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Abstract— We describe self-assembling robot arm systems
composed of active modular robots and passive bars. We present
a case study where the robotic module is the Shady3D robot
and the passive component is a rigid bar with embedded IR
LEDs. We propose algorithms that demonstrate the cooperative
aggregation of modular robotic manipulators with greater
capability and workspace out of these two types of elements. We
present results from physical experiments in which two 3DOF
Shady3D robots and one rigid bar coordinate to self-assemble
into a 6DOF manipulator. We then demonstrate cooperative
algorithms for forward and inverse kinematics, grasping, and
mobility with this arm.

I. INTRODUCTION

This paper explores the development of low-cost modular
manipulators. Drawing from the theoretical, practical, and
existing experience in manipulation and modular robotics,
we propose an approach to synthesize modular manipulators
that match a desired workspace by self-assembly. We en-
vision robot systems capable of scavenging raw materials
from the environment to adaptively create dynamic pro-
grammable structures that integrate robotic elements with
passive components. We describe how a collection of simple
robotic modules can grasp rigid bars and coordinate to
self-assembled robotic manipulators with a higher number
of degrees of freedom and a larger workspace than the
components. The resulting robot arms are distributed mobile
manipulation systems that can be controlled to accomplish
the basic functionality of a robot arm: inverse kinematics,
forward kinematics, grasping, and pick and place. These
arms can move autonomously to different places in the
workspace. The specific type of arm we study alternates
robotic elements with rigid bars. The presence of the rigid
bars enhances the structural rigidity of the system and also
contributes to the total number of degrees of freedom of the
system. The total number of elements is determined by the
required workspace size. We aim to synthesize the smallest
robot structure that meets the workspace requirements.

The challenge in building self-assembled modular arms
ranges from issues related to designing simple and robust
active modules capable of interacting with other passive and
active modules, to problems of control and planning. Control
is challenging because each active link is a separate robot.
The many degrees of freedom of these systems have to be
coordinated using distributed and efficient controllers.
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We present algorithms for the self-assembly of multi-link
robot arms out of 3DOF robot modules with the structure
and capabilities of our robot Shady3d [1] and rigid bars
with embedded LEDs for guiding grasping. We assume to
know the location of the robot modules and of a cache of
smart passive bars. Given a desired workspace, we determine
the number of needed links. A distributed self-assembly
algorithm constructs the robot arm as an alternation of robot
elements and passive bars. We demonstrate this algorithm
in the context of creating a 6DOF manipulator out of two
Shady3D elements and one passive bar. We also present
cooperative algorithms for forward and inverse kinematics,
grasping, and pick and place and give data from physical
experiments.

A. Related work

We build on prior work on modular manipulators [2] and
self-reconfiguring robots [2]-[7]. Previous work on modular
manipulators considers how to manually assemble an arm,
given a collection of modules. Most previous work on self-
reconfiguring robots considers a homogeneous system that
has multiple copies of the same part. In our project we
depart from the premise of homogeneous robots and describe
heterogeneous modular robots with active and passive links.

The robot arms we propose are closely related to truss
climbing robots such as Staritz et al’s “Skyworker” [8],
Amano et al’s handrail-gripping robot for firefighting [9],
Ripin et al’s pole climbing robot [10], Nechba, Xu, Brown
et al’s “mobile space manipulator SM2” [11], Kotay and
Rus’ “Inchworm” [12], and Almonacid et al’s parallel mech-
anism for climbing on pipe-like structures [13] and our own
Shady2D and Shady3D modules [14].

B. Outline

This paper is organized as follows. Section II reviews the
capabilities of Shady3D, the robot module we use in this
work. Section III presents the self-assembly algorithm and
experimental results for the self-assembly to a 6DOF arm.
We propose control algorithms for the inverse kinematics
control of serial linkages in Section IV. Section V describes
the algorithms and the results of physical experiments for
kinematics, inverse kinematics, grasping, and pick and place
with the 6DOF arm.
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Fig. 1. (a) Shady3D and its structure: 3-joints and 2 grippers (b) Shady3Ds
are moving on the trusses

()

Fig. 3. (a) A passive bar with embedded IR LEDs (b) an IR sensor attached
beneath the gripper

Fig. 2.

(a) A 5DOF manipulator with directly connected two Shady3Ds
(b) A 6DOF one with inserting a passive bar between two robots [16]

II. EXPERIMENTAL INFRASTRUCTURE: SHADY3D AND
RIGID BARS WITH LEDS

In this work, we use Shady3D [1] as an active module and
a bar with embedded IR LEDs as a passive one. The resulting
arm can be anchored anywhere on a truss (See Figure 8). The
algorithms presented here depend on the abstract capabilities
of Shady3D and can be instantiated on any other robot
module with similar capabilities. We introduce the hardware
and how they build a self-assembled tower.

A. Shady3D

Shady3D was originally designed with the goal of climb-
ing 3-dimensional trusses as a first step toward tree-climbing
robots. It has three joints for 3-D motion and two grippers
on each side as shown in Figure 1. The number of joints is
chosen to be minimal for moving on the 3-D trusses. Unlike
Shady [15] which was designed to climb planar trusses, the
middle joint enables Shady3D to switch from one plane to
another as Figure 1(b).

The three joints of Shady3D enable a robot to traverse
3D trusses. By connecting two Shady3Ds (See Figure 2(a))
directly we can generate a SDOF linkage. The DOF is not
six due to the fact that the axes of two gripper joints lie on
the same line. A 6DOF linkage is obtained by using a truss
element as a medium of connection as in Figure 2(b).

B. Passive bar

The self-assembly operation requires many grasping steps
that need to be robust. We choose an approach that embeds
beacons in the passive object. Solutions that rely on other
sensors such as vision are possible but require more com-
putation. A passive bar emits IR signals via the IR LEDs
embedded in the bar is shown in Figure 3(a). Two LEDs are

Fig. 4. Four snapshots of the tower building simulation. The Shady3D
robot modules are drawn as an elongated U-shapes with light and dark
halves; the free bars and the grid are drawn as straight segments [16].

located at each side of the bar (indicated by yellow dotted
circles) and inform a robot about existence of the bar.

C. Self-assembled linkage: walking tower

Figure 4 shows snapshots of the self-assembly of a truss
tower. Twelve active modules and eight passive bars are
employed to build a three-dimensional tower. Figure 5 shows
the resulting structure moving.

III. ALGORITHM FOR COOPERATIVE SELF-ASSEMBLY OF
MODULAR ARM

We describe how to build a serially linked manipulator -
one leg of the tower - from arbitrary numbers of Shady3Ds.
This algorithm is used to build a 6DOF linkage from two
3DOF Shady3D modules.

Fig. 5. Four snapshots of the tower moving simulation [16].
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A. Self-assembly algorithms

The output of the workspace computation algorithm is
a linkage manipulator which consists of serially connected
n robots and (n — 1) passive links and meets the task
requirement.

We want n robots to come together on the support structure
necessary to anchor the arm and them to build the linkage
together. The cooperation among the robots relies only on
local communication with a limited range.

More specifically, we assume:

o The support environment and location of the robots is
given in the form of a graph with nodes and edges as
described in [17].

o The target location is reachable from every robot’s
starting point.

« A robot has a unique ID.

« Robots can communicate only when they are nearby:
located on adjacent nodes.

« using communication, a robot can read the state of the
other robot and send a control command.

o Locations of the passive bars are given.

The coordination of the robots is done using a state
variable. robots use the state to indicate to other robots what
they are doing. We use the following states:

o Idle: waiting for a command

e Moving: motors are working

o Assembling: doing self-assembly now

o Assembled: assembled with other robots

Algorithm 1 Building serially linked robots
1: Locomote to the anchor point (Algorithm 2)
2: if anchor is empty then
3:  Be the root of the linkages
4: else
5:  while The root robot’s state£Assembled do
6 Delay
7. end while
8
9

Add myself to the linkages (Algorithm 3)
: end if

Algorithm 1 gives the high-level planning algorithm. Once
robots are initialized, they independently travel to the loca-
tion of the arm with Algorithm 2. Firstly, each robot finds the
best route to the anchor point by Dijkstra’s algorithm. Every
time they advance to the next node, they check whether that
node is already occupied. If not, they move. Otherwise, they
wait until the node is empty. Since the anchor is the same
for all the robots, there is no deadlock. Details of distributed
deployment for the general case was extensively reviewed
in [17].

The first robot to arrive at the anchor location becomes the
root. The root robot communicates to the robots approaching
the anchor. The robots are assembled into the linkages in
order of their arrival at the anchor point using Algorithm 3.
Note that Algorithm 3 can be used for the root robot of the
arm.

Algorithm 2 Locomotion to the anchor point
1: Find the shortest path to the anchor
2: while not reached the target or not met the linkages do
3:  Communicate with adjacent robots
4:  if next node is empty then
5 Move to the next node
6: else
7
8
9:

Wait until the next node is empty
end if
end while

The addition of new modules starts from moving the
robot to the nearest approachable node. The robot then
communicates with the root robot of the arm, in order to let
it grasp the other side of the bar and assemble it. The robot
uses information about the location of the passive bar and
grasps it, guided by the emitter on the bar’s grasping point.
To reach the grasping point, the robot and the arm uses the
inverse kinematics algorithm described in Section IV.

Algorithm 3 Addition of a robot to serial linkages by Self-
assembly
1. State = Moving
Move to the nearer approachable node
State = Idle
while the other approachable node is empty do
Communicate with the adjacent robot
end while
Let the root robot assemble me
State = Assembling
Move to check the passive bar
if sense a bar then
Grasp the bar
12:  State = Idle
13:  while The root robot’s State£Assembled do
14: Delay
15:  end while
16:  State = Assembled
17: else
18:  Return to the original position
19:  State = Idle
20: end if
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After self-assembly to new serial linkages, we assign two
roles to the first and the last robot: a root and a leaf, where
the former has a fixed gripper at the truss while the latter
is the end point of the linkages. The fixed gripper of a root
is called an anchor and the free gripper of a leaf is an end-
effector.

B. Experiments with self-assembly of two Shady3Ds

The proposed algorithms are implemented in experiments
with two Shady3D robots and one bar. Figure 6 shows
snapshots from the experiment. Firstly, given a specified
position for the passive bar within the Shady3D experimen-
tal environment, each Shady3D module optimally positions
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itself so as to be able to reach the bar. Details of the optimal
deploying algorithm are addressed in [17]. In the first step
of the algorithm each Shady3D module moves independently
and in parallel to reach and grasp the bar. The bar is detected
using the LED sensors within the Shady3D grippers. Upon
grasping the bar, the Shady3D modules signal to each other
using Bluetooth to coordinate the completion of the grasping
step and the self-assembly of a 6DOF manipulator. We tested
the self-assembly, and a sequence of 10 executions resulted
in no error. Each self-assembly experiment took 1 minute
(See Table I).

IV. CONTROLLING THE MODULAR ARM BY DISTRIBUTED
INVERSE KINEMATICS

Reaching an arbitrary point in space by serial linkages
requires robot coordination. Unfortunately, the structure of
Shady3D does not allow a closed-form inverse kinematics
solution even for the simplest 6DOF linkages from two
robots. Instead of using an explicit solution, we use an
approximation algorithm based on the manipulator jacobian.
We select a Damped Least Square (DLS) method because it
has good robustness and performance [18].

Only the root robot calculates the joint angles to grasp
a bar when needed. The solution propagates along the
linkages by successive communication to the leaf robot.
When sending the angles, each robot cut off the first three
angles from the solution and send the remaining ones. Then
it rotates by those three angles. After finishing moving, the
robot await that the leaf-side robot stop rotating, by checking
its status. Therefore, the status of the robots change in one
by one from the leaf to the root.

V. MANIPULATION TASKS WITH MODULAR 6DOF ARM

We have developed algorithms for four kinds of tasks
with the manipulator. The algorithms were implemented on
our physical prototype 6DOF modular manipulator. In each
case, task information is given to the robots in the form of a
command stack. The robots decide which role to play based
on the task specification and its location.

A. Distributed control algorithm for task execution

Each task is a stack of command sets for the two robots,
and how a robot execute the task is shown in Algorithm 4.
Parameters of the command set are:

e RootNode (#): the root location to anchor the arm

o Displacement (x,y,z,roll,pitch,yaw / 0;---6¢): 6 joint
movements and end-effector displacement

o Grasp (G/R): grasp/release of the end-effector

Each robot starts by finding out if it is a root. The root
robot calculates the joint displacement of two robots directly
or indirectly by inverse kinematics. The leaf robot waits
for a command. The root sends the corresponding joint
displacements to the leaf robot. Then they both execute their
next command in parallel. The root checks the command
completion, and then pops the next command set until the
stack is empty.

Algorithm 4 Task execution
1: while Task Stack not empty do
2:  Pop the next queue
3: if Anchor = Root then
4 Get the commands from the queue
5: Send the command for the leaf
6: State = Moving
7
8
9

Execute my command
while The leaf’s State = Moving do

: Delay
10: end while
11: State = Assembled
12:  else
13: Wait for the command from the root
14: State = Moving
15: Execute my command
16: State = Assembled
17:  end if
18: end while

B. XYZ-directional movement

In this task, the distributed inverse kinematics protocol is
used to implement the positioning of the arm’s end effector
at a desired location (x,y,z). The arm’s initial configuration
is shown in Figure 7(a). The left gripper of the arm is the an-
chor and the right gripper is the end-effector. We have tested
different (x,y,z) locations for the 6DOF manipulator built
in Section V as shown in Figure 7(b-c). Each experiment
was done 10 times without error and it took 20 seconds(See
Table 1.) In this case, the task stack has only one command
set with a single end-effector displacement.

One challenge is coping with the position error along
the vertical axis - in this case, Z-directional - because of
tilting of the arm due to gravity. About 20mm error was
measured regardless of the Z-directional displacement. The
error mainly comes from mechanical weakness of a robot
(e.g. backlash, tolerances, and plastic material).

C. Reaching nodes unreachable by one robot

Consider an inspection task which requires reaching every
point on the truss. As pointed out in [16], some points on
the truss are unreachable by one robot due to its fixed length
and 3DOF. When we model the truss environment as a graph
where nodes are points of interest and edges correspond to
reachability among the nodes, such unreachable points are
nodes without an edge. Upon self-assembly, many unreach-
able points become reachable by the 6DOF linkage because
of enhanced workspace and additional DOFs.

Figure 8 shows the self-assembled robot built in Section V.
reaching the unreachable nodes(denoted by the arrows). The
task stack has one command set with a single end effector
displacement according to 3-D locations of the nodes. Three
unreachable nodes were tested ten times each without error.
Each task took 40 seconds(See Table 1.) The position error
along the vertical axis due to the mechanical weakness of the
arm persists for the task as well with an observed maximum
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Implementation of self-assembly of 6DOF modular arm and an example of moving a bar. (a) Two robots have moved to the approachable nodes.

(b) They are swinging their body to find the bar. (c) They have grasped each side of the bar.

Fig. 7. Uni-directional movement of a 6DOF manipulator composed
of self-assembled Shady3Ds. (a) A self-assembled manipulator with two
Shady3Ds. The left gripper is anchored at the truss and the right one
is free to move. (b) X-directional movement with 150mm displacement
(c) Y-directional movement with 150mm displacement (d) Z-directional
movement with 150mm displacement

(a) (b)

Fig. 8. A 6DOF manipulator with two Shady3Ds reaches some nodes
which are unreachable by one robot. The robot can be anchored anywhere
in the environment.

60mm tilting. In our environment, the self assembled 6DOF
can reach all the nodes.

D. Pick and drop by forward kinematic control

In this task, the arm collects an object(a bar), moves to a
different location where it drops the object. This task requires
a 6DOF manipulator. The locations of pick and drop are
given by joint angles. The robot moves by distributed forward
kinematic control.

The task stack is composed of 7 command sets each of
which has one joint displacement or grasping/release. As
the task starts, one of the modules releases its grasp of the
environment. Figures 9(a, b, ¢) shows two modules controlled
independently and in parallel to demonstrate the movement
of the arm. An additional bar is manually presented to the
free gripper of the 6DOF manipulator. The bar is grasped,
transported, and dropped at a specified location (see Figure 9
(d, e, f).) We have performed this experiment 10 times in a
row during the course of one hour. Each experiment consisted
of 9 joint movements and 5 grasping/release operations, and
it took about 140 seconds. All the control steps succeeded
for all the experiments. However, due to a hardware failure
at the end of the 7th experiment one of the gripper motors
had to be replaced(See Table I.)

A summary of our experiments is shown in Table L.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper we discussed our first step toward building a
self-assembled robot composed of passive components and
modular manipulators. As a first stage, we designed a module
with the minimal number of joints for 3D movement and
building a 6DOF manipulator. By combining two modules
and one passive bar, we can generate a more capable robot.
We described a suite of algorithms and experiments for
building a serial linkage. We proposed the inverse kinematics
to control multi-robot in 3D space without serous position
error and long convergence time. Hardware implementation
of building a 6DOF manipulator and several tasks show
how the proposed self-assembly works in the real world.
The coordinated manipulation algorithms perform well. They
are generally robust and the response time is adequate for
the tasks we considered. However, the materials used in the
prototype cause a structured tilting error which has to be
eliminated in future versions.

Much work remains to be done in the direction of building
modular robots with active and passive components. There
is a great need for a better hardware design and high-level
distributed planning algorithms.
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Implementation of self-assembly of 6DOF modular arm and an example of moving a bar. (a) A 6DOF manipulator combined by two modules

and the base module pulls the other upward. (b) The base module has fully moved the other module up. (c) The manipulator is stretched to the maximum
height. (d) The end effector is given a bar to be moved. (e) The bar is moved to the dropping position. (f) The manipulator has dropped the bar.

TABLE I
RESULT OF THE EXPERIMENTS
experiment number of number of number of success | operation remark
execution | joint displacement | grasping/release ratio time(sec) (error)
Self assembly 10 6 4 10/10 60
Pick and drop 10 5 3 9/10 140 motor failure
XYZ move 30 6 0 30/30 20 tilting error
Reaching 30 6 0 30/30 40 tilting error
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