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Abstract— We present a learning mechanism, Socially Guided
Exploration, in which a robot learns new tasks through a
combination of self-exploration and social interaction. The
system’s motivational drives (novelty, mastery), along with
social scaffolding from a human partner, bias behavior to
create learning opportunities for a Reinforcement Learning
mechanism. The system is able to learn on its own, but can
flexibly use the guidance of a human partner to improve
performance. An experiment with non-expert human subjects
shows a human is able to shape the learning process through
suggesting actions and drawing attention to goal states. Human
guidance results in a task set that is significantly more focused
and efficient, while self exploration results in a broader set.

I. INTRODUCTION

Enabling a human to efficiently transfer knowledge and
skills to a machine has inspired decades of research. When
this work is viewed along a guidance-exploration spectrum,
an interesting dichotomy appears. Prior works that incorpo-
rate human input into a Machine Learning process tend to
maintain a constant level of human involvement.

Several are highly dependent on guidance, learning noth-
ing without human interaction (e.g., learning by demonstra-
tion [1], [5] or by tutelage [10], [13]). In these, the learner
does little if any exploration. The teacher must learn how to
interact with the machine and know precisely how it needs
to perform the task.

Other approaches are almost entirely exploration based.
For example, the human may control the reward signal given
to a reinforcement learner [2], [8], [15], provide advice [7],
[11], or control the agent’s actions during training [18]. These
approaches have the benefit that learning does not require the
human’s undivided attention. However, they strongly limit
how the human can assist the learner and usually require the
human to learn how to interact with the machine.

Our research is similarly motivated by the idea that robotic
agents that operate in human environments will need the abil-
ity to learn new skills ‘on the job’ from everyday people (who
are not familiar with Machine Learning techniques). Taking
inspiration from human learning, however, we observe that
a social learner must be able to move flexibly along this
guidance-exploration spectrum. Children explore and learn
on their own, but in the presence of a teacher they can take
advantage of social cues and communication to accomplish
more. Thus, we posit that a robot should be able to explore
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Fig. 1. Leonardo in his workspace with a toy puzzle box.

and learn on its own, but also take full advantage of a human
partner’s guidance when available.

In this paper we present a robot learning system—Socially
Guided Exploration. The robot is able to frame its own
learning problems through a combination of internal mo-
tivation and human guidance. Self-motivated exploration
creates learning opportunities for a Reinforcement Learning
mechanism. The system defines its own goals, learns action
policies for those goals, and generalizes this task represen-
tation over time. This works within an integrated system
of social scaffolding mechanisms and transparency devices
that naturally afford human guidance throughout the learning
process. Our experimental results highlight that the nature
of what is learned in self-learning verses guided learning is
different. We argue that robots will need to learn flexibly
along the full guidance-exploration spectrum.

II. ROBOT PLATFORM

Our research platfrom is Leonardo (“Leo”), a 65 degree
of freedom robot specifically designed for human social
interaction (Fig. 1). Leo has speech and vision sensory inputs
and uses gestures and facial expressions for social commu-
nication. Leo can visually detect objects in the workspace,
humans and their head pose [12], and hands pointing to ob-
jects. The speech understanding system is based on Sphinx,
and has a limited grammar to facilitate accuracy.

The cognitive system extends the C5M architecture [2].
The Perception and Belief Systems are particularly relevant
to the learning abilities described in this paper.1 Every time
step, the robot has observations from its various sensory
processes, O = {o1, .., ok}. The Perception System is a set
of percepts P = {p1, ..., pn}. Each p ∈ P is a classification
function, such that p(o) = m where m ∈ [0, 1] is a match
value. The Belief System maintains the belief set B by

1For full technical details of the Perception and Belief Systems see [4].
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Belief 1:
Location: 10
Toy: Box
Type: Slide
State: ON

Type Slide, at loc 10
Type Push, at loc 5

Toy Box, at loc 10

Switch ON at loc 10
Toy Box, at loc 5

Belief 2:
Location: 5
Toy: Box
Type: Push
State: OFF

Sensory Inputs Percept Evaluations Beliefs

Fig. 2. Sensory input is classified by percepts and then merged into discrete
object representations. In this timestep, 5 percepts yield 2 object beliefs.

integrating these percepts into discrete object representa-
tions (based on spatial relationships and various similarity
metrics). Figure 2 shows an example of some sensory data
leading to five percepts with m > 0, that result in two
beliefs in B. In this paper, a “state” s refers to a snapshot
of the belief set B at a particular time, and S refers to the
theoretical set of all possible states. Let A = {a1, ...., ai} be
the set of Leo’s basic actions.

The Socially Guided Exploration system builds on these
existing mechanisms, adding capabilities for representing
and learning goal-oriented tasks, self-motivated exploratory
behavior, and expression/gesture capabilities to support a
collaborative dialog with a human teacher.

III. SOCIALLY GUIDED EXPLORATION

In most Machine Learning systems, learning is an explicit
activity; the system is designed to learn a particular thing
at a particular time. In human learning, on the other hand,
learning is a part of all activity; there is a motivation for
learning, a drive to know more about the environment, and an
ability to seek out the expertise of others. Children explore
and learn on their own, but in the presence of a teacher
they can take advantage of the social cues and commu-
nicative acts provided to accomplish more (also known as
social scaffolding [9]). A teacher often guides a learner by
providing timely feedback, luring them to perform desired
behaviors, and controlling the environment so the appropriate
cues are salient. These interactions help make the learning
process more effective. This is the primary inspiration for our
Socially Guided Exploration system. This section highlights
the key implementation details: the Motivation System, learn-
ing behaviors, goal-oriented task representation, transparency
devices and social scaffolding mechanisms.

A. Motivational Drives for Learning

Living systems work to keep certain critical features within
a bounded range through a process of behavioral homeostasis
(e.g., food, water, temperature). If a parameter falls out of
range, the animal becomes motivated to behave in a way that
brings it back into the desired range.

Recently, this concept has inspired work on internal moti-
vations for a Reinforcement Learning (RL) agent [14], [16],
[17]. These works use a measure of novelty or certainty as
intrinsic reward for a controller. Thus, an action that leads
to a prediction error results in rewards that encourage focus
on that portion of the space. Our approach is in a similar
vein, but rather than contribute to the reward directly, Leo’s
internal motivations trigger learning behaviors that help the
system arbitrate between learning a new task, practicing a
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Fig. 3. The three learning behaviors and their social/motivational contexts.

learned task, and exploring the environment. Additionally,
prior works in “motivated” RL have relied on a single drive
(novelty/curiosity). In this work we introduce a mastery drive
and demonstrate the benefits of the interplay between novelty
and mastery in an agent’s learning behavior.

Leo’s Motivation System (based on prior work [3]) is
designed to guide a learning mechanism. Inspired by natural
systems, it has two motivational drives, novelty and mastery.
Each drive has a range [0, 1], initial value of 0.5, a tendency
to drift to 0.0, and a drift magnitude of 0.001 (max change in
a time step). The Motivation System maintains drive values
based on the status of the internal and external environment:

The Novelty Drive is an indication of the unfamiliarity of
recent events. Every state transition will cause the novelty
drive to rise for an amount of time related to the degree of the
change, dchg , based on the event’s frequency: dchg(s1, s2) =

1
frequency(s1,s2)

. An event causes the drive to drift towards its
max value for a period, t = dchg(s1, s2)tmax. The maximum
effect time, tmax, is 30 sec.

The Mastery Drive reflects the current system confidence
of the learned task set. Mastery is the average confidence
of the tasks that are relevant in (i.e., can be initiated from)
the current state, s. A task’s confidence is the number of
successful attempts over the total task attempts made.

B. Task and Goal Representation

Tasks and their goals are represented with Task Option
Policies. This name reflects its similarity to the Options
approach in Reinforcement Learning [21].

Each T ∈ Tasks is a Task Option Policy, and is defined
by a variation of the three Options constructs: I, π, β. To
define these we use two subsets of states related to the task.
Let Stask ⊂ S be the states in which the task is relevant but
not achieved, and Sgoal ⊂ S be the states in which the goal
is achieved. Then, a Task Option Policy is defined by:
• π′ : Stask × A → [0, 1]; estimates a value for (s, a)

pairs in relation to achieving the task goal, G.
• β′ : Sgoal; represents all of the states in which this task

terminates because G is true.
• I ′ = Stask; represents the initiation set–the task can be

initiated in any state for which it has a policy of action.
For simplicity, we refer to Task Option Policies as tasks.
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Goals encode what must hold true to consider the task
achieved. Specifically, a goal G = {x1, ..., xy} where every
x ∈ G represents a belief that changed over the task
by grouping the belief’s percepts into expectation percepts
(indicating an expected feature value), and criteria percepts
(indicating which beliefs to apply this expecation to). 2

A task can be executed (is relevant) when the current state
is in Stask. During execution, actions are chosen according
to π′ until the current state is in Sgoal (with some probability
of terminating early). A goal G is true (or is achieved) in
a state s if: ∀x ∈ G, if any belief b in s matches all the
criteria ∈ x, then b also matches all the expectation ∈ x.

C. Learning Behaviors for Motivational & Social Contexts
The Task Learning Action Group is the piece of the So-

cially Guided Exploration system responsible for identifying
and responding to learning opportunities in the environment.
It maintains the set of known tasks (Tasks), and has three
competing learning behaviors that respond to social and
motivational learning contexts. Figure 3 is an overview of
the behaviors and their internal/external triggering contexts.

1) Novelty behavior: One purpose of the novelty drive is
to encourage the system to better understand new events,
expanding the Tasks set. Thus, a significant rise in the
novelty drive makes the Novelty behavior available for
activation. Additionally, this behavior may be activated due
to a social context, when the human points out an event
(e.g., “Look Leo, it’s TaskName-X.”). Once activated, the
Novelty behavior tries to create a new task. It makes a goal
representation of the most recent state transition (s1, a, s2),
and if there is not a T ∈ Tasks with this goal, then a new
task is created. Task creation, expansion, and generalization
are covered next in Sections III-D and III-E.

2) Mastery behavior: The purpose of the mastery drive is
to cause the system to become confident in the environment,
fleshing out the representations in the Tasks set. When the
mastery drive is low and any tasks are relevant in the current
state, the Mastery behavior may be activated. This behavior
randomly selects a relevant task, executes it, and updates the
confidence based on success in reaching the goal.

3) Explore behavior: Both motivational drives also work
to encourage exploration. The Explore behavior becomes
available when novelty is low, encouraging the system to
seek out the unexpected. Exploration is also triggered when
mastery is high; even if a known task is relevant, the system
is biased to try to expand the Tasks set once confidence is
high. Additionally, social interaction can trigger the Explore
behavior, for example if the human suggests an action (e.g.,
“Leo, try to Act-X the Obj-Y.”). When the Explore behav-
ior is activated, it first tries to do any human-suggested action
if possible. Otherwise, the Explore behavior selects from
the actions it can do in the current state, with a minimum
frequency requirement. Once the action is completed, if it
was a human-suggested action, the robot’s attention is biased
to look to the human. This acknowledges the suggested
action and provides an opportunity for feedback.

2This goal construct is also used in prior work, [4], [10].

STATE S1 GOAL
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Toy: Box
Type: Slide
State: ON

Location: 5
Toy: Box
Type: Push
State: OFF

Location: 5
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produces goal 
with one goal 
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Fig. 4. A simple example of creating a goal from a state change.

D. Task Learning

These three behaviors result in a mechanism that learns
object-oriented tasks. The Novelty behavior creates new
tasks. First, it makes a potential goal state G from the most
recent state change, (s1, a, s2), with a representation, x, for
each belief in s1 that changed in s1 → s2. Any percept that
changed is an expectation, the rest are criteria (e.g., Fig. 4).

If there does not exist a T ∈ Tasks with goal G, then a
new Task Option Policy, Tnew, is created. The Stask of Tnew

is initialized with the initiation state s1, and π′ is initialized
with default values q = .1 for all actions from s1. Then, the
system takes into account the experience of (s1, a, s2), and
(s1, a) gets a higher value since s2 is the goal.

Each T ∈ Tasks can learn and expand from every
experience (also referred to as intra-option learning [20]).
Every action is an experience, (s1, a, s2); and each T ∈
Tasks has the opportunity to extend its set Stask and update
its π′ based on this experience. To update π′, rather than rely
solely on external rewards from the environment, the system
estimates the reward function based on the task’s goal: r = 1
if the goal is true in s2, otherwise r = 0.

E. Task Generalization

In addition to expanding initiation sets and updating value
estimates for tasks, the system tries to generalize tasks over
time. It works to generalize both the state representations in
Stask and the goal representation G for all T ∈ Tasks.

Given two different tasks T1 and T2, the generalization
mechanism attempts to combine them into a more general
task Tgen. For example, if T1 has the goal of turning ON a
red button in location (1,2,3), and T2 has the goal of turning
ON a red button in location (4,5,6), then Tgen would have the
goal of turning ON a red button without a location feature.
When a feature is generalized from the goal, the system also
tries to generalize the states in Stask, letting the task ignore
that feature. Thus, Tgen can initiate in any location and any
state with a red button ON achieves its goal.

This generalization is attempted each time a Tnew is added
to Tasks. If there exist two tasks T1 and T2 with similar goal
states, then the system makes a general version of this task.
Two goals are similar if they differ by no more than four
percepts. When a generalized task is created, the original
more specific tasks are saved as part of the representation.
In the future, we planned to use this as a way to let the
system de-generalize if the abstraction did not prove useful.
Additionally, any T ∈ Tasks is removed from the set if it
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TABLE I
SOCIAL CUES FOR TRANSPARENCY IN A SOCIALLY GUIDED EXPLORATION

Context Leo’s Behavior Intention
Human points to object Looks at Object Shows Object of Attention
Executing an Action Looks at Object Shows Object of Attention
Human says: ”Look Leo, it’s Task-X” Subtle Head Nod and Happy facial Confirms goal state of task-X
Human says: ”Try to Act-Y the Obj-Z” Look to human if suggestion is taken Acknowledge partner’s suggestion
Unconfident task execution Glances to human more Conveys uncertainty
Task is done, and human says: ”Good!” Nods head Positive feedback for current option
Human asks a yes/no question Nod/Shake Communicates knowledge/ability
Novel event Surprise (raise brows/ears, open mouth) Task being created.
Mastery triggers a task execution Concentration (brows/ears down) A known task is being tried
Completion of a successful task attempt Happy (open mouth, raised ears) Expectation met
Completion of a failed task attempt Sad (closed mouth, ears down) Expectation broken

has a very low confidence after several execution attempts
(these thresholds are set empirically).

In generalizing Stask and G for all T ∈ Tasks, the
generalization mechanism expands the portion of the state
space in which tasks can be initiated or considered achieved.
This results in an efficient representation, as the system
continually makes the state space representations more com-
pact. Additionally, it is a goal-oriented approach to domain
transfer, as the system is continually refining the context and
the goal aspects of the activity representation.

F. Transparency Mechanisms

Leo has several expressive skills contributing to it’s ef-
fectiveness as a social learner. Many are based on theories
of human joint activity [6]. For example, principles of
grounding. In all activity, humans look for evidence that their
action has succeeded, and this extends to joint activity. Thus,
the ability to establish a mutual belief that a joint activity has
succeeded is fundamental to successful collaborative activity.

Table I highlights many of the social cues that Leo uses to
facilitate the collaborative activity of learning. Eye gaze es-
tablishes joint attention, reassuring the teacher that the robot
is attending to the right object. Subtle nods acknowledge task
stages, e.g., confirming when the teacher labels a task goal.

Additionally, Leo uses its face for subtle expressions about
the learning state. The robot’s facial expression shifts to a
particular pose for fleeting moments (2-3 seconds), indicating
an internal state and then returns to a neutral pose. The
expressions are chosen to communicate information to the
human partner, and are inspired by research showing that
different facial action units communicate specific meanings
[19]. For example, raised eyebrows and wide eyes indicate
heightened attention, which is the desired communication
with Leo’s surprised expression. This approach results in a
dynamic and informative facial behavior.

Leonardo communicates various learning contexts to the
human partner with facial expression (Table I). When the
Novelty behavior is triggered, a fleeting surprised expression
lets the human know that a task is being created. When
the Mastery behavior causes a task to be practiced, Leo
makes a concentrated facial expression and later a happy/sad
expression upon the success/failure of the attempt. Through-
out, if the human gives good or bad feedback, Leo makes

a happy or sad expression to acknowledge this feedback.
When the human labels a goal state Leonardo makes a happy
expression and a head nod to acknowledge the labeling.

G. Scaffolding Mechanisms

The goal of our approach is for a robot learner to strike
a balance between self learning and social learning. The
following are social scaffolding mechanisms at work on the
Leonardo platform to enable Socially Guided Exploration.

Social attention: The attention of the robot is directed in
ways that are intuitive for the human, responding to socially
salient stimuli and stimuli that are relevant to the current
task. The robot tracks the human’s pointing gestures and
head pose, which contribute to the saliency of objects. For
details on the robot’s social attention system see [22].

Guidance: Throughout the interaction, the human can
suggest actions for Leo to try. A request is treated as a
suggestion rather than an interrupt. The suggestion increases
the likelihood that the Explore behavior will trigger, but there
is still some probability that Leo will decide to practice a
relevant task or learn about a novel state change.

Recognizing goal states: Leo creates task representations
of novelties in the environment. The human can facilitate
this process by pointing out goal states (e.g., “Look Leo, it’s
X”). This serves to increase the likelihood that the Novelty
behavior will trigger, creating a task with the label “X.”

Environmental structure: An implicit contribution of the
human teacher is their ability to physically structure the
learning environment, highlighting salient elements. They
draw the system into new generalizations, link old informa-
tion to new situations, and point out when a learned task is
relevant in the current situation.

IV. EVALUATION

To evaluate Socially Guided Exploration, we conducted an
experiment with people interacting with the Leonardo robot.

A. Experimental Setup

To show experimentally which aspects of the learning pro-
cess are influenced by a human partner’s social scaffolding
we collected data from two types of learning sessions:

1) SELF: The robot learning on its own.
2) GUIDED: The robot learning with a human teacher.
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We collect several independent measures during the learning
sessions. We then compare means between the two groups
with t-tests3 in order to understand some specific details of
how guidance and self learning differ.

Over the course of two days, we solicited 11 participants
from the campus community (55% female). Due to corrupted
log files, we only use 9 of these in the analysis. For the
SELF condition, we collected data from 10 sessions of the
Leonardo robot learning by itself in the same environment.

The experimental scenario is a playroom (Fig. 1), in
which Leo has toy puzzle boxes. The boxes have three
inputs (a switch, a slider, and a button), a lid, five colored
LEDs, and can also output sounds. We can program how the
box responds to actions on input devices (e.g., the actions
required before the lid opens, or an LED turns on, etc.).

Leo has five primitive actions for the box (Button-Press,
Slider-Left, Slider-Right, Switch-Left, Switch-Right), but no
initial knowledge about the effects of these actions in the
playroom. Leo uses the Socially Guided Exploration mech-
anism to build a Tasks set about the playroom. There is a
single toy puzzle box programmed with the following input-
output behavior: (1) Pressing the button toggles through the
five LED colors: white, red, yellow, green, blue. (2) If both
the slider and the switch are flipped to the left when the color
is white, then the box lid opens. (3) If the slider and switch
are flipped to the right when the color is yellow, then the
box lid closes. (4) If the lid is open and the color changes
to blue, then the box will play a song.

B. Instructions to Human Subjects

Subjects are shown the functionality of the puzzle box and
told that their goal is to help Leo learn about it. They are told
the robot is able to do some simple actions on the toy puzzle
box, and once turned on, it will start exploring what it can
do with the box. They are told they can help Leo by making
action suggestions, by naming aspects of the box, and by
testing that these named aspects have been learned. Finally,
their goal in this interaction is to make sure that Leo learns
to do three things: TBlue–Make the light blue; TOpen–Make
the lid open; TSong–Make the song play. The experimenter
shows subjects exactly how to achieve these tasks, and they
are optionally given time to play with the box on their own
before starting the learning session with Leo. They are told
that Leo understands the following speech utterances:
• ”Leo, try to...[press the button, move the slider

left/right, move the switch left/right]”
• ”Look Leo, It’s...[Open, Closed, A Song, Blue, White,

Green, Red, Yellow]”
• ”Leo, Try to make it...[Open, Closed, Play a Song, Blue,

White, Green, Red, Yellow]”

C. Results

None of the human teachers focused on the song task, thus
these results focus on the tasks that people tried to teach,

3This assumes our data are approximately gaussian. We believe this is a
common and fair assumption for the behavioral metrics we are analyzing.

TBlue and TOpen. All 9 participants succeeded in getting the
robot to reach the TBlue and TOpen tasks. Everyone taught
the TBlue task first, and there was an average of 9 actions
between first encountering the TBlue and TOpen goals.

During the learning session, we log several measures to
analyze the effect of guidance on the learning process. In
addition to collecting metrics during the learning session,
the efficacy of the learned task sets was tested in simulation
afterwards (detailed below). The differences between the
Self Exploration and Socially Guided Exploration cases are
summarized in Table II. In all we tested 12 hypothesized
differences between the guided and self learning groups.
Here we detail the six significant differences found.

The human partner is able to guide the robot to the desired
goal states faster than happens on its own. This is seen in
the difference between groups in the number of actions to
the first encounter of any of the three experiment goals.
The average for GUIDE, 3.56, is significantly less than the
average for the SELF condition, 11.2. Thus, people were
able to utilize the social scaffolding mechanisms to focus
the robot on aspects of the environment that they wanted
it to learn about. This is also supported by qualities of the
resulting Tasks set that is learned. In the GUIDE condition,
the resulting Tasks sets were more related to the experiment
goals (i.e., TBlue, TOpen or TSong is true in a task’s goal
state). We see a significant difference in both the number of
tasks related to TBlue and TOpen (see Table II).

Finally, the Socially Guided Exploration learns a better
task set for achieving the experiment goals. In the post
analysis of the learned tasks, we tested each task set from
a test suite of five initial states, looking for their ability to
achieve the experimental goals. Each experiment goal has
a different test suite of five initial states, three of which are
very close to the goal (1 or 2 actions required), two of which
are farther away (more than 2 actions required). For each of
the learned Tasks sets, we record the number of actions
needed to reach each of the experimental task goals from
each of the test states. We found some significant differences
in the generality of the learned tasks. The average number
of states that the GUIDE condition sets could reach the
TOpen goal, 1.56, was significantly better than the average
in the SELF condition, 0.58. And though we didn’t find this
difference for the TBlue goal, we do see that the GUIDE
condition is significantly faster at achieving TBlue in the
post analysis than the SELF condition, 1.69 versus 2.66.
Thus, human guidance leads to task sets that are better at
achieving the experimental goals at a later time.

V. DISCUSSION

In designing robotic agents that learn new skills and
tasks ‘on the job’ from everyday people, we recognize that
the typical person is not familiar with machine learning
techniques, but is intimately familiar with various forms of
social learning (e.g., tutelage, imitation, etc.). This raises
important research questions. How do we design machines
that learn effectively from human guidance? And, what is
the right level of human interaction at a given time?
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TABLE II
DIFFERENCES BETWEEN SELF AND SOCIALLY GUIDED EXPLORATION

Mesure Mean Mean T-Test
SELF GUIDE Results

# actions to reach first goal 11.2 3.56 t(19) = 2.11;
in learning session p < .05
Size of resulting Tasks set 10.4 7.55 t(19) = 7.18;

p < .001
# tasks for TBlue 0.833 1.333 t(19) = −2.58;

p < .01
# tasks for TOpen 1 1.77 t(19) = −1.83;

p < .05
# Init States can reach TOpen .58 1.56 t(19) = −2.88;
in post-experiment p < .01
# actions to reach TBlue 2.66 1.69 t(19) = 2.19;
in post-experiment p < .05

In prior works that incorporate a human into a machine
learning process, the level of human interaction generally
stays constant, remaining at one end of the guidance-
exploration spectrum. Some are more guidance oriented,
completely dependent on a human instruction. Others are
more exploration based, using limited input from a teacher. In
this work, we recognize that a social learner needs both, and
the Socially Guided Exploration mechanism brings these to-
gether in one learning system. Motivations drive exploration
of the environment and the creation of goal-oriented tasks
about novel events. A human partner can influence learning
through attention direction, action suggestions, labeling goal
states, and positive/negative feedback.

Our experiments show that Socially Guided Exploration
is successful in allowing members of the general public
to guide the robot’s learning process. People were able
to focus the robot’s learning to particular goals that they
desired. Furthermore, compared to self-learning in the same
environment, the learning of these goals is accelerated and
the resulting representation of these tasks is more useful
at a later time. The task sets learned under guidance are
smaller and more closely related to the specific tasks that
people were trying to teach. In self-learning on the other
hand, the robot learned a broader task set — serendipitously
learning aspects of the environment that the human was
not focused on teaching. While this knowledge about the
environment may not be what the human had in mind today,
it could certainly be advantageous in the future. Clearly both
learning types are beneficial in different ways, supporting our
approach of covering the full guidance-exploration spectrum.

VI. CONCLUSION

We posit that robots that learn in human environments
need to successfully learn on their own and take advantage
of the social structure provided by human teachers. Our
Socially Guided Exploration learning mechanism motivates
our robot to explore its environment to create goal-oriented
task representations of novel events. Additionally this process
can be influenced by a human partner through attention direc-
tion, action suggestion, labeling of goal states, and feedback.
Thus, intrinsic measures along with extrinsic support bias

the robot’s behavior to create learning opportunities for a
Reinforcement Learning mechanism that can successfully
leverage the presence of a human teacher to learn in a more
efficient goal-directed manner, and also exploit intrinsically
driven exploration and novelty to serendipitously learn new
knowledge that can bootstrap future learning.
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