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Abstract— The position control of agents having double-
integrator dynamic response, with explicit dependence on an
estimator that simultaneously reconstructs agent states and
refines a feature map, is considered. We show that under broad
conditions the phase and gain margins of an equivalent control
system based on absolute navigation sensors can be significantly
eroded when the dynamic map is used. The closed-loop band-
width achieved depends strongly on the bandwidth of the filter,
which is in turn dictated by the ratio of process to sensor noise,
on the control gains, and on the arrangement of features bing
tracked. The findings are relevant to the integration of SLAM
algorithms in high-performance positioning of mobile agents.
A specific example is the case undersea robots working near
large structures, where traditional navigation systems may not
be practical.

I. INTRODUCTION

The objective of a simultaneous localization and mapping

(CML or SLAM) algorithm is to achieve at the same time

localization of an agent within an environment, and continual

refinement of a map of environmental features. The feature

map that is constructed augments or may completely replace

a conventional set of positioning sensors. For instance, a

mobile robot may have odometry sensors (subject to drift),

but no heading or absolute position data. In these cases,

sensors that measure proximity and orientation relative to

walls, openings, or other structures are used as primary inputs

for a SLAM algorithm.

Early work on this topic includes Smith et al. [1], Moutar-

lier and Chatila [2], and Leonard & Durrant-Whyte [3],

where an Extended Kalman Filter was applied to track a large

state vector containing conventional vehicle states expressed

in absolute coordinates and map feature locations. More

recent work has focussed on dealing with complexity in large

maps. The EKF has been used extensively, and was assessed

critically by Dissanayake et al. [4], who showed that the maps

converge and in fact that an agent starting with no a priori

information can localize itself. The probabilistic scheme by

Thrun et al. [5] is a high-dimension maximum-likelihood

estimator, with enhanced robustness properties that are not

shared by the EKF.

The SLAM algorithm was studied at a more fundamental

level by Gibbens et al. [6], considering a single agent whose

velocity is directly driven by a control and a random process

(ẋ = u + q). The state vector is augmented with feature

positions. The objective of this canonical problem is to
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estimate the relative positions of the features from a vehicle

velocity measurement and a number of (identically noisy)

range measurements; the paper illustrates that the Fisher

information divided by the feature process noise is a critical

parameter governing the rate of convergence in the feature

ranges:
√

qn/r is the characteristic time constant, where q
is the process noise, r the sensor noise, and n the number of

range sensors. The basic structure of the observation operator

for the SLAM problem is also brought out in the example

from this paper; measurements are regular combinations of

elements in the aggregate state vector, resulting naturally

from range and angular measurements. Beyond the single

degree-of-freedom case, the observation operator depends

strongly on the geometry of the map. Mourikis and Roume-

liotis [7] show for a robot moving at nonzero speed within a

plane, the maximum positioning error covariance scales with
√

qr/n, a result also seen in the case treated by Gibbens et

al.

Complex or simple, the great majority of work with SLAM

has been performed in the context of a mobile agent that is

either not controlling its own motions using the map, or is

controlling them at a bandwidth that is safely below the that

of the mapping filter. Considering the case of a truly dynamic

vehicle (e.g., an underwater vehicle or unmanned aircraft

that can drift), and low-level flight control using localization

in a map, clearly the mapping and the feedback processes

have to be integrated to achieve the best performance and

robustness. Indeed such a consideration is unavoidable when

the agent has to rely on the map for its own dynamic stability,

and the features are the only navigational aid. One real-

world scenario is autonomous underwater vehicle inspection

of a ship hull, where a compass and long-baseline acoustic

navigation may not be available. In such cases it is also

reasonable to ask why is high-fidelity-control required while

building a map? One answer is that an agent whose main

task is to develop a good map in minimum time, and with

limited observations, benefits from controlled motions, such

as driving in a straight line while rejecting disturbances (see,

e.g., [8], [9]). Once again, the integration of the map-building

and the control processes is critical.

Here we study this fundamental interaction, fixing the

physical plant to be a double integrator, or a coupled set

of double integrators operating in a plane. A specific control

system is explored that seeks to position the agent relative

to the estimated features, making direct use of basic SLAM

algorithm results. Our scope is to understand the limits of

robustness and performance in this closed-loop system, under

the assumptions of linearization, and steady-state estimator
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and control gains. Although the scenarios we describe may

not be useful in today’s common applications, we believe that

the insight obtained from a straightforward, classical analysis

will inform the broader problem.

II. SINGLE DEGREE-OF-FREEDOM DOUBLE

INTEGRATOR

A. Statement of Problem

Expanding the notation from Gibbens et al. [6], the for-

mulation is as follows:
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where the agent position and velocity are x and ẋ, respec-

tively, the n feature locations are pi, the control input is

X , and the process noise w is Gaussian white noise, with

diagonal covariance matrix Q. The observation set includes

an agent velocity, absolute position, and the set of n ranges:
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The sensor noise is Gaussian white noise with diagonal

covariance matrix R. As is well-known in filter design, the

relationship between Q and R determines the bandwidth of

the filter. Since our main objective in this paper is to under-

stand the dynamic interaction between a SLAM filter and a

controller, we have allowed for the feature process noise to

be nonzero. This contradicts the usual SLAM procedure of

allowing no process noise in the feature locations, consistent

with the construction of a static map. On the other hand, it

is well-known in the case of parameter estimation using the

EKF that process noise is required if the correct parameter

values are to be recovered [10]. In the present paper, our

emphasis is on the control loop stability, not bias in the filter.

In our results below, we do consider zero process noise as a

limiting case.

The observation equations as written contain absolute

velocity and position measurements, which can be effec-

tively removed from the filter design by making their noise

levels very large. Many robots have velocity measurements

available, for example from a Doppler velocimetry logger,

whereas the absolute position is maintained here only to keep

the system formally observable.

The regulating control law is written as: X =
[−kd − kp − kp/n · · · − kp/n] x̂ = −Kc x̂. The double

integrator plant with this controller gives the simple charac-

teristic equation s2+kds+kp = 0 for the closed-loop system

without the estimator dynamics. If the gains are chosen

for damping ratio
√

2/2, this achieves sixty degrees phase

margin and infinite upward gain margin, the same margins

afforded by a steady-state Kalman filter loop. The steady-

state estimator evolves according to the usual linear filter

equation ˆ̇x = Ax̂ + Kf

(

y − Cx̂
)

.

As we describe below, the most interesting features of the

SLAM control problem are evident when neither the absolute

position nor the velocity is measured, although certainly each

variation deserves to be considered in turn. This limiting

condition is a range-only problem in one dimension, or

a range-and-bearing-only problem in two dimensions (next

section).

The system model above is also representative of a cruis-

ing vehicle, wherein the ranges are employed to control

heading:

{

φ̇
ẋ

}

=

[

0 0
U 0

]{

φ
x

}

+

[

cU
0

]

δ +

[

1 0
0 1

]{

w1

w2

}

. (3)

Here the heading is φ and the cross-track position is x; the

steady speed is U , and c is a constant. The cruising problem

is nearly identical to the one-dimensional hovering problem

above, with the exception that physical process noise can

be accepted in both of the states. Namely, the vehicle

is perturbed in the heading and the cross-track directions

independently. These are imposed as kinematic not inertial

effects, however.

B. Restrictions

The controller and filter gains are taken here to be time-

invariant. This point emphasizes that our analysis is fo-

cussing on stability and bandwidth properties at a nominal

condition. Clearly when the agent moves a large distance

relative to the features, then the steady-state assumption

should be reevaluated, and the time-varying Riccati equation

can be used.

We assume that the environment is always observable,

that is, that no particular motion on the part of the agent

is required to resolve the feature locations. The problem of

choosing trajectories so as to maximize the quality of the

feature estimates has been addressed by Feder et al. [11],

among others.

We do not consider here the changes in system dynamic

behavior that arise from the arrival or loss of feature ranges.

Similarly, there is no account in our analysis of feature

association errors; in realistic problems, such errors will have

a major impact on performance of the system.

638



0 10 20
−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Actual States

time
0 10 20

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

time

Estimated States

xdot
x
p

Fig. 1. Convergence of the vehicle position to the centroid of the features
occurs at the bandwidth of the control; the slower dynamic response of
the filter is not implicated because its mean is unchanged from the initial
conditions, and evolves autonomously. This figure shows random initial
conditions for the vehicle state and the feature estimates, with the three
true feature locations [1,2,3]. Parameters are: n = 3, r11 = r22 = 1e10,
ri = 1e−4, q11 = 1.0, q22 = 0, qi = 0.01, and ωc = 1. The continuous-
time system was discretized in a manner consistent with the Ito calculus.

C. Estimator Properties

The C-matrix has a specific difference structure, and

as noted, measurements of ẋ and x, vehicle velocity and

position, are included here mainly so as to make the system

fully observable for computations. When considering the

SLAM problem, rx and rẋ can be set very large so that

these measurements are not used by the filter. There is

no conceptual difference between this latter problem and

reformulating the system with position states x − pi.

The feature estimated locations are allowed to drift, with

their mobility scaled by the process noise in each channel

and governed also by the range measurement noise, as is

the norm in filter design. Relative to the base case of only

a velocity and an absolute position measurement (that is, no

features), with position sensor noise covariance equal to that

of the ranges, the SLAM control problem is differentiated

primarily by the choice of process noise level on the feature

locations, qi. Clearly, setting these to large values will enable

the estimates to converge more quickly. When they are small,

then the measurements have the same low-frequency stability

as does an absolute measurement, and the characteristics

of the base case are recovered exactly, with the necessary

addition of a pole at the origin.

The estimator poles for this case are characterized as

follows. With q22 = 0, for any number of features greater

than zero, there exists one pole at the origin, n−1 real poles

at −
√

qi/ri, and two poles at the roots of

s2 + s

√

2
√

q11rin + qi

ri
+

√

q11n

ri
= 0. (4)

This implies that the basic estimator bandwidth is
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Fig. 2. For positioning in one dimension, gain and phase margins along
with achievable bandwidth of the closed-loop system are given, as a function
of control bandwidth ωc and feature process noise qi.

ωe = (q11n/ri)
1/4, and the damping ratio is

ζe =
1

2

√

2 +
qi√

riq11n
. (5)

These two poles become faster with increased n. The damp-

ing ratio is nominally
√

2/2, but increases with the mobility

of the features qi.

An interesting property of the system arises when the

vehicle has no absolute position measurement: the estimator

pole at the origin means that the drift is arbitrary, but the

mean of the feature estimates changes very little. Because

the controller in fact tracks the mean, we find that the vehicle

can position itself well before the feature estimates have

stabilized. This is illustrated in Figure 1. The controller as

written will drive the system to the “middle” of the feature

estimates. A second useful fact emerges on writing the total

system dynamic equation:

d

dt

{

x
x̂

}

=

[

A −BKc

KfC A − BKc − KfC

]{

x
x̂

}

(6)

with the assumption of no modeling errors. Because of the

structure in C, the filter gain matrix Kf also has a specific

form; the columns [1,2,2+n+1,2+n+2] of [KfC A−BKc−
KfC] are zero below the first two rows, so that the feature

estimates do not depend at all on the actual vehicle states or

their estimates. Hence the feature estimate dynamic response

is autonomous, and this is a defining feature of the single

degree-of-freedom SLAM-control problem.
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D. Characteristics of the Closed-Loop System

The concatenation of an estimator and controller is gen-

erally referred to as the linear quadratic gaussian (LQG)

regulator when the controller gains derive from a steady-

state LQR formulation, and the filter employs a steady-state

Kalman filter gain. While the robustness and performance

properties of the LQR and the Kalman filter are well-known,

the LQG inherits neither, and cases of extreme sensitivity

exist [12], [13]. On the other hand, classical measures of

robustness including the Nyquist and Bode plots remain

useful in designing gain and phase margins to achieve

maximum closed-loop bandwidth.

Free parameters for this problem include the process noise

on the agent itself (intensity q11 and q22), process noise on

each of the features (qi), assumed to be uniform across all

features, the absolute sensor noise (r11 and r22), the noise

on each range measurement (ri), the number of sensors n,

and the design bandwidth of the basic control loop ωc.

Presumably qẋ, rẋ and rx, ri can be chosen based on

knowledge of the environment and the sensors. As noted by

Gibbens et al. [6], any number of features for this problem is

equivalent to the case of one feature with equivalent Fisher

information. We have performed analysis of this system

varying ωc and qi, with a fixed number of features.

In the general case, the performance and robustness of

any such system critically depend on the interplay of the

controller and the filter designs. Gain and phase margins,

as well as crossover frequency for the present system are

obtained by breaking the loop at the controller output, that

is, at the signal u. Hence gain and phase margins are relative

to the plant input; this is natural for a double-integrator

plant, where the major uncertainties may be in the actuators

themselves. Figure 2 illustrates a case with no velocity or

absolute position information available. When the features’

estimates are constrained by small qi, slowing down the filter

poles, interference with the controller leads to a significant

degradation of gain and phase margins as expected: the base

controller has infinite upward gain margin and sixty-degree

phase margin. In these cases also, the crossover frequency

varies with respect to the control bandwidth ωc. The findings

suggest that the designer should not set the feature drift qi

to zero, as in Dissanayake et al. [4], when robustness in the

closed-loop system is a concern. If qi is large, then we see

the margins are improved toward the control loop robustness

levels, and the overall bandwidth can be increased arbitrarily.

Improved controller robustness is obtained at the cost of the

feature position estimates moving around more freely, as in

Figure 1.

III. THREE DOUBLE INTEGRATORS

A. Statement of Problem

A related holonomic two-dimensional problem, where the

plant contains two translational and one rotational degrees
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Fig. 3. For positioning in the horizontal plane, gain and phase margin
bounds along with upper and lower bandwidths of the closed-loop system
are given, as functions of control bandwidth ωc and feature process noise
qi. u.b. and l.b. indicate upper and lower bounds, respectively.
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The forward velocity, sway velocity, and yaw rate are u, v,

and φ, respectively, whereas x, y, and φ are their integrals.

There are three control channels, X , Y , and N . The process

noise is applied to the acceleration channels, with covariance

diag[q11 q22 q33]. As in the single integrator case, the state

is augmented with the Cartesian feature locations.

The linearized range measurements to n features are given

by:

ρi,o + ρi =
√

x̃2 + ỹ2 + νi,ρ −→ (8)

ρi =
xi,o − xo

ρi,o
(xi − x) +

yi,o − yo

ρi,o
(yi − y) + νi,ρ,
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where ρi,o is the nominal range to the i’th feature, and ρi its

perturbation. We use the definitions x̃ = xi,o + xi − xo − x
and ỹ = yi,o + yi − yo − y, where xo and yo are the nominal

vehicle positions, and x and y are their perturbations; xi,o

and yi,o are the n nominal feature locations, and xi and yi

are their perturbations. .

Additionally, an angular measurement to the i’th feature

is available as

ψi,o + ψi = arctan
(

yi,o+yi−yo−y
xi,o+xi−xo−x

)

− φo − φ + νi,ψ.

(9)

Here φo is the nominal vehicle heading and φ is its pertur-

bation. We assume there are no quadrant changes, so that

the arctan(y/x) function replaces the usual arctan2(y, x).
This has the linearization

ψi = − 1

1 + g2

[

g

xi,o − xo

]

(xi − x) + (10)

1

1 + g2

[

1

xi,o − xo

]

(yi − y) − φ, where

g =
yi,o − yo

xi,o − xo
.

The objective of the controller is to maintain zero position

relative to the centroid of the features, and zero average

bearing to the features. In the examples we show below,

there is no compass or yaw rate measurement used.

B. Restrictions

As in the single-DOF case, this analysis assumes the

estimator and control gains are constant. Motions from the

nominal position are considered to be small, and all features

are observed at all times.

C. Estimator Properties

The general properties of the filter loop, with no absolute

sensors available, are as follows. Clearly there are three

zero eigenvalues, corresponding with the drift of [x, y, φ].
When only one feature is available, a fourth eigenvalue

at zero occurs because the vehicle can pinwheel around

the feature, while having the same range and bearing data.

With two features, we see an increase in the bandwidth

of the filter, consistent with the results above for a single

degree of freedom, and only three zero poles; there are three

complex pairs and a single (stable) real pole. For more than

two features, real or complex pole pairs are added, while

the overall system response becomes increasingly fast. This

system does not share the autonomous feature estimate of

the one-dimensional case, due to the richer structure of C;

inspection of KfC will show that the evolution of [x, y, φ]
now bears directly on the feature estimates.

D. Characteristics of the Closed-Loop System

Gain and phase margin estimates of the multivariable

system are computed according to standard techniques [14]
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Fig. 4. Single-DOF (top) and multivariable (bottom) Nyquist plots show
a basic difference that limits the gain reduction margin in the multivariable
case. Shown is the case of ωc = 1, qi = 0.01, with all other parameters
the same as in Figures 2 and 3. L(s) is the loop transfer matrix, with the
loop broken at the plant input.

as:

gm ≥ max

[

1 +
1

||T ||∞
, 1 +

1

1 − 1/||S||∞

]

(11)

(amplification)

gm ≤ min

[

1 − 1

||T ||∞
,

1

1 + 1/||S||∞

]

(reduction)

pm ≥ max

[

2 arcsin

(

1

2||T ||∞

)

,

2 arcsin

(

1

2||S||∞

)]

(phase)

where S(jω) = (I + C(jω)P (jω))−1 and T (jω) = I −
S(jω); S is the sensitivity function and T is the complemen-

tary sensitivity. As in our one-dimensional case, the loop is

broken at the controller output so that the gain and phase

margins are referenced here. We note these are bounds only,

that may be conservative. Also, the above formulas lead to

a small amount of jitter and non-uniformity in the figures.

Results are shown in Figure 3, with a “good” - or dis-

tributed - geometry of three features. The parameters chosen

for the plot are very similar to those for Figure 2, and hence

the effects of the additional degrees of freedom are apparent.

The upward gain margin of the planar problem does not go

to high levels as it does in the single-DOF case, when qi is

large. Instead, values of about three to four are achieved over

most of the range of qi. Instability due to gain reduction does

not occur for the single-DOF case, because the Nyquist plot

has no encirclements of the critical point; in the multivariable

condition, however, Figure 4 shows that the determinant of

the open-loop transfer matrix L(jω) can go to zero with a

gain reduction of about one-half. The phase margin bounds

in the planar positioning problem are slightly lower than

the margin of the one-DOF case, but overall they are still

acceptable, and in fact may be preferred from the point of

view of overshoot and settling time. For the multivariable

case, the margins given are guaranteed bounds, and may

be conservative. Figure 4 suggests that for this particular

example at least, the bounds are reasonably accurate.

The fastest and slowest crossover frequencies (from sin-

gular values) are quite close together, and this indicates that

bandwidths among the surge, sway, and rotational degrees

of freedom move together, in accordance with the use of a

641



−0.5 0 0.5 1 1.5 2

−4

−2

0

2

lo
g

1
0
 q

i
log

10
 (l.b. gain amplification)

0.5

0.5

0.6

0.6

0
.6

−0.5 0 0.5 1 1.5 2

−4

−2

0

2

log
10

 (u.b. gain reduction)

−0.3

−0.4−0.4

−0.4

−0.6

−0.5 0 0.5 1 1.5 2

−4

−2

0

2

lo
g

1
0
 q

i

l.b. phase margin, deg

30

3540

40
35 45

x
o
,y

o
:  0.00,0.00

Target 1:  x
io

, y
io

:  1.00,0.01

Target 2:  x
io

, y
io

:  1.00,0.00

Target 3:  x
io

, y
io

:  1.00,−0.01

log
10

[ q
11

 q
22

 q
33

 ]:  0 0 0

log
10

[ q
44

 q
55

 q
66

 ]:  0 0 0

q
i
 = q

ix
 = q

iy
log

10
[ r

11
 r

22
 r

33
 ]:  10 10 10

log
10

[ r
44

 r
55

 r
66

 ]:  10 10 10

log
10

[ r
i,rho

 r
i,psi

 ]:  −4 −4

k
d
 = sqrt(2)*ω

c
,  k

p
 = ω

c

2

−0.5 0 0.5 1 1.5 2

−4

−2

0

2

log
10

 ω
c

lo
g

1
0
 q

i

log
10

 (lower crossover, r/s)

0.8

0.2

−
0
.2−

0
.6

−0.5 0 0.5 1 1.5 2

−4

−2

0

2

log
10

 ω
c

log
10

 (upper crossover, r/s)

1.6

1
.2

0
.8

0
.2

Fig. 5. Clustered feature locations affect the stability margins of the closed-
loop system; except for the feature locations, this case is identical to that
shown in Figure 3.

single derivative and proportional gain choice for all three.

Figure 3 shows results with three features spaced one-

hundred-eighty degrees apart relative to the vehicle, that is at

[0 90 180] degrees. In Figure 5 we illustrate the result when

the three features are close together, separated by only a few

degrees. Intuition points to a far less robust system, and this

is borne out by the fact that the gain amplification margin

now does not necessarily increase at lower controller band-

width, as seen when the features are spread out. Similarly,

the reduction margin is somewhat poorer, and phase margin

is degraded by five to ten degrees overall. Most notably,

however, the lower crossover frequency has an entirely new

characteristic: at low qi, the highest bandwidth that can be

achieved is less than 1.5, even with very high controller

gains. However, this lower frequency moves to extremely

low values with qi > 10, the major slowdown beginning at

qi ≃ 1. Needless to say, either of these cases would constitute

a poor operating condition.

IV. SUMMARY

Our goal has been to apply simple robustness analysis to

several nominal cases in SLAM-based dynamic positioning,

so as to understand the basic tradeoffs facing the designer of

SLAM-capable agents. The one-DOF case is characterized

by autonomous feature estimation due to a special structure

in the closed-loop system matrix. At the same time, the con-

trol loop discussed operates relative to the mean of feature

estimated positions, achieving a dynamic response that can

be faster than that of the estimated features. In the multiple-

dimension case, conventional bounds show that the geometry

of the features can significantly influence robustness, with

examples indicating a serious but not catastrophic degrada-

tion as the features cluster. The intensity of process noise

on the feature states is an important factor, and significant

robustness loss can occur if this noise level is set to zero.

Overall, behavior of the combined localization and control

loop is affected by all of the governing parameters and condi-

tions, and designers must account for the various interactions

to create systems that operate with acceptable robustness.
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