
Spatial Coverage Planning for a Planetary Rover

Daniel M. Gaines Tara Estlin Caroline Chouinard

Abstract—
We are developing onboard planning and execution
technologies to support the exploration and char-
acterization of geological features by autonomous
rovers. In order to generate high quality mission
plans, an autonomous rover must reason about
the relative importance of the observations it can
perform. In this paper we look at the scientific
criteria of selecting observations that improve the
quality of the area covered by samples. Our approach
makes use of a priori information, if available, and
allows scientists to mark sub-regions of the area
with relative priorities for exploration. We use an
efficient algorithm for prioritizing observations based
on spatial coverage that allows the system to update
observation rankings as new information is gained
during execution.

I. INTRODUCTION

Our goal is to increase the onboard decision-making
capabilities of planetary exploration rovers. Currently, each
morning of the Mars Exploration Rover (MER) mission the
scientists and engineers meet to discuss the observations
they would like the rover to perform. A subset of these
observations are selected that are predicted to fit within the
time and resource (e.g. energy, onboard memory) constraints
of the rover. The engineering team spends the rest of the day
preparing the specific sequences that the rover will perform
to collect these observations and modeling the plan to ensure
it fits within resource constraints.

While the MER mission has been highly successful at
exploring Mars, mission operations are manually intensive
and time consuming. And, in some cases, the sequences that
are uplinked do not always take full advantage of available
opportunities. For example, if the rover receives more solar
array input than expected, it may have energy to preform
more science observations than what was uplinked.

By enabling rovers to perform onboard planning and
scheduling, we anticipate greatly reducing the time and effort
required to perform mission operations while increasing the
science that is acquired. The science and engineering teams
will be able to uplink observation requests that potentially
over-subscribe the rover’s resources. The rover will use
observation priorities and its current assessment of available
resources to make decision about which observations to
perform and when to perform them.
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In order to make effective decisions about which obser-
vations to perform, the rover must reason about science
priorities. In our current work, we are focusing on situations
in which the rover is exploring large geological features such
as craters, channels or a boundary between two different
regions. In these cases, an important factor in assessing
the quality of a plan is how the set of chosen observa-
tions spatially cover the area of interest. Thus, one of the
considerations a rover should make when evaluating which
observations should be included in a plan is how well the
candidate observations will increase the spatial coverage of
the plan.

The overall goal of this technology is to enable the rover
to generate and execute plans that makes an appropriate
balance between detailed study and broad coverage of a
region. In this paper we describe a technique that allows a
rover to evaluate the spatial coverage quality of a plan. It is
also important that the rover consider the cost of acquiring
observations and ensure that the plan respect mission and
resource constraints. For example, some observations may be
more time intensive while others are more power or memory
intensive. The rover should also consider ordering observa-
tions to reduce traverse distance and time. Therefore, we have
integrated the spatial coverage metric into a planning system
that reasons about observations costs along with time and
resource constraints. This enables the rover to generate high-
quality, efficient plans that take into account spatial coverage
quality while respecting mission and resource constraints.

II. EXPLORING GEOLOGICAL FEATURES

We are developing onboard planning and scheduling tech-
nology to enable rovers to more effectively assist scientists
in exploring geological features. Figure 1 shows examples of
geological features on Mars illustrating the types of features
rovers may be directed to explore.

A scientific campaign for exploring a geological feature
will employ a variety of rover instruments for collecting data
about the region. For example, each Mars Exploration Rover
is equipped with remote sensing instruments including high-
resolution panoramic stereo cameras with a variety of fil-
ters (Pancam), navigational (Navcam) and hazard avoidance
(Hazcam) stereo cameras and a Mini Thermal Emissions
Spectrometer (Mini-TES). Each rover also has an arm with
a suite of instruments for close contact measurements: a
microscopic imager (MI), two spectrometers and a rock
abrasion tool (RAT) able to remove a few millimeters of
a rock’s surface.
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(a) Channels (MGS MOC Image) (b) Layers (MGS MOC Image) (c) Craters (MRO HiRISE Image)

Fig. 1. Example geological features on Mars.

When humans perform mission planning, there may be a
variety of reasons why a particular observation is selected
in a given plan such as its benefit to different science con-
siderations (geology, atmospheric studies, . . . ). In this paper,
we are focusing on assessing the contribution observations
make to the spatial coverage of a plan.

Of course, the mission planning team must also take
into account the limited set of resources that the rovers
have to perform observations. The rovers are constrained by
limited energy, onboard data storage, downlink opportunities
and bandwidth and time to complete observations. Each
observation places a different set of demands on these
resources. Some are very time consuming, such as long-
term spectrometer integrations, while others are memory
intensive, such as Pancam acquisitions. And some activities
are constrained to occur at certain periods of the day due to
sun angle or temperature.

With respect to spatial coverage, some observations have
a wide field of view, such as Navcams, while others, such
as Mini-TES and Pancam have a narrow field of view. The
instruments also vary in the quality of their coverage with
respect to the distance of an observation target from the
rover. Terrain features may obstruct the areas covered by an
observation. Finally, for a given geological feature, scientists
may be more interested in certain sub-regions of that feature
than in others. Thus, observations should also be evaluated
based on the relative importance of the area for which they
provide coverage.

III. CASPER CONTINUOUS PLANNING AND
OPTIMIZATION FRAMEWORK

Our objective is to enable onboard planning software to
reason about the scientific quality of a plan so that it can
make more informed decisions about which observations
to perform. This will enable the ground team to uplink a
larger set of observations and let the rover dynamically select
among them based on the scientific and engineering merit of
the resulting plan and the rover’s assessment of available
resources. During execution, the rover will modify the plan
based on the current estimate of its resources.

Our approach is implemented within the CASPER sys-
tem [1], [2]. CASPER employs a continuous planning tech-
nique where the planner continually evaluates the current

plan and modifies it when necessary based on new state and
resource information. Rather than consider planning a batch
process, where planning is performed once for a certain time
period and set of goals, the planner has a current goal set, a
current rover state, and state projections into the future for
that plan. At any time an incremental update to the goals or
current state may update the current plan. This update may
be an unexpected event (such as a new science target) or a
current reading for a particular resource level (such as battery
charge). The planner is then responsible for maintaining a
plan consistent with the most current information.

A plan consists of a set of grounded (i.e., time-tagged)
activities that represent different rover actions and behaviors.
Rover state in CASPER is modeled by a set of plan timelines,
which contain information on states, such as rover position,
and resources, such as energy. Timelines are calculated
by reasoning about activity effects and represent the past,
current and expected state of the rover over time. As time
progresses, the actual state of the rover drifts from the state
expected by the timelines, reflecting changes in the world. If
an update results in a problem, such as an activity consuming
more memory than expected and thereby over-subscribing
RAM, CASPER re-plans, using iterative repair [3], to address
conflicts.

CASPER includes an optimization framework for rea-
soning about soft constraints such as reducing the distance
traversed by the rover and increasing the value of science
data collected. User-defined preferences are used to compute
plan quality based on how well the plan satisfies these
constraints. Optimization proceeds similar to iterative repair.
For each preference, an optimization heuristic generates
modifications that could potentially improve the plan score.

Figure 2 provides a high level description of the control
algorithm used for the rover application of CASPER. The
algorithm takes as input a set of goals with associated
science priorities and a set of time and resource constraints.
CASPER’s optimization framework supports a wide-range of
user-defined preferences. For the purpose of this paper, we
focus only on a spatial coverage preference which will be
explained in the next section.. The main loop of the algorithm
interleaves iterative repair and iterative optimization to search
for a conflict-free plan of high quality. The loop begins by
processing any updates on state and resource timelines or on
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activity status. It then enters a loop in which it attempts
to improve the plan by repairing conflicts or performing
optimization steps.

Input
A set of science observations (oversubscribed)
Time & resource constraints

Repeat:
Process updates from Executive
Optimize for n iterations

If no conflicts, satisfy observation
with largest spatial coverage contri-
bution

Else, resolve conflicts
if delete, delete observation with
smallest spatial coverage contribu-
tion

Commit and/or Rescind activities
If idle, attempt to move up future activities

Fig. 2. CASPER control algorithm for rover domain.

If there are no conflicts, CASPER attempts to improve
the plan by satisfying an observation, in this case, the
observation with the largest spatial coverage contribution.
If there are conflicts, it will perform an iteration of repair,
selecting one of the available repair methods (e.g. move an
activity, add an activity, . . . ). If deletion of an observation is
selected, it will select the observation providing the smallest
spatial coverage contribution.

Note that satisfying an observation will likely introduce
conflicts as this is where CASPER will evaluate the resource
and temporal requirements of an observation. CASPER will
use subsequent iterations to try to resolve these conflicts.
For example, if the rover is not currently at the appropriate
location to take an observation, this will introduce a state
conflict which CASPER will attempt to resolve. One option
for fixing this conflict is to add an activity that can move the
rover from one location to another, i.e. a traverse activity.
This is also where CASPER selects an ordering of obser-
vations in an attempt to minimize traverse distance. We use
a simple traveling salesman heuristic to pick start times for
activities to reduce traverse distance.

Figure 3 illustrates the “lifetime” of observations in the
system. New observations are placed in a requested bin.
When an observation is selected to be satisfied, it moves
from requested to pending in which it awaits execution. In
the meantime, it may be deleted to resolve conflicts in the
plan, in which case it moves back to requested. As it nears
time for a pending observation to be executed, it is committed
and sent to an executive process for execution. If a problem
occurs in the plan before the actual execution time of the
activity, the planner has the ability to request a rescind of
the observation from the executive. If the executive is able
to honor the rescind request, it is as if the observation had
been deleted from the plan and it returns to the requested
bin.

The next section provides details on how the spatial
coverage quality of a plan is computed and how observations
are selected to improve this score.

Fig. 3. The lifetime of an observation.

IV. SPATIAL COVERAGE PREFERENCE

Figure 4 provides an example region of terrain that we
want a rover to explore and along with an example set of
observations that are under consideration for the plan.

Fig. 4. Digital elevation map of an example terrain to be explored along
with a set of observations to perform.

With limited available resources, it is unlikely that the
rover will be able to perform all of these observations.
As discussed previously, there are many considerations for
determining which subset of observations should be included
in a plan. The objective of this work is to develop a
preference to encourage spatial coverage to be one of the
considerations during plan generation and modification.

In this section we describe our approach to representing
and reasoning about the spatial coverage quality of a plan.
We begin by describing how we represent a priori informa-
tion about the terrain to be explored along with scientists’
priorities indicating the relative importance of various sub-
regions. We then describe how we model the coverage quality
afforded by a given observation. These observation models
are used to track the spatial coverage quality of the plan,
taking into account those observations that have already been
executed and those that are scheduled to execute in the
future. When resources and plan space is available, all of
this information is then used to select which observations to
add to the plan in an attempt to optimize the spatial coverage
of the plan. Conversely, when resources are over-subscribed
and observations must be shed, this information is used to
select an observation that will make the smallest impact on
the spatial coverage of the plan if it were removed.
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A. Terrain and Terrain Priority Representation

Knowledge of terrain will enable the system to make better
predictions about the coverage of observations as it will know
about occlusions from terrain features such as rocks or hills.
Scientists typically have a variety of a priori information that
is used to identify candidate observations that can contribute
to the initial terrain map. Images from previous observations,
such as Navcam and Pancam observations, are the primary
source of information for selecting new targets. In addition,
images from orbiting spacecraft as well as images taken
during the spacecraft’s descent, provide a coarse view of the
geological features.

We represent a priori knowledge of the terrain to be ex-
plored as a digital elevation map where each pixel represents
the height of the terrain at that point. Figure 4 shows an
example terrain map. The resolution of the map has a direct
impact on the space and time complexity of the algorithm. It
is not critical that we compute a highly accurate score for the
amount of terrain covered by a given observation. Rather, it
is important that the relative scores of different observations
be correctly assessed. Thus, we convert the input terrain map
into a coarser resolution such as the one in Figure 5. The
resolution of the terrain map is a parameter that can be tuned
to make a trade-off between accuracy of coverage quality
predictions and computational complexity of the system. We
have considered using an octree representation of the terrain.
This would improve the efficiency of computing observation
visibility. However, as we will see, to compute the spatial
coverage contribution of a given observation, we would still
need to query individual cells of the terrain representation.
Because in our algorithm, the latter computation is performed
far more frequently than the visibility check, we decided to
go with the simpler matrix representation of the terrain.

Fig. 5. Lower resolution version of terrain in Figure 4.

It is also important to note that the approach does not
require that a priori knowledge be complete or accurate.
Missing or incorrect data in the terrain map will result in
incorrect estimates of the spatial coverage that an observation
will afford which, in turn, could result in lower quality
plans. However, as observations are performed the terrain
map will be updated and the coverage quality of upcoming
observations will be re-assessed.

The system also takes as input a matrix of weights that
define the relative scientific importance of sub-regions of the
terrain map. The matrix is the same size and dimensions as
the input terrain matrix with each cell containing a value
between 0 (least important) and 1 (most important). Figure 6
shows an example terrain weight matrix.

Fig. 6. Example of scientist priorities for terrain coverage.

B. Modeling Observations

In order to evaluate the coverage quality of a plan, it is
necessary to compute the coverage afforded by a given obser-
vation. Figure 7 illustrates the key steps in this computation.

(a) compute observation visibility

(b) compute observation coverage quality

Fig. 7. Modeling observation coverage quality.

The first step is to determine which cells of the terrain
are visible from the location of the observation. For each
cell within range of the observation (as determined by the
range value for the instrument) we perform an intersection
test between the terrain and a line from the location of the
instrument to the cell using the intersection test [4].

Once it has been determined that a cell is visible to an
observation, we compute the coverage quality score which
represents how well that cell is covered by the observation.
A score of 0 indicates that the cell is not covered at all by
this observation (e.g. it is occluded by the rover body). A
score of 1 represents “perfect” coverage, in the sense that
another observation of the cell would not improve the cell’s
coverage.

Computation of the coverage quality score varies based
on the type of instrument used. In general, cells further from
the origin of the observation are not covered as well as those
closer in. Figure 7 (b) illustrates the coverage quality model
for a panoramic image observation. Let d be the distance of
the visible cell from the origin of the observation. The radius
r0 represents the diameter of the rover body. If d ≤ r0 then
the cell is occluded by the rover body and not covered by
this observation. Cells that lie between r0 and r1 are within
the primary range of this instrument. Coverage is high for
cells close to r0 but drops off moving out toward r1.

The range between r1 and r2 is used to encourage
“spreading out” of observations. The idea is that, all else
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being equal, one might prefer to have observations spread
out across the terrain rather than clustered in a small region.
The extend to which spreading out is encouraged can be
tuned by increasing or decreasing r2.

Finally, the coverage of the cell is multiplied by the weight
in the scientific priority matrix resulting in the cell’s spatial
coverage quality provided by this observation.

Note that the above computation is performed once per ob-
servation per run. An observation overlay matrix is produced
which represents this observation’s individual contribution
independent of other observations. Later, this overlay matrix
will be queried to compute the observation’s contribution in
combination with other observations. The cost of computing
the observation overlay depends on the size of the area
covered by the observation and the resolution of the terrain
matrix as this determines the number of cells that must be
checked for coverage. If an observation has a diameter of n
cells, then there are n2 cells to check and, in the worst case,
the check to see if a cell is visible from the observation’s
location is O(n). Thus the cost for computing the overlay
matrix is O(n3). If there are o observations, then the cost of
initialization is O(on3).

C. Tracking Coverage Quality

Now that we have a way of computing the spatial coverage
for a given observation, the next step is to keep track of the
spatial coverage provided by a set of observations. We do
this by recording the spatial coverage quality afforded by
the observations into a coverage quality matrix. A coverage
quality matrix is the same dimension and resolution as our
terrain matrix with each cell containing a coverage quality
value. If multiple observations cover the same cell in the
coverage quality matrix we record the max coverage quality
score afforded by these observations. Figure 8 shows an
example coverage quality matrix reflecting the coverage
quality for a set of observations.

Fig. 8. Example coverage quality for a set of observations.

We maintain two separate coverage qualities matrices. An
Executed Coverage Quality Matrix tracks the coverage qual-
ity afforded by the observations that have already executed.
The Pending Coverage Quality Matrix tracks the coverage
quality from the executed observations and the predicted
coverage quality that will be obtained after the pending
observations in the plan have been executed. Each coverage
quality matrix has a score which is equal to the sum of the
coverage quality of each of its cells.

Fig. 9. Maintaining two coverage quality matrices.

D. Ranking Observations

We rank observations with respect to how well they
are expected to improve the coverage quality of the plan.
We maintain two rankings, one for the requested observa-
tions, those that are not yet in the plan, and the pending
observations, those that are in the plan but have not yet
executed. When selecting a requested observation to add
we select the highest ranked observation from the requested
observations ranking. If we must shed a pending observation
to resolve a conflict, we select the lowest observation from
the pending observations rankings. In actuality, rather than
always selecting the highest observation to add (or lowest
when deleting) we perform a probabilistic selection from the
ranked list of observations with a probability of selecting a
particular observation proportional to the coverage quality it
is expected to contribute to the plan. This helps the system to
avoid getting stuck trying to satisfy an observation for which
there are insufficient resources to perform.

Because the coverage afforded by observations may over-
lap, the coverage quality an observation will contribute to a
plan depends in part on the other observation already in the
plan. Thus, when we rank the requested observations we do
so relative to the pending coverage quality matrix. Similarly,
the coverage quality contribution of a pending observation
depends on the observations that have already been executed.
Therefore, the pending observations are ranked relative to
the executed coverage quality matrix. Figure 10 shows the
algorithm used to rank a set of observation relative to a
coverage quality matrix. A contribution score is computed
for each observation which is equal to how much the score of
the coverage quality matrix would increase if this observation
were added.

Note that the algorithm in Figure 10 ranks only the single
next observation to add (or remove) and does not indicate
which order the remaining observations should be added (or
removed). Instead, we use an iterative approach since, given
the iterative nature of CASPER’s repair and optimization
loop, we will add or remove activities one at a time.

The cost of computing a given observations contribution
score is O(n2) where n is the diameter of the observation’s
coverage in number of cells. If there are o observations, then
the cost of ranking the observations is O(on2). However,
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Input
Unranked Observations
Initial Coverage Quality Matrix

For each observation in Unranked Observations
Observation’s contribution score = how
much the score of the coverage quality
matrix would improve if this observation
were included

Sort observations based on contribution score
Fig. 10. Ranking a set of observations relative to a coverage quality matrix.

since an observation’s contribution only changes if there are
observations with which it overlaps, this algorithm can be
sped up by only re-computing an observation’s contribution
if another overlapping observation is selected. A simple
bounding box intersection check can be used to quickly
check for overlapping observations. But still, the worst case
cost of ranking observations will be O(on2).

This iterative approach represents a greedy algorithm for
selecting observations to add and remove and does not
guarantee an optimal solution except in the case where
the observations do not overlap. We have chosen not to
attempt an optimal solution for three main reasons. First,
observations are selected for a variety of reasons, not just
spatial coverage. Thus, we cannot count on the spatial
coverage ranking being honored when observations are added
and removed. Second, because we will have to re-rank
observations during execution (when observations are added
and removed or when the terrain map is updated) we want
a fast computation. Finally, we expect that observations will
not overlap significantly and thus the greedy approach will
not be far from optimal.

E. Updating Spatial Coverage During Execution

During the course of executing the plan, the system will
need to update its rankings. While performing observations,
we will be collecting new information about the terrain being
explored. We can update the terrain map when this happens.
Doing so will improve the accuracy of the coverage quality
predictions. However, when the terrain is updated we will
need to re-compute the coverage quality afforded by each of
the observations and re-compute our rankings.

We must also re-compute rankings when observations are
added to or removed from the plan since the contribution
score of an observation depends on the order in which it is
added to the plan.

V. EMPIRICAL PERFORMANCE RESULTS

We performed a set of experiments to evaluate the per-
formance of the spatial coverage preference algorithm. Fig-
ure 11 summarizes these results. The experiments were
performed in simulation on a 2.6 GHz Pentium. This is of
course a much faster processor than would be used for a rover
mission in the foreseeable future. However, at this stage of
development we are more concerned with the order of growth
in practice than in the exact computation time.
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Fig. 11. Empirical performance results.

Figure 11 (a) evaluates the time it takes to initialize
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an observation (compute the overlay matrix in Section IV-
B) and the time it takes to compute the spatial coverage
contribution of an observation relative to a coverage matrix.
We recorded the times for an observation represented with
different resolutions, from high resolution (0.1m per pixel)
to coarse resolution (1m per pixel). As can be seen, the time
required decreases rapidly when the resolution becomes more
coarse.

Figure 11 (b) shows the time it takes to rank a set of
observations at different resolutions. Again, the time required
decreases rapidly when the resolution decreases. Finally,
Figure 11 (c) shows the impact resolution has on the quality
of the ranking. Each data point is an average over 10
randomly generated problem sets of 10 observations each.
We ranked the observations at several resolution levels with
the highest being 0.1m per pixel and lowest 8m per pixel. For
each run, we correlated the ranking of an observation set with
the ranking that was produced for that same observation set at
the highest resolution. The results show that we achieve high
correlation even when the resolution gets very coarse. Thus,
the algorithm can perform efficiently at coarse resolutions
while still providing high quality rankings.

We have also performed runs of the integrated planning
system using a high-fidelity rover simulator [5]. In future
work we will evaluate the overall performance of the inte-
grated system.

VI. RELATED WORK

The spatial coverage problem we are solving is similar to
the Art Gallery Problem [6] from computational geometry.
However efficient solutions to the the 2D Art Gallery Prob-
lem do not scale well to 3D. The ROPE (Rank and Overlap
Elimination) system selects locations for video cameras for
visual surveillance of large 3D open spaces [7]. ROPE uses
a greedy algorithm similar to the one used in this paper.
However, ROPE does not model the quality of coverage (e.g.
observations from a distance may not be as good as close-up
observations) nor does it consider the cost of observations.

Dhillon and Chakrabarty present an approach for selecting
locations for placing sensors in terrain to provide efficient
coverage and surveillance [8]. The objective is to place
sensors to provide a given probability that targets will be
detected at a given set of grid points. The algorithm takes into
account the probability that a target will be detected. This is
analogous to our objective of increasing coverage quality of
a geographical area. Both approaches allow users to specify
priorities on the areas that are covered. Our approach differs
in that it does not assume uniform cost for observations but
instead uses the planner to assess the cost of performing
an observation. Also, when applied to the spatial coverage
problem that we are addressing this approach would be too
space and time intensive.

The swath coverage problem for orbital satellites is similar
to the spatial coverage problem addressed in this paper [9],
[10]. While these systems reason about observations costs,
planning for surface operations involves distinct types of

constraints, choice points and observations modeling. How-
ever, our approach does use a similar greedy algorithm for
selection observations as used in ASTER [10].

VII. CONCLUSIONS

We have presented a set of algorithms that enable a rover
to compute the spatial coverage quality of a plan and to
rank candidate observations by how well they are expected
to improve coverage quality. Using this technique, a rover
is better able to assist in the exploration of geological
features by generating high quality operations sequences that
take into account spatial coverage along with other science
considerations. We have currently implemented and tested
these algorithms in stand-alone mode as well as integrated
into an execution system with a high-fidelity rover simulator.
In future work, we will focus on evaluations of the integrated
system and on techniques for combining multiple preferences
functions so that the system can more effectively trade-
off science and engineering objectives when generating and
executing plans.
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