fear, anger, disgust and surprise as 6 basic universal 
emotions among humans [31]. Herein, we will explore the 
utilization of these emotions as the emotional states of the 
robot. 

C. A Proof-of-Concept Example  
A simple numerical example is presented to illustrate the 
aforementioned methodology. Mr. Smith is 72 years old and 
has a history of heart attacks and strokes in his family. He, 
himself, has high blood pressure. It is imperative that he 
takes one beta blocker everyday. The scenario for the 
assistive robot is as follows: 
Current Drive, di: to get Mr. Smith to take his medication 
Dominant Robot Emotion, yRi: happy 
Human Accessibility Level yHi: Level III. 
Action #1: Robot speaks in a loud stern, yet pleasant voice 
with arms crossed, “Mr. Smith, it is time for you to take 
your medication.”  
Action #2: Smiling continuously with pauses between words 
in an upbeat voice, the robot instructs Mr. Smith to take his 
medication: “Mr. Smith, you must take your medication 
now!” 
 One of two outcomes may result from each action: Mr. 
Smith will take his medication (Drive Satisfied) or Mr. 
Smith will not take his medication (Drive Not satisfied). A 
probability is assigned to each of these outcomes. For this 
particular example, the probabilities illustrated were 
determined based on survey results from 20 participants: 

60.0),( 101 =assP , 40.0),( 102 =assP , 70.0),( 203 =assP  
and 30.0),( 204 =assP . The Q max values for the states are 
defined as: Max Q1=85, Max Q2=71, Max Q3=80 and Max 
Q4=54. The reward function, r, for the different states is 
represented in the following tabular form:  
 

State S0 S1 S2 S3 S4 
 0 100 0 100 0 

 
The value of the discount factor, γ, is set to 0.8.   
The following steps are taken to determine the robot’s 
behavior: 
Step 1: Receive the initial state information of the robot, s0. 
Step 2: The robot chooses an Action based on the 
calculation of Equation (2).  Herein, the Q values for Action 
#1 and Action #2 are determined to be 64 and 58, 
respectively. Therefore, Action #1 is considered to be the 
more desirable action for the robot to take.  

IV. EXPERIMENTS  
Our preliminary experiments consist of the robot, Brian, 

and a human interacting in a one-on-one conversation 
standing approximately 1.5 m apart. Brian consists of a 
human-like demeanor having similar functionalities to a 
human from the waist up, Fig. 1. The robot is able to 
communicate via: (i) a unique human-like face, (ii) a 3 
degrees-of-freedom (DOF) neck capable of expressing head 
gestures, and (iii) an upper torso consisting of a 2 DOF 
waist and two 4 DOF arms designed to mimic human-like 
body language. The robot is also able to communicate 
verbally using commercial interactive conversation 
software. In addition to the 3D camera, the robot uses a 2D 
digital camera and a laser scanner to track a person and to 
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ensure that the optimal distance required for effective 
gesture identification is maintained. Human subjects 
participating in the experiments ranged in age from 16 to 30 
years old. In the experiments, the human was asked to 
implement a number of predefined gestures for perception, 
identification and categorization in the appropriate 
accessibility levels.  Experiments were conducted to 
evaluate the potential use of the proposed gesture 
identification and categorization methodology and Q-
learning algorithm in a HRI environment.  

A. Gesture Categorization   
Low and high intensity 3D images of the human were 

taken and analyzed. Fig. 4 presents four different gestures of 
a person in a: (i) neutral position where the body is upright 
and the arms are to the sides, (ii) neutral position with arms 
folded, (iii) neutral position with one arm propped up by the 
other arm, and (iv) leaning forward with head slightly down 
and arms at the sides. By utilizing the previously developed 
model matching recognition technique the location of the 
occluded and non-occluded body parts were determined to 
approximate the appropriate 3D model. Body part 
orientations were deduced from depth images by correlating 
depth values with rotation angles. For example, when 
detecting upper trunk orientation, the upper trunk away 
position is defined to be when the trunk is oriented at more 
than 15o from the robot. It would be computationally 
expensive to detect the exact orientation angles, however, by 
directly sampling the depth information from the high 
intensity depth image, a significant change in depth on either 
side of the rotational joint is observed. A less subtle change 
would exist if the orientation was approximately between 3o 
to 15o (neutral orientation) and approximately no change 
would be detected in the toward orientation (0o to 3o). For 
the lean forward position, the depth information indicates 
that the upper portion of the head has smaller depth values 
than the lower part of the head and chest.  

Once the appropriate 3D model is approximated, and the 
corresponding gestures determined, the person’s level of 
accessibility is determined based on trunk and arm locations 
and orientations. The level of accessibility (i.e., yHi) for the 
four poses present in Fig. 4 utilizing NISA are determined to 
be: Level IV for Fig. 4(a),(c) and (d), and Level III for (b). 
This information is used to determine the necessary states 
for the Q-learning algorithm. 

B. Q-learning  
The assistive drives for these experiments were chosen to 

mimic a real-world assistive environment. The robot’s 
drives were chosen so that the robot would provide the 
following daily activity reminders to the person: when to 
eat, use the bathroom, go for a walk and take necessary 
medication. 

The robot emotions of happiness, sadness, fear, and anger 
were utilized. These emotions were determined based on a 
priority look-up table. 48 different states were created based 
on all possible combinations of yHi, yRi and di. A database of 

five potential robot behavior actions for each state was also 
created.  

In this experiment, 5 participants were used to determine 
the initial probability values and Q values for the respective 
action-state pairs. 10 separate participants were then used to 
test the feasibility of the algorithm in the proposed assistive 
manner. In order to assess if the drive had been satisfied, 
each person was asked to verbally state “yes” after the 
robot’s action was implemented, at which time the robot 
would move to the next task. If the drive was not satisfied, 
the person would say “no” and the robot would continue to 
try to satisfy the drive. Fig. 5 shows the average number of 
iterations needed to satisfy the robot’s respective drives. In 
general, it took 1 or 2 iterations to satisfy the drives. The 
exception is the drive related to using the bathroom, which 
took 5 iterations. We postulate that this result is due to the 
fact that people may be uncomfortable and resistive to 
orders from others to go to the bathroom. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: (a) Neutral Position, (b) Neutral Position with Arms Crossed, (c) 
Neutral Position with One Arm Propping Another, and (d) Lean Forward 
Position [3D models of (b) and (c) are slightly turned clockwise to show the 
details of the gestures]. 

V. CONCLUSIONS  
The proposed work focuses on the following areas of 
research in natural HRI environments for non-contact 
socially assistive robots: (a) body gesture recognition and 
categorization, and (b) robotic HRI control architecture. The 

(b) (c) (d) (a) 
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aim is to advance technologies related to natural HRI 
environments in order to promote bi-directional 
communication: In particular, the development of robotic 
systems capable of quantitatively interpreting human body 
language and in turn, effectively responding via task-driven 
behavior during assistive social interaction. Preliminary 
experiments show the potential of integrating the proposed 
methodologies into robotic systems to perform interactions 
with people. Our future work consists of correlating the 
human gestures detected by the robot with speech and facial 
expression detection methods for multi-modal recognition 
and, furthermore, extending the proposed recognition 
technique to cluttered environments. In addition, the 
controller will be expanded to address the remaining 
modules presented in the architectural design. Experiments 
in real world settings with larger participants will also be 
conducted. 

 

 

 
 

 

 

 

 

 

 
Fig. 5: Q-learning Results. 
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