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Abstract— Highly heterogeneous robotic systems are becom-
ing increasingly common, as are robotic systems integrated
with smart environments. In such distributed systems, there
are many different sources and types of information, which
need to be coordinated and combined effectively. The problem
of cooperative anchoring is (roughly) the problem of, in a dis-
tributed system, determining which items of information refer
to the same objects, and combining these items accordingly. In
this paper, we define a general computational framework for
cooperative anchoring inspired by work on conceptual spaces
and (single-robot) perceptual anchoring. We also discuss an
implementation of this framework which uses tools from fuzzy
logic, and we present an illustrative experiment.

I. INTRODUCTION

One of the interesting aspects of systems which use
multiple heterogeneous robots, as opposed to single robots, is
the richness of available information. In cooperative settings,
robots do not need to rely solely on their own perception
to obtain information about the environment; they can also
receive information from other agents. This information is
often of essentially different types. For instance, both percep-
tual (e.g., data from distributed cameras) and non-perceptual
(e.g., symbolic knowledge from a database) information may
be available. While this richness of information opens a
new landscape of opportunities, it also adds a number of
fundamental challenges — namely, those of representing,
communicating, comparing and fusing this information.

These challenges are particularly important when dealing
with robots integrated with smart environments [14], [13],
[15]. In smart environments, many devices, including some
objects beings observed by robots, can provide information.
These devices might not be robots in the traditional sense,
since they may not have actuators, or even perception –
however, they can be treated as subsets of normal single-
robot systems.

To clarify what we mean by “essentially different types of
information”, consider this scenario. A robot, called Pippi,
is told to fetch parcel number 21 from the entrance, where a
bunch of parcels are lying on the floor. In order to perform
this task, Pippi can rely on several sources of information:

• symbolic information contained in Pippi’s task planner:
(and (recipient parcel-21 alex)

(position parcel-21 entrance))
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• an RFID reader on the floor able to read information
stored in an RFID tag attached to the parcel, like:
<xml>

<refnum>21</refnum>
<texture>striped</texture>

</xml>
• a robot called Astrid, which has a vision system capable

of detecting both the color and the texture of the parcel;
however due to poor self-localisation, Astrid cannot
distinguish its position from that of another parcel:
{color(79,6,210),texture(striped)}
{color(2,5,212),texture(none)}

• Pippi’s on-board camera, which can detect the color and
approximate position of the parcel, like:
{position(293,392),color(77,7,200)}

• a black and white security camera mounted on the ceil-
ing, which can detect the precise position of the parcel,
due to its fixed position and bird’s eye perspective, like:
blob[88] = {position(295,396)}

Using the symbolic information in the task planner, the
system knows to look near the entrance for the parcel. Using
the texture information from the RFID tag, Astrid is able to
determine the color of the striped parcel. With this, Pippi can
detect the approximate position of the green striped parcel
near the entrance. A more precise position estimate can then
be obtained from the overhead camera. Current approaches
to multi-sensor fusion and to cooperative perception are
typically unable to handle such inherently different types of
information coming from distributed sources.

In this work we propose a framework which addresses
these challenges. The main contribution of the framework is
that it allows the different types of information which are
present in heterogeneous, distributed robotic systems to be
effectively matched and fused using the same representation.

Information is represented using geometric spaces, in-
spired by Gärdenfors’s conceptual spaces [9]. The frame-
work is inspired by work on perceptual anchoring [7], [8],
[6]. Perceptual anchoring, or simply anchoring, has been
defined as the process of creating and maintaining, in a
robotic system, the correspondence between symbols and
sensor data referring to the same physical objects. We extend
this notion to distributed settings, in which several robots
share different types of information about objects.

The rest of this paper is organized as follows. The next
section defines the problem of cooperative anchoring, and
discusses its relation to other well known problems in
robotics. Section III details our computational framework
for cooperative anchoring. Section IV describes a sample
implementation of this framework based on tools from fuzzy
logic. Finally, in section V we present a simple experiment,
which illustrates how the framework can be used.
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II. PROBLEM STATEMENT

We define the cooperative anchoring problem as:

the problem of creating and maintaining, in a
distributed robot system, the correspondence be-
tween items of information which refer to the same
physical objects.

Cooperative anchoring generalizes the single-robot per-
ceptual anchoring problem in two ways. First, we consider
distributed systems, in which items of information can be
produced by and/or stored in different agents. This includes
multi-robot scenarios and tasks which are not covered by
the single-robot case. Second, we deal with generic items
of information, instead of focusing only on symbol-based
and sensor-based information. When dealing with highly
heterogeneous multi-robot systems, many different types of
information may be encountered. The first extension calls
for mechanisms to adequately combine items of information
coming from distributed sources. The second extension calls
for a general way to represent, compare and fuse heteroge-
neous items of information. The approach described in the
next sections addresses both issues.

A. Mathematical Formulation

We assume that the environment contains N objects of
interest denoted by {o1, . . . , oN}, where the value of N is
unknown. We then consider a distributed system consisting
of a set of M physically embedded agents, or robots, denoted
by {r1, . . . , rM}, with M > 0. Note that the word robot is
used quite loosely here; for example a fixed camera may
also be referred to as a robot. Each robot ri includes Ki

information sources, denoted by {si
1, . . . , s

i
Ki

}, with Ki > 0.
Each source si

j produces items of information in some
(possibly complex) domain Y i

j . For instance, a vision system
may produce image regions with associated parameters like
position, size, color, and so on; a symbolic knowledge base
may produce sets of predicates to connotate a given object,
like {green, parcel, urgent}.

At any sampling time t, each source si
j produces a

(possibly empty) set of items of information yi
j ⊆ Y i

j . We
assume that each item of information refers to a single object
oh in {o1, . . . , oN}, although we do not know which one.
We also assume that no two items originating from the
same information source at the same time t can refer to the
same object. These assumptions are normally made in data-
association applications. The information available to robot
ri at time t is given by the set Φi(t) =

⋃
j=1,...,Ki

yi
j . The

information available to the entire distributed system at time
t is given by the set Φ(t) =

⋃
i=1,...,M Φi(t).

Given the above ingredients, the cooperative anchoring
problem includes the following three sub-problems.

1) Data association: This is the problem of determining
which items of information refer to the same objects. For the
entire distributed system, this can be seen as the problem
of finding a partitioning of the set Φ(t) such that each
partition contains all and only items which refer to the same
object. If a notion of distance, or similarity, between items

of information is available, the data association problem can
be seen as a clustering problem.

2) Fusion: Once a decision regarding data association
has been taken, items which have been determined to refer
to the same object can be combined, in order to obtain
a new estimate of the object’s properties. Done correctly,
information fusion can yield improved knowledge about the
state of the world. In general, redundant information can be
used to reduce uncertainty and imprecision, while comple-
mentary information can be used to resolve ambiguities and
incompleteness.

3) Prediction: In order to “maintain in time” estimates
of object properties, we need to propagate the results of the
fusion of information at time t to subsequent points in time.
This predicted state can be treated as an extra information
source, allowing information about the same objects received
at different times to be combined. In a dynamic world,
prediction is usually performed using a model which predicts
how the properties of objects evolve in time. In this paper
we do not address the temporal aspect; instead we focus on
the two previous problems, and assume a static world model.

B. Related Work

We have described how this work extends existing works
on single-robot anchoring. However, a number of works
address similar problems and sub-problems. In particular, the
multi-target multi-sensor tracking problem shares many sim-
ilarities with the anchoring problem. Specifically, it requires
solutions to a similar set of sub-problems – namely, data-
association, information fusion, and prediction. The problem
can roughly be stated as follows. Given a set of simultaneous
measurements from M sensors, originating from an unknown
number N of targets, estimate the state of the targets.

Data-association has mainly been explored in this context,
and a vast literature has been devoted to the problem over
many years – see [2] for a survey. Most of the work on
data-association assumes that information consists of sensor
measurements, usually of a commensurate type. And usually,
only position information is considered in the algorithms.
One can use existing data-association algorithms to address
parts of the cooperative anchoring problem; however these
methods should be extended to consider heterogeneous items
of information, which may span many domains (e.g. position,
color, shape, etc).

Information fusion is a wide area, and the field includes
many methods which incorporate both perceptual and sym-
bolic information [4], [11]. However, in the context of
multi-target multi-sensor tracking, few approaches explicitly
address the fusion of different types of information in
complex domains. Also, in many works, the implications
of having sensors with uncertain, non-fixed positions (as is
the case with robotic systems) are not fully considered [5].
The cooperative anchoring problem thus requires the use of
particularly flexible approaches to information fusion.
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Fig. 1. Different elements of our framework in a parcel scenario similar
to the example from the introduction.

III. A COMPUTATIONAL FRAMEWORK FOR

COOPERATIVE ANCHORING

This framework extends existing single-robot anchoring
frameworks [7], [6] in that it considers distributed systems
and generic items of information. We will use the example
scenario in Figure 1 to explain the framework.

A. Ingredients

The framework uses geometric spaces, called anchor
spaces, to represent, compare and combine information.
These are inspired by Peter Gärdenfors’s conceptual spaces
[9], which are well suited for dealing with both abstract,
symbolic information and sensor-based, sub-symbolic infor-
mation. An anchor space is a multi-dimensional space, which
includes one dimension for each quality of interest (e.g.
hue, x-position, etc). Independent groups of dimensions are
grouped into domains (e.g. color, position, shape, etc).

Example 1: In Figure 1, there are two dimensions for
the position domain (X,Y ) plus one dimension for the
color domain (H , for hue). Other dimensions could also be
included (e.g., texture, shape, weight, etc); we restrict the
example for graphical clarity. Also note that the position and
color domains would normally be maintained separately.

For each robot ri in the set {r1, . . . , rM}, we define:

• A multi-dimensional local anchor space Xi, which is
the space into which items of information are mapped;
the space describes how local anchors are represented.

• A set {αi
1, . . . , α

i
Li
} of local anchors: one for each

object of which the robot is aware. Anchors are data
structures, used to store the estimated values of the
properties of objects. Each local anchor αi

l contains the

estimated properties of object ol, considering only ri’s
own information sources.

• A set {si
1, . . . , s

i
Ki

} of information sources. Each si
j

produces items of information in its domain Y i
j .

• A set {gi
1, . . . , g

i
Ki

} of grounding functions, which
map information from each source into the appropriate
domains and dimensions in the local anchor space. That
is, each gi

j has a signature gi
j : Y i

j → Xi.

In general, grounding functions map items of information
into distribution clouds (e.g., probability distributions or
fuzzy sets) in the anchor spaces, to account for uncertainty.
For perceptual information, these functions can be seen as
reverse sensor models. For symbolic information, they can
act as predicate grounding relations [7]. In practice they
are more general than either of these. We do not make
assumptions about the origins of the functions: they can
be hand coded, learned, or otherwise obtained. In robotics,
sensor models and predicate grounding relations are normally
given (or easily obtainable).

Example 2: In Figure 1, Pippi (r1) has two information
sources: a symbolic task planner, and a vision system. The
symbol system has a grounding function g1

1 which maps
symbols to regions in its local anchor space. For instance,
the position symbol entrance is mapped to a rectangular
area in the (X,Y ) plane. The vision system has a grounding
function g2

1 that maps image regions to sets of position and
color values. In the example, the estimated position and color
of the box are mapped to an ellipsoid in the (X,Y,H) space.
The shape of this set takes uncertainty into account. The
RFID tagged parcel (r2) and the ceiling camera (r3) contain
one information source each; these are mapped into their
respective local anchor spaces.

We further define the following ingredients:

• A global anchor space X , a space into which informa-
tion from each Xi can be mapped. The global space
provides a common reference frame for the domains of
interest, which is needed in order to match and fuse
shared information. Typically, this space must be at
least as rich as any individual Xi; otherwise information
could be lost when mapping information to or from it.

• A set {α1, . . . , αG} of global anchors: one for each
object of which any robot is aware. Each anchor αg

contains the estimated properties of object og.
• For each robot ri, a function fi : Xi → X which maps

information from Xi to X . The functions fi can involve
cylindrical extensions and non-linear transformations,
since the dimensionality and coordinate systems of X
and Xi might differ.

Example 3: In Figure 1, all the anchor spaces (local and
global) have the same dimensions. This means that the fi

transformations are the identity function; this is done in order
to keep the example simple. Alternatively, the local spaces
and the global space could be defined differently (e.g. some
robots might use the RGB color space instead of HSV).
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B. Anchor management

The cooperative anchoring problem can be seen as the
problem of creating and maintaining a set of global anchors.
In our framework, this problem is decomposed into two parts:
the part involving the management of each individual robot’s
local anchors, and the part which involves the management
of global anchors, shared across robots. Local anchor man-
agement can be done at a high frequency, since operations are
done on-board the same robot. Global anchor management
can depend on latencies in the communication network. This
decomposition of the problem is natural given the distributed
nature of the systems considered; it also helps reduce the
computational complexity of the overall problem.

Both local and global anchor management are performed
by sequentially addressing the two sub-problems mentioned
earlier: data-association and fusion. Data-association relies
on the metric structure of the anchor spaces to provide a
means for information comparison: items which match in all
domains can be considered to refer to the same object. Fusion
involves combining these matched items, in all domains. As
we noted earlier, both data-association and fusion are widely
studied problems, and many solutions have been proposed.
Our framework does not not require specific solutions for
either. Later on we will discuss the approaches used here.

C. Local anchor management

1) Local data-association: Local data-association finds a
partitioning of the set Φi(t), as discussed in section II-A,
such that each partition Φi

l(t) contains all and only items
of information referring to object ol. Such a partition can
contain at most one item from each information source, given
our data-association assumptions. The items are also matched
with all local anchors. If no anchor matches the items in
a given partition, a new anchor is created; otherwise, the
matching anchor is associated with the partition.

Example 4: In Figure 1, the items of information provided
by the symbolic planner (s1

1) and the vision system (s2
1)

overlap. Given the way information is represented in this
example, we conclude that these items match, and therefore
they could represent the same object.

2) Local information fusion: Local information fusion
combines all items in Φi

l(t). If prediction were performed,
the predicted state of anchor αi

l could also be fused with
the new information. The result of the fusion operation
overwrites the contents of αi

l .

Example 5: In Figure 1, the result of fusing the items from
the previous example is represented by the intersection of the
two areas; this yields a more accurate estimate of the object’s
position and/or color. This estimate is put in the local anchor
α1

1 for this object. The information in α1
1 can then be used,

for example, to control the motion of the robot.

It is important to realize that the index l in αi
l is a local

index, corresponding to the internal name used by robot ri to
denote object ol, e.g., object-14. Other robots might use

different internal names to refer to the same object. However
there is an important exception. Some objects have proper
IDs, which uniquely identify them. For instance, people have
proper names, like ‘Alex’, and rooms can be labeled, like ‘T-
234’. Some items of information may bear the proper ID of
the object to which they refer; e.g., (age Alex 22). We
make sure that all items of information bearing the same
proper ID are combined into the same anchor. This is done
by modifying the data-association step so that it forces items
with the same proper ID into the same partition. If any items
put into an anchor have a proper ID, this ID is stored in the
local anchor, so that it is also considered during global anchor
management.

D. Global anchor management

1) Global data-association: Global data-association finds
a partitioning of the set of all local anchors, A = {αi

l |
i = 1, . . . , M, l = 1, . . . , Li}, such that each partition Ag

contains at most one anchor from each robot (since no two
anchors in the same robot refer to the same object), and in
such a way that local anchors in the same partition match
in all domains. Intuitively, each partition should include all
the local anchors that represent the same object og . Some
local anchors may have proper IDs; again, we use these IDs
to constrain the data-association step, so that local anchors
with the same IDs are forced into the same partition.

2) Global information fusion: Once the correspondence
among local anchors has been established, we combine the
information contained in the local anchors which refer to the
same objects. This yields a global estimate of the properties
of each object og . The result of the fusion of all anchors in
Ag is stored in the corresponding global anchor αg . Previous
global anchors are not fused with the local anchors; state
information is considered only during local fusion. Note that
these global anchors can be maintained locally in each robot,
or in a centralized manner. More will be said about this later.

Example 6: In Figure 1, Pippi (r1), the parcel (r2) and
the ceiling camera (r3) have each created local anchors for
the box. These are respectively called α1

1, α2
14 and α3

8. Their
information contents are represented by the three gray areas
in the global anchor space. Since these areas overlap, all
three anchors are put into the same partition of A, say A6.
The combination of these is represented by their intersection,
and this is stored in the global anchor α6, which represents
the global estimate of the box’s properties.

Intuitively, the index g of the αg anchor corresponds to a
global name which can be used by the various robots to refer
to object og. If any of the anchors in Ag has an associated
proper ID, this ID is copied into the global anchor αg: this
associates the global name of the anchor in the system to
the proper name of the object in the world. In practice,
reliably naming global anchors can be difficult if unreliable
communication channels are used, but there are distributed
algorithms which address this [10].
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IV. IMPLEMENTATION

We have implemented the framework described previously
using techniques from fuzzy logic [12]; this is motivated
by a number of factors. Fuzzy sets are able to represent
many types of information and uncertainty (e.g. imprecision,
vagueness, ambiguity, unreliability, etc). Also, fuzzy logic
provides a formal mechanism for matching and fusing infor-
mation, and it includes a rich set of operators for both of
these [3]. Fuzzy logic also lends itself to relatively straight-
forward and computationally efficient implementations.

Information in the anchor spaces is represented by n-
dimensional fuzzy sets. A fuzzy set F over the n-dimensional
space S is characterized by a membership function

µF : S → [0, 1]

which gives the degree of membership µF (x) of each point
x in S to the fuzzy set F . So a grounding function gi

j maps
information from the information source si

j to a fuzzy set
over the local anchor space Xi.

Each fuzzy set F is implemented as an n-dimensional ar-
ray of floats, where the value in each element x corresponds
to the value of µF (x). For example, color information can
be represented using a 3D space, with dimensions for hue,
saturation, and lightness, while 2D position information can
be represented using a grid of (x, y) values. If necessary,
some dimensions can be approximated to reduce complexity.

In the implementation used in this work, the dimensional-
ity and units of the global space X are the same as those used
in the local spaces Xi. This implies that for each robot ri,
the mapping function fi is the identity function. This choice
does not limit the generality of the framework; it merely
simplifies the implementation, by affecting how and when
certain computations are made.

The global anchor space could be implemented in a cen-
tralized way: individual robots could send their local anchors
to this central location, which should then take care of match-
ing and fusing these, as described earlier. The results would
then be sent back to the individuals. This approach would
strongly rely on the communication framework. Instead, our
implementation distributes the global anchor space among
the robots. The robots send and receive anchors to each other
directly, in a peer-to-peer fashion [15]. Locally, each robot
matches and fuses local anchors received from other robots,
and creates and maintains global anchors accordingly. This
approach is more robust than a centralized one, since any
successfully communicated information can be exploited.

Matching of information is implemented as follows. If µ1

and µ2 are two fuzzy sets on the same space X , representing
two distinct items of information, then the degree of match-
ing between these two items is given by:

match(µ1, µ2) = sup
s∈S

(µ1(s) ⊗ µ2(s))

where sup denotes the supremum (least upper bound) oper-
ator, and ⊗ is a triangular norm, or T-norm [12]. The most
common T-norms used in fuzzy logic are the minimum and
product operators. In the matching done in the experiments
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Fig. 2. The result of fusing f1(x) and f2(x) using the product T-norm is
shown by the filled fuzzy set f(x). The degree of matching of the two fuzzy
sets is shown by the dotted line.

reported below we use the minimum operator, since its result
is independent of the number of items being matched. Match
values are computed for each domain separately, and the
minimum of these is used as the overall match value between
items. Figure 2 shows an example of two 1-dimensional
fuzzy sets. The result of matching these two fuzzy sets as
described is shown by the dotted line.

Data association is performed by enumerating all possible
associations and computing the value of each overall asso-
ciation hypothesis as the average of the degrees of matching
between the included associations. This average is biased
since we discard associations with match values below a
certain threshold. We also disambiguate associations with the
same match value by preferring associations with many items
– this encourages robots to agree about objects whenever
possible. The hypothesis with the highest value is used;
this is essentially a single-frame Global Nearest Neighbour
(GNN) approach [2].

Fusion is implemented using fuzzy intersection. If µ1

and µ2 are fuzzy sets, the result of fusing these items is
represented by the fuzzy set µ given, for any x ∈ X , by

µ(x) = µ1(x) ⊗ µ2(x).

In the experiments reported below, we use the product T-
norm for fusion operations, since it emphasizes values which
are common to all sources. In Figure 2, the result of the
fusion as described is the filled in area. More details about
the fusion algorithm can be found in [5].

Other operators could be used for both matching and
fusion, and several alternatives can be found in the literature
[12], [3]. The choice typically depends on the types of
information and information sources being considered.

V. AN ILLUSTRATIVE EXPERIMENT

The purpose of this experiment is to show how different
types of information arriving at different times from different
robots are anchored using our framework. The scenario is
inspired by the example in the introduction.

For many of our experiments we use a small apartment
(about 25m2) as a testbed, in which various intelligent de-
vices are embedded (e.g. RFID readers, localization systems,
robots, etc). The experiment presented here is carried out in
a gazebo [1] simulation of this apartment, shown in Figure 3.
In both real and simulated experiments, the devices in the
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Fig. 3. The gazebo simulation of the apartment used in the experiment.

environment are interconnected using middleware developed
by us as part of our PEIS-Ecology project [15].

The participants in the experiment are the following: r1 is
an RFID reader called rfid-01; r2 is a mobile robot named
Astrid; r3 is a mobile robot named Pippi; r4 is a fixed ceiling
camera called camera-01. All the participants are considered
to be robots, or at least subsets of robotic systems. Pippi uses
two information sources in this scenario: a symbolic task
planner, and a vision system. Astrid and camera-01 use only
their vision systems, and the RFID reader provides symbolic
information obtained from detected RFID tags. The RFID
reader is placed near the entrance of the apartment, and it can
detect RFID tags within about one meter from the door. The
objects being observed are two red and two green parcels.
One of the green parcels has an RFID tag with ID parcel-21.
Note that the number and properties of these parcels are not
known to the participants.

The three domains used in this experiment are: a (discrete)
1D texture domain, a 2D position domain, and a 3D color
domain. The coordinate systems used are shown at the top
of Figure 4. Texture information has been added to the data
artificially, since the vision systems we use are not able to
detect textures. Recall that the local and global anchor spaces
have the same dimensions and units. In practice this means
that position information obtained in local coordinates (e.g.
from vision) is converted to global coordinates before being
put into the anchor spaces. The scenario begins with Pippi
being told to fetch parcel-21 which is near the entrance;
events unfold as follows (see Figure 4).

Information 1 (Symbolic): Rfid-01 provides a local
anchor α1

1 with symbolic texture and position information,
as shown at time t1 in Figure 4. This anchor contains the
information that the parcel is striped, and in the region
covered by the RFID reader. Since Pippi knows the ID of the
parcel (the ID is a proper ID), it can create a global anchor
for parcel-21, which for now is the same as α1

1.
Information 2 (Perceptual): Astrid sees three parcels,

and provides three corresponding local anchors, as shown at
t2 in Figure 4. The anchor α2

1 does not match parcel-21’s
texture. The anchor α2

3 does not match parcel-21’s position.
Anchor α2

2 matches both in the texture and position domains,
and is fused with the previous information. The global anchor
now also contains color information about the parcel, based

on the color of α2
2. However, the position estimate for parcel-

21 has not improved, since Astrid was poorly localized; this
can be seen from the fact that all three local anchors have
very imprecise position information.

Information 3 (Perceptual): Pippi detects two parcels,
as shown at t3 in Figure 4. Both local anchors match the
position estimate for parcel-21; however, only α3

1 matches
the color information provided by α2

2. This anchor is there-
fore combined with the previous information, and the global
anchor now has an improved estimate of parcel-21’s position.

Information 4 (Perceptual): Camera-01 sees four
parcels. Only α4

1 matches the position estimate for parcel-
21, and only this anchor is shown at time t4 in Figure 4.
This information is combined with the previous information,
yielding a very accurate position estimate for parcel-21.

VI. CONCLUSIONS

The main contribution of this paper is the definition of
both the cooperative anchoring problem, and a general com-
putational framework to address it. The problem shares some
common points with multi-target multi-sensor tracking and
other similar problems; however, the problem is different,
mainly because of its emphasis on the principled integration
of multiple, highly heterogeneous sources of information.

The experiment shown in this paper is meant to illustrate,
not validate, our framework. Future work will involve a
systematic validation of both the generality of the framework,
and its effectiveness in reducing uncertainty and ambiguity.
We plan to use a progression of scenarios, using both real
robots and simulations, to do this.
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Fig. 4. The contents of local anchors exchanged at given times are shown in the three columns labelled texture, color, and position. The coordinate
systems used for these domains are shown at the top of the figure. Possible values are drawn dark, impossible values are light. At time t1, one local anchor
is provided by rfid-01 (r1). At time t2, three local anchors are provided by Astrid (r2). At time t3, two local anchors are provided by Pippi (r3). At
time t4, camera-01 (r4) provides four local anchors, only one of which is shown. At each time, the anchor which matches the current information about
parcel-21 is fused with previous information, and the resulting global anchor’s position information is shown on the right.
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