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Abstract— Simulation is frequently used in the study of
multi-agent systems. Unfortunately, in many cases, it is not
necessarily clear how faithfully the details of the simulated
model represent the behavior of the physical system. Often,
the effects of the environment in which the system is to be
placed are even neglected entirely. Taking into account the entire
system (including interactions with the target environment),
establishing a clear hierarchy among multiple levels of modeling
not only enhances the fidelity of the individual models, but
also emphasizes the tradeoffs inherent in each. Understanding
and leveraging the full spectrum of models allows the use of
fast, high-level models for exploration in the parameter space,
the results of which can be verified on more precise low-level
models. Here, we demonstrate the generation of a family of
models for a robotic wireless sensor network engaged in an
acoustic detection task. Quantitative correspondence is shown
between modeling levels and with the physical system.

I. INTRODUCTION

By the canonical definition, a sensor network is a system
consisting of “many spatially distributed low-cost sensing
nodes that collaborate with each other but operate au-
tonomously, with information being routed to whichever
node can best use the information.” [1] Particularly as recent
focus has shifted heavily toward wireless sensor networks
and their potential to bring “spatially distributed collabora-
tion” closer to “low-cost” ([2], [3]), the question of how to
efficiently design and manage control of such networks is of
ever increasing importance.

Many of the most common sensor network applications
to date have been based upon the sampling of continuously
available parameters (such as temperature, humidity, or other
environmental factors, as in [4], [5]), which has allowed them
to take advantage of extremely low duty cycles in the interest
of extending network lifetime. However, in situations where
the phenomena of interest are spatially and/or temporally un-
predictable, the problem becomes slightly more complicated
and the response of the network to environmental changes
necessitates increased dynamism in behavior.

While there have been several attempts at modeling sensor
networks for data filtering [6], [7], data prediction [8],
network classification [9], [10], and system performance
[11], all such work that we are aware of tends to focus
on a single level of modeling for a very specific aspect of
the system (typically either sensing or networking). Here we
propose a slightly different approach: applying a statistical
multi-level modeling methodology which allows us to capture
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the dynamics of the entire system together, at multiple
levels of abstraction. This type of analysis has become
commonplace in swarm-robotic systems [12], and should be
equally applicable to sensor networks—which can also easily
be considered multi-agent systems, just with slightly different
constraints and capabilities.

Sensor networks produce spatio-temporal monitoring data
which can be considered both dense, compared with tra-
ditional monitoring and measuring techniques, and sparse,
compared with the information gathered and used for the
control of many multi-robot systems. A robotic sensor net-
work has the potential to capitalize on benefits from the
extremes of both systems: power management and explicit
communication from the network; self deployment, reconfig-
uration, and collection afforded by the ability of the robots to
self-locomote. Not all of these capabilities will be exploited
here, but we hope to leverage these possibilities in the future.

An element frequently encountered in many distributed
systems is the concept of consensus [13], which is applied
in mobile networks of autonomous agents [14], in stationary
wireless sensor networks [15], and as bacterial quorum in
natural systems [16]. Here we use a simple fully distributed
consensus algorithm as a case study.

The remainder of the article will be organized as follows:
Section II explains the basic structure and motivation behind
multi-level modeling, and in Section III we present a simple
concrete case study (and a physical implementation of the
same) as an example system which can be modeled. In Sec-
tion IV, a brief overview of the different microscopic models
and their construction and calibration is given (module-
based, continuous spatial, discrete spatial, and discrete non-
spatial). Obtained results are presented in Section V and
compared in Section VI, along with concluding remarks and
future directions.

II. THE MULTI-LEVEL MODELING HIERARCHY

Performing systematic experiments directly on the tar-
get hardware system can be cumbersome, costly, time-
consuming, or even impossible for logistical reasons such
as safety or availability—particularly in multi-agent systems.
However, by demonstrating correspondence with higher ab-
straction layer representations of the system, we can gather
and analyze additional information which may eventually be
applied back to the design and control of the target system.
In this context, simulation can therefore be a very useful tool
for bridging the gap between theory and experiment. It is not
intended to be a substitute for real experiments, but rather
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Fig. 1. An example of a hierarchical suite of models. Higher level models
are simpler and faster, while lower levels are more complex, precise, and
accurate in their representation of the target physical system. Performance
metrics are shared between all levels, allowing us to exploit the advantages
of any and all the levels where appropriate, while results which are directly
and quantitatively comparable. Note that macroscopic models (e.g., rate
equations) are not yet treated in this paper.

a supplement, allowing additional flexibility and diversity in
the tests performed.

The real system naturally forms the basis of the hierarchy,
representing the ground truth against which the subsequent
modeling levels will be evaluated. Once the hierarchy has
been established, the faster high-level models can be used for
broad exploration of potential modifications to the algorithm
and its parameters, and results of interest can then be verified
on the more accurate low-level models. A brief overview of
the types of models that will be presented in Section IV is
shown in Fig. 1.

III. CASE STUDY: DETECTING ACOUSTIC EVENTS

In general, the problem of resource allocation is not
limited to power management within the network, but ex-
tends also to the treatment of data and interrupts destined
for the operator, outside the network. Various monitoring
and detection applications naturally have a wide range of
requirements regarding false positives and false negatives,
and the relative severity of either occurrence.

For the purposes of illustration, we will consider a scenario
in which false positives are particularly undesirable, as
they may trigger the invocation of a costly (or otherwise
resource-intensive) procedure. Such an environment places
particular emphasis on measurement confidence, and we
have constructed a simplistic collective decision algorithm
accordingly, exploiting the multi-level modeling framework
to carry out further systematic exploration of its behavior
and perform some analysis.

Acoustic event detection has been selected as an example
of a domain where the measurement target is unpredictable in
space and time. Our treatment here will use acoustic events
as an illustration, but may be straightforwardly applied to
any modality which is localized in space and time.

In this system, we will attempt to increase measurement
confidence by requiring a consensus among an arbitrary
integer C different nodes that a significant event has oc-
curred, despite the presence of an additional, lower intensity,
“undesirable” source (proportional to the intensity Ie of the
desirable events: Iu

Ie

= {0.5, 0.75, 0.95}).

A

N
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D

Fig. 2. Illustration of basic characteristics and parameters of the experi-
mental setup. Sixteen nodes were spaced approximately 50 cm apart on a
grid in a 1.5 by 1.5 meter area. (The rdet and rcom are shown here as
Heaviside approximations based on Pdet(r) and Pcom(r) (see Fig. 6 for
details).

A. Performance Metric
In order to have a quantitative method of reporting system

performance, we define a metric function M in terms of
the number of desirable events successfully detected and
the number of undesirable events successfully ignored, in
relation to the actual number presented:

M(α, β) = α
Edet

Etot

+ β

(

1 −
Efp

max(Efp, Etot)

)

(1)

where Edet is the number of events reported, Etot the total
number presented, and Efp the number of false positives re-
ported. The coefficients α and β may be balanced according
to the severity one wishes to associate with either term, so
long as they sum to one for normalization.

B. Experimental Setup
The physical aspects of the system and its environment

can be described by a set of six parameters (as illustrated in
Fig. 2):

A area of interest
N number of available nodes
D(N) distribution of available nodes
E set of events occurring in the environment
Pdet(r, Ie) probability of detecting an event of intensity Ie

at a distance r
Pcom(r, It) probability of message reception with intensity It

at a distance r

Of these, A, N , and D may be directly and arbitrarily
selected by the experimenters (though the precise realization
of D(N) may be perturbed by noisy factors beyond their
control). Characteristics of the desired target events E are
specifiable, but the actual events (and their locations, times,
etc. . . ) are by definition unpredictable. The two probabilities
Pdet and Pcom, while indirectly controllable, are often in-
herent qualities of the physical agent being used, and should
be determined empirically for the chosen hardware.

C. Hardware Platform
The experiments described here were performed on a fleet

of e-pucks1 (a miniature robotic platform recently developed
at the École Polytechnique Fédérale de Lausanne, shown
in Fig. 3-Left) [18]. The standard e-puck has a trinaural
microphone array on-board, which was used in conjunction

1http://www.e-puck.org
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Fig. 3. LEFT: The e-puck, a small-scale experimental robotic platform.
Shown here with the radio communication board stacked between the basic
module and the jumper board, allowing the implementation of sensor net-
works and other networked robotic systems. RIGHT: The experimental setup
described in Section III-B. The 16 nodes arranged in a grid configuration
remain stationary (fixed), while the event source wanders randomly around
the arena emitting short acoustic events at 1 second intervals. Markers are
placed on top of the robots for tracking with an overhead camera.

with a simple digital filter to detect acoustic pulses at approx-
imately 3.6 kHz. It is also equipped with a small speaker,
allowing it to emit sound. Additionally, the e-pucks have
been fitted with a custom extension turret for short-range
radio communication using the subset of the 802.15.4 and
ZigBee protocols present in TinyOS (an embedded operating
system commonly used in wireless sensor networks) [17],
and are therefore fully interoperable with the commercially
available MicaZ [2] and Telos [3] platforms. The trans-
mission power of the communication module is software-
controllable, and passes through a custom attenuation circuit
yielding effective maximum ranges between approximately
10cm and 5m. More details about the radio turret used can
be found in [18].

For the present study, we construct the default physical
system by distributing N = 16 agents over a regular grid
(D = 50cm spacing) in a rectangular arena (A = 1.5 × 1.5
meters). Each robot is equipped with a communication device
(radio) and an acoustic sensor (trinaural microphone array).
Acoustic pulses of a certain amplitude (Ie = 9, 000, in the
scaled arbitrary units used within the firmware controller)
are seen as events of interest, and are generated, at 1 second
intervals, on this area at random locations by a 17th agent
unrelated to the established network in any way.

D. Control Algorithm and Parameters
Let us build a finite state machine controller (shown in

Fig. 4) for the system as follows. In our setup, we require
an event to be detected by at least C nodes before it is
reported. A node in the “listen” state that perceives an event
(“detection”) will announce the tentative detection (“notifi-
cation”) to a subset of the network (the nodes within com-
munication range; default being single-hop broadcast), and
wait in the “event” state for a similar notification message
(“confirmation”) generated by another node in the network
before reporting a significant event at the system level. If
no confirmation is received within a specified “timeout,” it
simply returns to the “listen” state.

As radio waves travel faster than sound waves, it is also
possible to receive a “notification” before detecting an event;
hence the left side of the diagram.

Fig. 4. Basic description of the individual controller algorithm as a
finite state machine for C = 2. All nodes begin by “listening,” and upon
either detecting an “event” or receiving a notification “message,” wait a
short period of time for the complimentary signal before returning to the
“listen” state either successfully (having observed a matched pair of the two
signals) or unsuccessfully (timeout, most likely indicating a false positive).
Therefore, an event is only reported at the level of the entire network if
detected by at least two nodes (this occurs as part of the transition marked
“confirmation”).

This adds three more control parameters into the system
description:

Te timeout after hearing an event, waiting for message
Tm timeout after receiving a message, waiting for event
C number of confirmations required for event acceptance

For the present setup, Te and Tm can be selected as a function
of the node spacing, the speed of sound, and the effective
communication range. An event passing at the speed of sound
will travel out of the area of interest in approximately 10
milliseconds; therefore even accounting for some potential
processing and sending delay, Te = Tm = 0.5 seconds
is more than sufficient, and still significantly below the
expected delay between events.

In principle, C may be chosen arbitrarily, but there may
be application specific instances in which certain values of
C may be optimal, and others implausible (as a function of
the field being monitored and the agents being used). Where
necessary to further the example, we will continue to use
C = 2, as in Fig. 4.

E. Implementation in Hardware

The three-state controller described in Section III-D was
implemented to run in-situ on the individual nodes, and
16 nodes were arranged as shown in Fig. 2 and Fig. 3-
Right. The event source is mobile, and wanders freely about
the arena avoiding obstacles and emitting acoustic pulses,
but does not interact in any other way with the observing
network. One hundred events of each type (“desirable” and
“undesirable”) were generated at random locations within
the area of interest, and the response of the network to each
event was recorded. (Results are presented in Section V.)

IV. MICROSCOPIC MODELS

Microscopic models represent each agent in the system
individually (in contrast with macroscopic models, which
attempt to capture the dynamics of the aggregate system
as a whole into a single model). The way in which these
individual agents are modeled, however, can have a profound
effect on both realism and complexity.
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Fig. 5. LEFT: A simulated model of the e-puck in the realistic simulator
Webots. RIGHT: A simulated version of the physical setup shown in Fig. 3.
Radio communication is provided by a plug-in wrapper for the OMNeT++
network simulation engine, and acoustic dynamics are modeled using the
Image-Source method (walls not visible in picture).

Fig. 6. The probabilities Pdet(r) of detecting an event (left) and
Pcom(r) of successful communication (right) versus radial distance r to
the robot for several emitted intensities or transmission powers. Sigmoidal
regressions are shown for the physical system (dashed lines) and the module-
based simulation (solid lines). The vertical dotted lines indicate threshold
approximations at P (r) = 1

2
.

A. Module-Based Microscopic Model

The first abstraction layer we will consider is the module-
based microscopic model. While obviously a simplified ver-
sion of the real world, this level still maintains as much
realism as possible by preserving intra-node details, such
as the individual sensors and sensing modalities, actuators,
transceivers, etc.

In order to accurately capture the dynamics of a robotic
sensor network engaged in the detection of acoustic events,
it is necessary to include several key components in our
module-based microscopic model. The first required compo-
nent is a realistic description of the e-puck robotic platform
in the Webots simulator [19] (Fig. 5-Left). Beyond the
creation of the 3D model for the robots, it was necessary
to properly calibrate the input and output responses of
sensors and actuators (namely, infrared proximity sensors
and motors) to match those of the real platform. This was
accomplished via extensive experiments with real e-puck
robots. The second required component is accurate modeling
of acoustic dynamics. A modified version of the Image-
Source sound propagation algorithm [20] which can simulate
an environment with mobile speakers and microphones was
implemented as a simulation add-on. This techniques models
reflection and attenuation (but not diffraction) and was found
to be a good trade-off between accuracy and speed of
simulation. The third required component is realistic radio
communication between robots. We implemented this by
wrapping the OMNeT++ [21] network simulation engine,

which handles channel coding and fading signal propagation,
as a plug-in for the Webots simulator. A new 802.15.4/Zig-
Bee module was developed to match the radio turret present
on the real e-puck robots.

These modules were calibrated using data obtained from
real-world experiments; a comparison between the responses
of the simulated and real modules can be seen in Fig. 6. The
experiment described in Section III was then performed in
simulation (Fig. 5-Right); results shown in Section V.

B. Continuous Spatial Microscopic Model
The module-based microscopic model can be further ab-

stracted by omitting explicit descriptions of robot features
and instead treating each robot as a basic state machine
operating in a simplified environment; we denote this as an
agent-based microscopic model. Three different abstraction
levels of time-discrete agent-based microscopic models are
considered: a continuous spatial model, a discrete spatial
model, and a non-spatial model.

In the continuous spatial model, instead of a moving sound
source, a Monte Carlo simulation was used for generat-
ing spatially and temporally random acoustic events which
propagate for a fixed radial distance at the speed of sound.
Radio communication between robots was assumed to be
instantaneous and with a fixed radius of propagation. The
results of a Matlab simulation of 1000 events using this
model are shown as part of the comparison in Section V.

C. Discrete Spatial Microscopic Model
It may also be possible to combine the benefits of the

additional detail provided by a spatial representation with
the simplicity and speed of a non-spatial model (which will
be shown below), by recognizing certain regular structures in
the system. Given that we have modeled sensing and commu-
nication radially, it is clear that these ‘overlapping circles’
will generate several regions (or in a regular deployment
such as this one, classes of regions) which are covered by
different numbers of nodes. When the node positions are
known, these regions can be calculated exactly; and when
the node placement is regular, they can even potentially be
specified in a general form.

Indeed, Fig. 7 shows precisely how the relationship be-
tween the radius of detection and a regular grid spacing
affects the percentage of the area of interest which is covered
simultaneously by any given number of nodes. Obviously, in
the presence of measurement noise, these functions will be
perturbed slightly, but the basic characteristic will remain
essentially unchanged. This then presents us with additional
information, which we did not have previously, regarding the
selection of C and how the various parameters of the system
are interdependent. Looking at this graph, for our present
case of C = 2, we can clearly see that a sensing radius of
less than the grid spacing will result in certain areas where it
is simply not possible for an event to be heard by two nodes.
Now, in this case, particularly after describing it in this way,
that particular conclusion may seem to be intuitive; however,
the increasingly tangled mess of curves towards the right side
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Fig. 7. Probability of an event at a random location being detected by k

nodes, as a function of the sensing radius and the grid spacing. While it
is possible to solve the for these curves in a piecewise analytically exact
fashion, it rapidly becomes tedious. The data shown here was generated by
a Monte Carlo simulation of 1,000,000 points.

of the plot should make it clear that this is not necessarily
always the case.

Interestingly, as this also clearly implies a finite set of
such regions for any specified rdet

D
, there is even the pos-

sibility of modifying the state machine shown in Fig. 4 to
include unique ‘event’ states for each class of event location,
though it is not immediately clear that this would be to our
advantage. It is possible (and a topic of ongoing inquiry)
that such a formulation may even lend itself amenably to a
macroscopic model, allowing us to make statements about a
system of arbitrarily many agents using a single model for
the collective.

The spatial discretization was performed as follows:
whereas the graph shown in Fig. 7 is the result of 1,000,000
uniformly distributed random events, a quantization of the
event space into only 900 evenly spaced fixed locations
results in an average error of less than 0.78%. This allows
us to pre-compute the network response to an event at each
of a relatively small finite number of fixed points, for an
additional gain in simulation speed, with very little effect on
the quality of the simulation (see Fig. 9).

D. Non-Spatial Microscopic Model

For the non-spatial model, we no longer consider events
to exist at a particular spatial location, but rather to be
positionless occurrences which are detected by a node with
some probability. The agent controllers then become Markov
Chains which transition at discrete fixed time steps (see
Fig. 8). Transition probabilities for these Markov Chains
(i.e. the probability of event arrival Pe and the probability
of message arrival Pm) can be calculated analytically from
system parameters using the geometrical methods shown in
[22]; and as before these calculations were also verified by
comparison with the results of the real system and the other
microscopic models.

Fig. 8. The deterministic responsive controller from Fig. 4 modified
with transitions labeled by the probability of encountering the associated
stimulus, yielding a probabilistic finite state machine (PFSM). This Markov
chain can then be iterated over in a non-spatial manner.

Fig. 9. Comparison of results for the physical system and all four of
the modeling levels presented for the source discrimination experiment
described in Section III. Mean and standard deviation over 5 runs of 50
events for the real system, and 20 runs each of 100, 1,000, 1,000, and
10,000 events for the module-based, continuous spatial, discrete spatial, and
discrete non-spatial models, respectively.

V. RESULTS AND COMPARISON OF MODELING LAYERS

Here we can finally see, in Fig. 9, the output of each
modeling level side-by-side for the source discrimination
experiment described in Section III. The ‘undesirable source’
was assigned an intensity Iu proportional to that of the
target source Ie ( Iu

Ie

≈ {0.5, 0.75, 0.95}) and C = 2. Five
experimental runs of 100 events were performed on the
real system, and each of the models were run 20 times;
for 100 (module-based), 1,000 (continuous spatial), 1,000
(discrete spatial), and 10,000 events (discrete non-spatial),
respectively. Fig. 9-Top shows M

(

α = 1

2
, β = 1

2

)

, an even
balance between the two contributing terms of the metric; the
lower plots show the extreme cases M(1, 0) and M(0, 1).

All four models reflect similar trends which closely re-

3294



TABLE I
COMPARISON OF SIMULATION TIMES FOR THE VARIOUS MODELS.

Model Speed Factor
Non-Spatial Microscopic 90.81x

Discrete Spatial Microscopic 23.27x
Continuous Spatial Microscopic 17.07x

Module-Based Microscopic 1.36x
Physical System 1.0x

semble the behavior of the real system—despite substantial
differences in computational complexity (in some cases,
more than an order of magnitude in execution time, see
Table I). More experiments are needed to identify subtle
effects of different modeling design choices on a given metric
related to this case study.

VI. REMARKS, CONCLUSIONS, AND FUTURE WORK

Here we have shown the application of a multi-level
modeling methodology to a robotic wireless sensor network
tasked with the reliable detection of acoustic events. Clear
correspondence has been demonstrated at each abstraction,
giving us objective grounds for justifying the applicability
of experiments performed at higher abstraction levels to the
target physical system. These higher levels can subsequently
be used for extensive exploration of different possible pa-
rameters and controllers which would simply be infeasible
otherwise. The results of such exploration can then be
verified in a more detailed, lower-level model.

This is a basic formulation, with plenty of avenues open
for refinement, but the essence of the multi-level framework
is that it places overt and primary emphasis on maintaining
a view of the whole system by providing an intuitive and in-
cremental process for building descriptions and abstractions
of the system at several levels.

Other obvious additions that we are currently studying
include the adaptation of the models to deal with nonlinear
systems in more a general way, particularly those involving
spatial metrics. Eventually, we would also like to explore
the possibility of applying a macroscopic model as well,
incorporating all of the system dynamics into a single,
concise representation, neglecting even the individuality of
the agents, as previously done in swarm robotics systems.
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