
Adaptive Cooperative Manipulation with Intermittent Contact

Todd D. Murphey and Matanya Horowitz

Electrical and Computer Engineering

University of Colorado at Boulder

Boulder, Colorado 80309

murphey@colorado.edu

Abstract— Cooperative manipulation with multiple, indepen-
dent agents can be complicated by changing dynamics as the
agents come in and out of contact with the object they are
manipulating. This effect, combined with uncertainty in the
environment, leads to nontrivial issues in terms of guaranteeing
convergence and task completion. Here we illustrate how these
effects can be mitigated using a decentralized adaptive control
technique based on hybrid control. Results are verified in an
experiment using three agents.

I. INTRODUCTION

Although manipulation using multiple contacts has been

studied a great deal over the past two decades, it is typically

assumed that the contact itself is well-characterized and that

the “contact state” of a system (that is, when it is in or out of

contact and whether that contact is sticking or slipping) can

be pre-determined by the designer of the manipulation task.

In realistic deployment situations, this is rarely the case, and

one must be careful in designing a system that is robust to

unmodeled contact dynamics and unmodeled disturbances.

The past several decades have seen tremendous effort in

the development of autonomous, multi-agent systems. Major

advances in the theory of distributed cooperative control

have emerged that encourage the deployment of large scale

systems that will be scalable, flexible, and robust to unantic-

ipated complexity in their environments. Using a distributed,

as opposed to a centralized, control method eliminates prob-

lems due to computational complexity, scalability, and having

a single point of failure. Nearest neighbor laws for such

distributed systems are reasonably well understood [1], and

maintaining a formation has been achieved in numerous

simulations and in several experiments (see as examples [3],

[9], [13], [6], [4]).

In general, a system consisting of mechanical agents

that come in and out of contact with the manipulated

object consists of both continuous dynamics and symbolic

dynamics. The continuous dynamics represent the rigid body

dynamics and the structural dynamics of the agent. The

symbolic dynamics represent the contact state of the agent

with the object as it evolves over time (i.e., as the agent

goes in and out of contact and as it transitions between

sticking and slipping contact). The sources of uncertainties

described here (i.e., uncertain contact states of the agents) are

described purely in terms of the symbolic dynamics–hence,

the uncertainty is largely decoupled from the continuous state

of the coordinated manipulation system.

Coordinated manipulation using many agents to manipu-

late a single object has just recently become of interest to

the robotics community [9], [5]. The basic ideas in these

macro-scale analyses are to understand how to “cage” some

passive object using a set of robots. The technique used in

[9] relies on the notion of “object closure” to ensure that

an object will be successfully manipulated. This approach

allows for the design of coordinated motions for the purpose

of moving a collection of robots to a desired final location

while maintaining object closure. The key insight in [9] is

that the notion of object closure is intrinsically robust–it

states that an object is in object closure if it cannot escape

the robots surrounding it. This means that occasional loss of

contact does not violate the object closure requirement.

We are interested in treating a meta-level problem. As-

suming we can successfully cage an object, can we reliably

command a sequence of actions or modal behaviors that are

invariant to the particulars of the contact state and other

environmental factors? We encode this as a condition on

the proximity graph, so that as the modes changes the

graph changes as well. When extern disturbances occur, they

only have an effect insofar as they change the proximity

conditions. We present a technique first developed in [8],

[12] that uses a locally-defined energy function that leads

to a globally converging coordinated control algorithm in

the face of arbitrarily changing proximity graph structures.

This is helpful because the dynamics change discretely

when the agents come in and out of contact with the

manipulated object and allows one to specify discrete stages

in the manipulation process (such as swarm, cage, move).

The adaptive control system weighs the changing network

and changing modes of operation with internal models of

the system in order to provide converging responses with

acceptable performance. This is accomplished through an

internal estimate of the stability margin along with the use

of consensus for purposes of performance improvement.

This work is in contrast to other approaches that focus

on nonsmooth analytical approaches to showing stability

and convergence. The advantage of the approach we show

here is that it does not depend on any particular proximity

graph structure, and correspondingly does not depend on

any particular potential function for potential-based methods.

In particular, no common Lyapunov function is required.

Proofs of stability have been produced for such systems

(e.g., [7], [2]), but typically these proofs impose constraints

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 1483

on the dynamics of the system and the proximity graph.

For example, the results in [7] apply only to a specific

potential function on the unit-disk graph, and the results in

[2] apply to another particular potential function on a Voronoi

graph. The difficulty associated with these prior works is that

the stability results leave little room for task specification;

tasks must be framed in terms of what can be achieved

in a stable manner and may therefore be limited to stable

area coverage or “flocking” through a series of obstacles.

Moreover, the task specification will likely change over

time, thus introducing discrete changes into the equations of

motion. The key point is that the control mechanism should

dictate task specification to the minimum extent possible.

To this end, we have developed a more general method

of providing convergence in cooperative tasks, focusing on

ease of implementation and genericity of proximity graphs

to which it is applicable.

This paper is organized as follows. Section II describes

the problem in which we are interested, as well as a high-

level description of the approach we use. Section III provides

the specifics of the techniques we use. Section IV provides a

detailed example including both simulation and experiments.

Section V includes our conclusions and future directions.

II. PROBLEM DESCRIPTION

Let R be the set of agents. Let G be the set of graphs over

the vertices R. Let the sensor graph GS be a graph where

R is the vertex set, and there is an edge (or “link”) between

two vertices r1 and r2 ∈ R iff agents r1 and r2 can both

sense each other. Let the control graph (also referred to as

the neighbor graph) GN be a graph where R is the vertex

set, and there is an edge between two vertices r1 and r2 ∈ R

iff agents r1 and r2 are interacting for control purposes. To

simplify notation, we will understand S to be the edge set

of GS , N to be the edge set of GN , and Si and Ni to the

corresponding set for a given agent i. The graph GN will

be defined by a time-varying switching function σ, which

we will describe in terms of a graph construction algorithm.

Note that N (the set of neighbors used in the control law)

is necessarily a subset of S (the set of sensed neighbors).

In our approach to showing convergence, instead of com-

puting a limit on the switching frequency explicitly, we use a

notion of a global “energy reserve” (first introduced in [12],

[11]) to create a convergence-guaranteeing limiting effect on

the switching rate. (The idea behind this name is that if a

switch will increase the value of the Lyapunov function,

there must be enough energy reserve to compensate for

this increase.) We find this approach intuitive and moreover

straightforward to implement in our distributed scenarios, in

which switching events are detected locally. Although any

global quantity can be problematic, we will demonstrate that

a local estimate of this quantity based upon a zero sum

consensus algorithm is sufficient to establish convergence.

The general problem we wish to address is how one takes

a sequence of proximity graph definitions useful for coordi-

nated manipulation and implement them on an underlying

dynamic, cooperative system. The method presented here

allows one to specify arbitrary proximity graph rules, hence

potentially moving the correctness question into the graph

design domain.

The primary difficulty is that a control u(G, x) (where

G ∈ G is a graph and x is the state) has no information

about low-level convergence characteristics that may have to

be modified to preserve convergence. Hence, we will require

a mapping
χ : G → G

G 7→ GE
that maps a desired proximity

graph G to a stably implementable proximity graph GE . An

example of such a motivating scenario is discussed in the

next section.

We would like to have a system that has known high-

level properties (e.g., successful manipulation of an object)

while maintaining low-level characteristics such as stability

(of the physical system), stability margin, and performance

metrics. The basic approach is to translate the proximity

graph G to an alternative GE by using a mapping χ that

is essentially a dynamically updated guard condition that

protects the stability of the system. Hence, χ may be thought

of as a means of “filtering” the effects of G based on a

stability condition.

If one has a stable cooperative system for each possible

network state GN , then one may use an adaptive control

strategy to guarantee stability in a decentralized manner. In

particular, the idea is to associate with each agent i a value Ei

which is defined as the solution to the following differential

equation, where Ei has an arbitrarily chosen nonnegative

initial value.

Ėi(t) = −kedi(t) if no switch in graph occurs

Ei(t) = lim
t̃→t−

Ei(t̃) − ∆V otherwise

where ke > 0 is the same constant for all agents, 0 < ke < 1
(this will be formalized shortly in Eqs. (5) and (6)). The value

di is a local conservative estimate of the stability margin of

the system, and is critical to maintaining stability. The value

Ei is initialized to a nonnegative value and then evolves

according to Equation 5 as long as the network topology is

not changing. Whenever there is a switch, Ei is re-initialized

to the value given in Equation 6 by subtracting ∆V . We call

Ei the local energy reserve, and it should be thought of as

a local estimate of stability margin relative to the hybrid

system. (Moreover, replacing Ei with an estimate of Ei can

be shown to provide global stability so long as the estimate

is conservative.)

This brings us to the simple change necessary to stabilize

the system. The modified control u(χ(GN), x(t)) is identical

to u(GN , x(t)), except for the added condition that any

switch in the control graph that would cause Êi < 0 is

prohibited. This result provides guaranteed convergence, and

one is guaranteed to eventually be able to implement any

graph G. It is worth noting that the evolution of E is only

used in the calculation of χ–it doesn’t affect which controls u

are admissible for the system. Additionally, this computation

is decentralized: agents only need access to local values Ei,

di, and local estimates of changes in the Lyapunov functions

as the network topology changes.

1484

The key idea is that we are using the evolution of

the energy reserve Ei to systematically block changes in

proximity graph if they will lead to instability (that is, χ

blocks new graphs until stability can be ensured). However,

typically u(χ(G), x) = u(G, x) in systems that do not

have aggressive controller gains [12]. Hence, χ, though a

conservative approach to preserving stability, often does not

come into play.

III. GENERAL TECHNIQUE

Consider a set of agents R and a time-varying switch-

ing signal
σ : R → G

t 7→ GN
that determines the proximity

graph and is constant except for discrete changes at times

t1....tn on the interval [t0, tf]. Assume that the state for

each agent i is x ∈ M , the governing equations are ẋ =
f(x), and that the switching function changes f over time,

σ : (x, t) −→ f . The equations of motion of interest are as

follows:

ẍi = ui (1)

ui =

{

−ẋ τ(σ) < T

ui(χ(G), x(t)) τ(σ) ≥ T
(2)

where ui stabilize x for each choice of G, τ(σ) is the length

of time since the last change in the network topology Ni,

and T is a time-delay before u can decrease the Lyapunov

function. The filter χ will be defined shortly. We assume that

for each time interval (tj ...tj+1) (we will call this interval

τj), there exists a global potential function Vσ(τj) such that

Vσ(τj) is positive-definite, V̇σ(τj) is negative semi-definite,

and V̈σ(τj) is bounded. (This is satisfied, for instance, under

the conditions on the graph Laplacian discussed in [7].) We

define the overall potential function Vσ(t) to be equal to

Vσ(τj) on the interval (tj ...tj+1), for all j.

Define the quantity si such that:

si(t) =
1

2





∑

j∈Ni

(

lim
t→t̃+

P (xi, xj) − lim
t→t̃−

P (xi, xj)

)



 ,

(3)

where P (xi, xj) is the potential between agent i and j.

Moreover, each agent can determine an estimate ŝi such that
∑

i∈R ŝi ≥
∑

i∈R si (often for our purposes ŝi = si). This

quantity captures the instantaneous change in potential due

to the link switching. The factor of 1/2 is present because

each link connects to two agents, and thus will be counted

twice. It is thus easy to show that the following holds:
∑

i∈R

si = lim
t→t̃+

(Vσ(t)) − lim
t→t̃−

(Vσ(t)) (4)

Associate with each agent i a value Ei which is called the

local energy reserve, and is defined as the solution to a dif-

ferential equation. Ei has an arbitrarily chosen nonnegative

initial value and evolves according to the following:

Ėi(t) =

{

0 if si(t) = 0 and τ(σ) < T

−kedi(t) + wi if si(t) = 0 and τ(σ) ≥ T
(5)

Ei(t) = lim
t̃→t−

Ei(t̃) − si(t) otherwise (6)

where ke is a global constant, 0 < ke < 1 and
∑

i wi =
0 (which will show up as a zero-sum consensus [10] term

later). Notice that Ei is initialized to a nonnegative value and

then evolves according to Equation 5 as long as si is zero

(that is, on intervals with no switches). Whenever si 6= 0
(there is a switch), Ei is re-initialized to the value given in

Equation 6.

Each agent maintains a local estimate Êi, which is initially

greater than zero and evolves as follows:

˙̂
Ei(t) =

{

0 if ŝi(t) = 0 and τ(σ) < T

−kedi(t) + wi if ŝi(t) = 0 and τ(σ) ≥ T
(7)

Êi(t) = lim
t̃→t−

Ê(t̃) − ŝi(t) otherwise (8)

Let the global values E and Ê be defined such that

E =
∑

i∈R

Ei (9)

Ê =
∑

i∈R

Êi (10)

We will call E the global energy reserve.

This brings us to the graph filter definition that provides

convergence, defined by

χ(G(t), x(t), t) =

{

G if Êi > 0
limt̃→t− χ(G(t), x(t), t̃) otherwise.

The filter χ is an identity on G, except for the added condition

that any switch that would cause Êi < 0 for any agent i

is prohibited. Note that the value of Êi cannot decrease in

the absence of switching if di ≤ 0 for all i (this can be

thought of as a conservative estimate of the stability margin

of the system for a graph at time t). Also, this computation is

decentralized; the agents only need access to the local values

Ei, di, and si.

The immediate consequence of modifying σ in this way

is that Ê ≥ 0, since it is the sum of all nonnegative terms.

It follows from Equations 9 and 10 and the definitions of si

and ŝi that E ≥ Ê. Thus if Ê ≥ 0, then E ≥ 0 as well. This

allows us to prove the following statement (from [8]).

Theorem 3.1: The states in the system in Eq (1) and (2)

all converge to a state of of unchanging potential for any

sequence of graphs G(t).

Applying this result to cooperative manipulation tasks allows

two advantages. First, if a sequence of proximity graphs cor-

respond to different behavioral modes, we can guarantee that

switching between modes does not destabilize the formation.

Moreover, if adjustment is necessary to implement the next

mode (e.g., if a robot is nonholonomic and must reorient

itself to successfully change from swarm or cage mode to

move mode), then the agents will not increase their energy

reserve until they are ready to start the next mode.

Now we may state the algorithm for ensuring convergence

in the face of arbitrary time-varying proximity graph topolo-

gies.

1485

Algorithm for Filtering Proximity Graphs

Given a proximity graph G(x(t)):

1) Choose a set of initial values Êi greater than

zero;

2) Update Êi using Eq. (7) and (8);

3) Apply χ to G(x(t)) using Êi;

4) Calculate the control law u using χ(G(x(t))).

Note that the algorithm is completely decentralized and

only adds one state (Ê) to each vehicle that needs to be

maintained.

IV. EXAMPLE: COOPERATIVE MANIPULATION

We now introduce an example that takes advantage of

Thm. 3.1. We assume we have each agent i with the

normalized nonholonomic vehicle kinematics:

ẋi = cos(θ)ui
1

ẏi = sin(θ)ui
1

θ̇i = ui
2.

(11)

We have the control from Eq.(1) be defined by a quadratic

potential function so that we have

ui =
[

∑

j∈Ni

ks(‖xi − xj‖ − l0)v̂ij

]

− kdẋi (12)

where xi represents the Cartesian coordinates describing the

agent’s position, ẍi is the agent’s acceleration, ẋi is the

agent’s velocity, Ni is the set of links connected to this agent,

and v̂ij is the unit vector from agent i to agent j. Control

constants are the natural length (l0), the stiffness (ks), and

the damping coefficient (kd). We require that the system be

symmetric: if an agent a has a link connected to agent b,

then agent b must have a link connected to agent a.

In this case, we get a system that trivially satis-

fies the requirements of Thm 3.1 using a time de-

lay of T = argmin(θ(t) − ∠(
∑

j ∇P (xi, xj)), where

∠(
∑

j ∇P (xi, xj)) is the angle of the vector the control

law from the graph creates. In fact, any differentially flat

system where ∇P is the gradient of P with respect to x

in the vector space created by the differentially flat outputs

will converge using the approach given here. The agents use

the command from the graph structure as a differentially flat

output to track. If they are oriented improperly, it will take

them some finite amount of time to reorient so that their state

is equal to the initial condition of the desired differentially

flat output. Hence, by Eq.(7), they will not allow Ei to

increase for that amount of time. Other circumstances where

a switch in network topology may be prohibited include

when mechanical contact changes or the agent enters the

sensing range of another agent. Although the decision to

prohibit a switch is made by each agent based on its local

energy reserve, it may be desirable to allow switches to occur

whenever the global energy reserve is sufficiently large. That

is, we do not want to prevent a switch due to low energy

reserves in one part of the system, when there are sufficient

energy reserves unused somewhere else. Thus, we need some

mechanism for sharing information about the energy reserve

levels between agents.

We will take advantage of the average-consensus algo-

rithm described by Olfati-Saber and Murray [10]. This algo-

rithm allows a distributed set of agents to reach a consensus

on a common global value, while sharing information only

with their local neighbors. If an agent i has a set of neighbors

Si that it can sense,

ūi =
∑

l∈Si

(El − Ei). (13)

With the energy reserved defined, we now need to generate

the manipulation strategy. Our implementation consists of

three modes, swarm, cage, and move. For a given manip-

ulation task, we assume that the path may be described by a

series of waypoints, either in R
2 or in SE(2). The mode

swarm is simply the quadratic interaction rule described

before with a logarithm potential from [7] for purposes of

collision avoidance. After the agents have surrounded the

object, the natural length l0 is reduced until the object is

successfully caged. (We do not deal with the geometry of this

problem here.) Then, in the move mode the agents move the

object to the new waypoint location. If the caging condition

is not met after some time, the agents re-enter the cage

mode.At each change in mode, the agents use the energy

reserve to filter the mode changes. If the agents leave contact

unexpectedly, χ filters the resulting mode change. In this

way, unanticipated changes do not cause instability, even if

we make the swarm of robots reactive to the manipulation

task.

Fig. 2. The energy reserve versus time.

The system evolves somewhat differently than it would

with a global value of E, as the times when we must prohibit

a switch have changed due to the differing local values of

E, but the system meets all the conditions necessary for the

proof in Section III because the global behavior of E still

has the required properties. However, as described in [10],

all of the local energy reserves will now converge to a single

value.

The consensus strategy found in [10] is just one exam-

ple of a valid consensus function. In fact, any consensus

algorithm with the zero-sum property is acceptable [8].

1486

(a) (b) (c)

(d) (e) (f)

Fig. 1. A simulation of a cooperative manipulation task is shown above.(Agent orientation is indicated by the small black line pointing in the direction
the agent is facing.) In (a) the agents are to the side of a box that is to be manipulated. In (b) and (c) they swarm around it and then switch to a caging
mode in (d). They then push the object in (e) until a new waypoint is introduced and they move the object someplace else in (f).

The consensus on E is independent of the normal control

of the system, although a faster consensus will improve

performance in terms of convergence rate.

Simulations of the system in Eq.(11) are seen in Fig.1. In it

we see three agents manipulating an object using the modes

swarm, cage, and move. In Fig.1(a) we see three agents

above the object. They swarm around it, and after their

average distance to the object is less than 0.5 m, they proceed

to cage (in Fig.1(b) and (c)) the object by decreasing the

natural length l0 used in their control law from Eq.(12). The

transition to cage does not require much reorientation, so

they are able to do it quickly, as is seen in Fig.2 at time

t ≈ 10s, where the energy eventually drops as they change

to cage mode. After the object is successfully caged a

waypoint is introduced, so they must all reorient. The energy

reserve prevents them from continuing with move until they

are all ready, at which point they start tracking the waypoint

in Figs.2(d) and (e). This is seen in the energy reserve in

Fig.2 at time t ≈ 65s, where the energy eventually drops as

the change to move mode. A new waypoint is introduced,

and again the agents have enough energy reserve at time

t ≈ 90s to start tracking it.

The authors have developed a wireless, decentralized

cooperative control testbed. This testbed is adequate for

proof-of-concept experiments for all the algorithms that are

discussed here. The robot-agents in the test-bed are built

using the Roomba robotic vacuum cleaner manufactured

by iRobot as a base. This provides for an inexpensive

hardware platform that can integrate sensors and distributed

computing. The Roomba measures 32cm across and uses a

simple differential drive system. (Hence, its dynamics are

underactuated, but it can emulate a fully-actuated system

reasonably well.) The drive system can be controlled via an

externally accessible serial port, called the Roomba Serial

Command Interface (SCI). It is also possible to read the

Roomba’s built-in sensors, including shaft encoders, via the

SCI. Thus, a controller board can be mounted on top of the

Roomba and connect via the SCI, without needing access to

the internals of the base. We are using a Linux-based board

(the TS-7260 from Technologic Systems) as the deployed

computer. It has wireless, can access sensors, and moreover

can use vision and other sensors if necessary. So far, it has

been sufficient for testing our algorithms in a completely

decentralized wireless testbed.

In the experiment seen in Fig.3, a group of three mo-

bile robots with the dynamics in Eq.(11) are given initial

conditions to the side of a box (seen in Fig.3(a)) that they

are supposed to manipulate. A potential is used to get the

robots to swarm around the box (Fig.3(b) and (c)), and

then they are supposed to switch to a cage mode. This

change in mode is filtered by χ, leading to a pause while the

agents adjust their positions and prepare for the next phase.

1487

(a) (b) (c)

(d) (e) (f)

Fig. 3. Video snapshots of cooperative manipulation testbed are shown above. In (a) the robots are to the side of a box that is to be manipulated. In (b)
and (c) they swarm around it and then switch to a caging mode in (d). They then push the object in (e) until their odometry readings get off in (f) where
they start to drift from the desired formation.

After they have caged the object in Fig.3(d), they switch

to a move mode, during which they move the object in

Fig.3(e). Eventually the agents stop manipulating the object

well because of odometry errors accumulating (Fig.3(f)). We

are currently implementing an overhead tracking system for

dead-reckoning purposes.

V. CONCLUSIONS

In this paper we have applied an adaptive control technique

to a relatively simple coordinated manipulation task. We

have introduced an approach to cooperative manipulation that

focuses on monitoring and filtering the admissible changes

in network graph topology according to a stability crite-

rion. This technique can be thought of as filtering modal

commands so that the agents do not continue with their

task until the other agents are ready. We do not include

geometric aspects of guaranteeing caging for irregularly

shaped objects. Instead, we focus on robustness aspects of

coordinated manipulation. The technique appears to work

well both in simulation and in experiment. However, future

experiments will need to involve more complex manipulation

tasks. In order for this to be feasible, we need to avoid the

limited-odometry problems seen in the experiment in Fig.3.

We will achieve this using an overhead tracking system.

Future analytical work includes proving that objects that

have become “uncaged” will become caged again in finite

time. This will provide the necessary piece for showing

completeness of a manipulation strategy that only uses the

three modes swarm, cage, and move.

REFERENCES

[1] J. Cortes and F. Bullo. From geometric optimization and nonsmooth
analysis to distributed coordination algorithms. In Proc. of Conf. on

Decision and Control, pages 3274–3280, Maui, Hawaii, Dec. 2003.
[2] Jorge Cortes, Sonia Martinez, Timur Karatas, and Francesco Bullo.

Coverage control for mobile sensing networks. IEEE Transactions on

Robotics and Automation, 20(2):243–255, 2004.
[3] Lars Cremean, William Dunbar, David van Gogh, Jason Hickey, Eric

Klavins, Jason Meltzer, and Richard M. Murray. The caltech multi-
vehicle wireless testbed. In Conference on Decision and Control

(CDC), 2002.
[4] A.K. Das, R. Fierro, V. Kumar, J.P. Ostrowski, J. Spletzer, and C.J.

Taylor. A vision-based formation control framework. IEEE Tran. on

Robotics and Automation, 18(5):813–825, Oct. 2002.
[5] M. G. Feemster, J. M. Esposito, and J. Nicholson. Manipulation of

large objects by swarms of autonomous marine vehicles: Part i –
rotation. In Proc. IEEE SE Symp. on Systems Theory, pages 255–
259, March 2006.

[6] M. Gillen, A. Lakshmikumar, D. Chelberg, C. Marling, M. Tomko, ,
and L. Welch. A hybrid, hierarchical schema-based architecture for
distributed autonomous agents. In AAAI symposium on Intelligent,

Distributed and Embedded Systems, 2002.
[7] A. Jadbabaie, Jie Lin, and A.S. Morse. Coordination of groups

of mobile autonomous agents using nearest neighbor rules. IEEE

Transactions on Automatic Control, 48(6):988 – 1001, 2003.
[8] T. D. Murphey. Filtering of interaction rules in cooperation. In

Submitted to American Controls Conference (ACC), 2008. Submitted.
[9] G.A.S. Pereira, M.F.M. Campos, and V. Kumar. Decentralized algo-

rithms for multirobot manipulation via caging. International Journal

of Robotics Research, 23(7/8):783–795, 2004.
[10] Reza Olfati Saber and Richard M. Murray. Consensus protocols for

networks of dynamic agents. In American Control Conference, 2003.
[11] B. Shucker, T. D. Murphey, and J. Bennett. Switching control without

nearest neighbor rules. In Proc. American Controls Conference (ACC),
pages 5959–5965, 2006.

[12] B. Shucker, T. D. Murphey, and J. Bennett. Switching rules for
decentralized control with simple control laws. In American Controls

Conference (ACC), pages 1485–1492, 2007.
[13] H.G. Tanner, G.J. Pappas, and V. Kumar. Leader-to-formation stability.

IEEE Tran. on Robotics and Automation, 20(3):443– 455, June 2004.

1488

