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 Abstract – Autonomous deployment of mobile agents for 
coverage enhancement is an important issue in wireless sensor 
networks. The major challenge lies in the requirement of 
efficient distributed and localized computing. In addition, 
managing the coverage of heterogeneous sensing model is 
complicated due to the diversity of sensing ranges and the 
irregularity of coverage holes. This paper presents two 
distributed algorithms for maximizing the sensing coverage in 
heterogeneous sensor networks. The first algorithm is based on 
a circle packing technique. We prove the uniqueness of a circle 
packing up to a given triangulation and boundary conditions, 
thus the designated coverage layout can be achieved by 
controlling the boundary conditions. In the second algorithm, 
we give a formulation of virtual forces among sensor nodes to 
reduce redundant overlaps and avoid coverage holes. We 
prove that these virtual forces always give a quasioptimal local 
coverage. This method is applicable for deployment of sensor 
nodes in, not only an open field, but also any bounded field of 
interest and/or in the presence of obstacles. Numerical 
simulations are showed and these examples verify that the 
proposed algorithms always yield sensor deployments of wide 
coverage and collision free motions among sensor nodes. The 
proposed strategies utilize only the local information about a 
sensor node and its neighbors, thus providing distributed, 
efficient and scalable solutions to the deployment problem.  
 
 Index Terms – Circle packing, deployment, mobile sensors, 
sensing coverage, wireless sensor network. 
 

I.  INTRODUCTION 

 Wireless sensor network has a lot of remarkable merits 
such as high sensing fidelity, on-board process, fault 
tolerance, rapid deployment and low cost. These features 
enable a wide range of practical applications for sensor 
networks. Each sensor node in a mobile sensor network is 
capable in communication, environmental sensing, data 
storage and processing and locomotion. Mobility enables a 
number of important functionality in sensor networks such 
as coverage maximization, adaptive sampling, network 
repair, localization and energy harvesting. 
 There is a significant necessity of distributed algorithms 
for autonomous deployment of active sensor networks. The 
sensor nodes are ready to self-deploy in a dynamic and 
inaccessible environment. Considerable efforts have been 

put on the deployment problem of sensor networks. [1] 
presented a potential-field-based approach to spread sensor 
nodes in a target environment. However, it does not 
consider some crucial problems like connectivity 
maintenance and topology control. The potential-field-based 
algorithm and the virtual force algorithm (VFA) presented 
in [2] work in a similar fashion. They increase sensor 
coverage by considering the virtual attractive and repulsive 
forces exerted on each sensor node by neighbor nodes 
and/or obstacles (if any). VFA assumes all sensor nodes are 
able to communicate with their cluster head which is 
responsible for calculating sensor movement and the target 
location. Moreover, these works only consider 
homogeneous sensing models, for which sensors need to 
have an identical sensing capability.  
 Heterogeneous sensor network allows the coexistence 
of sensors of different genres and ranges on a common 
platform. The sensing areas of nodes are modeled as circles 
of different radii. The deployment problem is intuitively 
transformed as a problem of placing a number of circles of 
different sizes over an open field or prescribed field of 
interest. A deployment algorithm based on the circle 
packing techniques is proposed in [4]. We adopt the 
Delaunay triangulation to model the network topology. 
Then, we use a pruning technique to enlarge the boundary 
of the mesh so that the coverage size would not be 
constrained due to the convex layout of the original mesh. 
The radius of each interior sensing circle is adjusted so that 
the packing condition is satisfied. Then, the geometric 
realization of the circle packing result is done by fixing one 
node and one of its neighbors via overlap packing. We 
proved that a global scaling on a circle packing can always 
vanish interstices of any triple which represent coverage 
holes. 
 In this paper, two distributed and autonomous 
deployment algorithms for heterogeneous sensor networks 
are presented. The network topology is constructed as a 
triangulation. The first deployment algorithm is an 
enhanced version of the circle packing based method 
presented in [4]. We prove the uniqueness of circle packing 
and its dependence on the boundary conditions. 
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Consequently, the designated coverage layout can be 
effectively achieved by controlling the boundary conditions. 
The second algorithm is a virtual force based algorithm, 
thus it can deal with obstacles and field of interest. It can be 
applied to both fixed and adjustable range sensor nodes. We 
propose an effective method inspired from the angle sum in 
circle packing to define the virtual forces. It aims at 
eliminating coverage holes and reducing coverage overlaps 
(turn out enlarging overall coverage size) among the 
sensing circles. The proposed approaches can effectively 
deploy the sensors to give a wide coverage, eliminate 
coverage holes, reduce coverage overlaps and avoid 
obstacles. As both algorithms utilize only the local 
information about a sensor node and its neighbors, they 
provide a distributed, efficient and scalable solution to the 
deployment problem. 
 The remaining of this paper is organized as follows. 
Section II presents the preliminaries and assumptions. In 
Section III, we explain the term angle sum and its 
monotonic properties. We give an overview of the circle 
packing problem and prove the uniqueness of a packing. In 
Section IV, we present a virtual force based deployment 
algorithm. We give the formulation of virtual forces that 
yield a quasioptimal local coverage of a flower. In Section 
V, by means of simulation examples, we evaluate the 
performance of our deployment algorithm. Finally, 
concluding remarks are given in Section VI. 

II. PRELIMINARIES AND ASSUMPTIONS 

 Suppose we are given a set of n mobile sensor nodes 
{ }n21 vvvV ,,, L=  in the plane. The location of sensor vi is 

precisely known and given by Euclidian coordinates zi. The 
Euclidean distance between two points vi and vj is denoted 
by dij, i.e. ji zz −=ijd . The sensor nodes vi have the same 

communication range rc but different sensing ranges ri, 
n1i ,,L= . The communication and sensing areas covered 

by sensor nodes are modelled as circular discs. The 
communication graph defined by all wireless nodes V is a 
unit-disk graph UDG(V), which has an edge vivj if and only 
if cij rd ≤ . We assume this graph is connected when the 
sensor nodes are initially located at random positions (inside 
the field of interest if applicable). We further assume that 
the communication range is longer than the summation of 
any two of the sensing ranges, i.e. jic rrr +> ji,∀ , such 
that any two sensor nodes are able to communicate while 
their sensing circles are touching. Each sensor node is 
capable of broadcasting the identities, positions and sensing 
ranges of itself and its one-hop neighbors. We assume there 
is a topology control protocol to construct the network 
topology as a connected and triangulated graph, and the 
degree of every node in the graph is not less than three. The 
network topology, denoted by complex K, is a subgraph of 
UDG(V). We may employ the localized Delaunay 
triangulation protocol proposed by [5], while we assume, 
upon the initial random placement, no holes may exist in the 

triangulation complex K and every boundary node has at 
least one neighbor that is an interior node. 

III. ALOGRITHM I: CIRCLE PACKING BASED 
HETEROGENEOUS SENSOR NETWORK DEPLOYMENT 

 This section reviews the circle packing problem and its 
linkage to the deployment problem. We will then give the 
proof of uniqueness of circle packing and an enhanced 
algorithm. A hierarchy of circle packing structure consists 
of several levels of components, namely circles, triples, 
flowers and packings [6]. In the remaining of this paper, we 
always refer a circle ci as the sensing region of a certain 
sensor node vi. The coordinates of circle centers refer to 
sensor node positions zi and radii refer to the corresponding 
sensing ranges ri. The number of petals defines the degree k 
of the central circle. The condition that every circle has such 
a flower is a local planarity condition that we will enforce 
on all our packings. We first give an important term, angle 
sum, in circle packing and its monotonic properties. We 
then define the circle packing problem. We prove that any 
complex K with fixed boundary radii always has a unique 
circle packing such that any two circles are tangent 
whenever their associated nodes form an edge in K. As the 
computation of a circle packing can be accomplished 
distributedly, it fits the needs of scalability for sensor 
networks.  
A. Angle Sum 
 For each triple of radii ri, rj and rk, the Law of Cosines 
gives the angle α in a corresponding triple of circles, as 
shown in Fig. 1(a). If we add these individual angles over 
the k triples involved, we get the angle sum θ  for this label 
at v. Suppose },,,;{ k21v vvvvF L=  is the flower for v in K. 
Vertex v belongs to m faces, where m=k if v is interior and 
m=k-1 if v is boundary. In a flower having central label r 
and petal labels { }k21 rrr ,,, L , the angle sum is given by the 
following summation formula, where m=k and rk+1=r1 if the 
flower is closed, and m=k-1 otherwise: 
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Note that the calculation of angle sum does not require any 
sensor node coordinates, only sensing radii are involved.  

    
  (a)       (b)  
Fig. 1. (a) Angle α defined by the Law of Cosines of a triple.  (b) Another 
derivation of angle α by the constructing the triangle incircle of a triple. 

 
 When the petal radii are fixed, a bigger central circle 
will have a smaller angle sum. On the contrary, if the central 
circle radius is fixed, the angle sum is strictly increasing 
with any petal radius. Therefore we come to the following 
lemma. 
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 LEMMA 1 (Monotonicity in flower). Let 
{ }k21v vvvvF L,,;=  denote a flower with central vertex v 

and a chain of k petals { }k21 vvv L,, . Let { }k21 rrrr ,,,; L  be 
the list of radii of the circles in Fv and write )(vθ the angle 
sum at v as a function of k21 rrrr ,,,, L . Assume ∞<r , 

)(vθ  is strictly decreasing in central circle radius r  and 
strictly increasing in petal radii ri that are finite. If 0r = , 

πθ kv ≡)( . If ∞=r , then 0v ≡)(θ . 
 It is not difficult to prove Lemma 1 by expressing the 
inradius rin (Fig. 1(b)) with the aid of the Heron's formula 
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1jj
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to obtain a easier derivative of the angle sum with a new 
expression. The flower of an interior node can be realized as 
a closed geometric flower if and only if πθ 2= . We call 

πθ 2rrrr k21 =),,,;( L  the packing condition.  
 LEMMA 2. Let ak21a rrrr θθ =:),,,;( L  and 

bk21b rrrr θθ =:)',,',';( L  be the angle sums of two flowers 
Fa and Fb of same number of petals. Suppose ba θθ = . If 

'ii rr ≥  for k1i ,,L= and 'ii rr >  for some i (i.e. ri and ri' 
are not all equal), then ba rr > . 
 Lemma 2 is easily followed from the two 
monotonicities in Lemma 1. In particular, for closed flowers 
(i.e. πθ 2= ), Lemma 2 suggests a resizing mechanism; 
increasing (decreasing) some petal radii will spontaneously 
increase (decrease) the central radius in order to maintain 
the packing condition.  
B. Circle Packing Problem 
 DEFINITION 3 (Circle Packing Problem). Given a 
complex K and a set of positive numbers correspond to the 
radii of the boundary nodes, the problem of finding the radii 
for all interior nodes such that the angle sum at every 
interior node satisfies the packing condition is called circle 
packing problem.  
 We call the set of radii imposed for the boundary nodes 
as boundary condition for K. We may also refer boundary 
condition as the collection of angle sums at the boundary 
vertices (adjusting the radii will eventually achieve the 
prescribed angle sums). The set of radii },,{ L21 rrR =  for 
all vertices, composed of the given radii of boundary nodes 
and the solution of the set of interior circle radii to the circle 
packing problem, is called packing label. Denote )(vR as 
the radius of an individual vertex v. )(RK  is referred as 
labeled complex. The circle packing P for )(RK  is in 
particular composed of the set of circles of {vi} such that 

)( ii vRr = . The importance of the circle packing problem 
relies on the uniqueness of its solution. 
 THEOREM 4 (Uniqueness of Circle Packing). Given any 
assignment to the radii of boundary vertices of K, there 
exists a unique circle packing for K. The circle packing 
problem always yields a unique solution. 

 PROOF. We will do the proof by Mathematical 
Induction (M.I.). Consider the following statement S(n) for 
all natural number n: for any complex Kn with n interior 
nodes and a set of fixed boundary node radii, there exists a 
unique circle packing Pn for Kn. 
 For n=1, complex K1 is simply a flower as there is only 
one interior node. The packing condition for a flower to be 
closed is that the angle sum of the only interior node equals 
2π. According to Lemma 1, angle sum θ is strictly 
decreasing in r. Thus, there exists a unique solution of r for 

πθ 2= . Therefore, S(1) is true. 
 Assume S(m) is true, that is, there exists a unique circle 
packing Pm for any complex Km with m interior nodes and a 
set of fixed boundary node radii. According to Lemma 2, if 
any boundary circle radius increases, the radius of the 
interior circle immediately adjacent to that boundary circle 
will increase in order to maintain the packing condition. 
Consequently, like the domino effect, all the interior circle 
radii will increase simultaneously. 
 Now we need to prove that S(m+1) is also true, that is 
for any complex Km+1 with m+1 interior nodes and a set of 
fixed boundary node radii, there exists a unique circle 
packing Pm+1. We will do it in a proof by contradiction. 
Assume to the contrary that there exist two different circle 
packings Pm+1 and Pm+1' for complex Km+1 and they share 
the same boundary condition. Suppose vb is a boundary 
node and connected to one interior node v~  (Fig. 2). 
Without loss of generality, we assume 

)'~()~( 1m1m PsRPsR ++ > , that is the radius label of node v~  
from packing 1mP +  is greater than that from packing Pm+1'. 
Consider a complex 1mm KK +⊂  containing exactly the 
same contents of complex Km+1 except that the node v~  
becomes a boundary node of Km and the boundary node vb 
of Km+1 is absent in Km. Km is literally the clone of complex 
Km+1 with boundary node vb removed. Consider two 
particular boundary conditions for Km: )~()~( 1mPvRvR +=  

and )'~()~( 1mPvRvR += , while all other boundary nodes of 
Km, except v~ , have fixed radii which are correspondingly 
equal to that imposed for Km+1. Since S(m) is true, there 
exists two distinct circle packings mP  and 'mP  for complex 
Km under the two boundary conditions respectively. 
Moreover, )'~()~( mm PvRPvR >  implies that 

)'()( mm PvRPvR > for all interior node v of Km. Suppose Km 
contains N boundary nodes. Then, two N-sided polygons Π 
and Π' (Fig. 2) are formed by connecting all the centres of 
the chains of N boundary circles in Pm and Pm' respectively. 
Each interior angle of the polygons is exactly the angle sum 
at the corresponding boundary node. Since all the interior 
circles in Pm is greater than the corresponding circle in Pm', 
at every boundary vertex except v~ , the interior angle of 
polygon Π is strictly greater than that of polygon Π'. 
However, the sum of interior angles of any N-sided polygon 
is constant (i.e. π)( 2N − ), thus the interior angle at  v~  of 
polygon Π is strictly smaller than that of polygon Π'. 
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Therefore, the angle sum at v~ in Pm is strictly smaller than 
that in Pm', i.e. )'~()~( mm PvPv θθ < . Let va and vc be the 
boundary nodes adjacent to vb. Notice that va, vb and vc are 
petals of flower sF~  in Km+1. Denote α1, α2, α1' and α2' as 
the angle α  of triples as shown in Fig. 2. According to the 
proof of Lemma 1, angle α  is strictly decreasing in the 
central circle radius. Since )'~()~( mm PvRPvR > , we have 

'11 αα <  and  '22 αα < . However, 21m 2Pv ααπθ −−=)~(  

and '')'~( 21m 2Pv ααπθ −−= . Thus, )'~()~( mm PvPv θθ > . 
This contradicts to the above result. Consequently, we 
conclude that S(m+1) is true; there exists a unique circle 
packing Pm+1 for complex Km+1 with m+1 interior nodes and 
a set of fixed boundary radii. By M.I., S(n) is true for all 
natural number n, there exists a unique circle packing P for 
complex K with a specified boundary condition to achieve 
packing condition at every interior node.        ■ 

 
 
 
 
 
 
 
 
 
 
 
 

(a) Circle Packing Pm 

 
 
 
 
 
 
 
 
 
 
 
 

(b) Circle Packing Pm' 
Fig. 2. Polygons Π and Π' from two different circle packings Pm and 

Pm', )'~()~( mm PvradiusPvradius > . 
 
 THEOREM 5 (Maximal Circle Packing). Given any 
complex K. Assume each boundary node has an upper 
bound for its radius value while the radii of interior nodes 
are unlimited. If all boundary radii are assigned to the 
maximum values, then the total area of circles of the circle 
packing of K is maximized. 
 PROOF. By Lemma 2, the radius of any interior node 
(as the central) with a boundary neighbor (as a petal) is 
strictly increasing in the boundary radius for fixed angle 
sum. Consequently, as we are moving from the exterior 
circles to the interior of the packing, every interior radius 
increases monotonically in its petal radii which are also 
increasing in order to maintain the packing condition. Thus, 
every circle has its radius maximized when all every 
boundary radii are assigned to their maximum values, and 
hence, the total area of circles reaches the maximum.     ■ 

IV. ALGORITHM TWO: VIRTUAL FORCE BASED 
HETEROGENEOUS SENSOR NETWORK DEPLOYMENT 

 Algorithm 2 is another distributed autonomous 
deployment algorithm for heterogeneous sensor networks. It 
is a virtual force based algorithm, thus it can deal with 
obstacles and field of interest. It can be applied to both 
fixed and adjustable range sensor nodes. It is inspired by the 
angle sum θ discussed in Section 4. Consider a flower of 
fixed size central and petal circles, no radius can be adjusted. 

With the monotonicity described in Lemma 1, we conclude 
that the central radius is too small if the angle sum is greater 
than 2π ; the petal circles should be brought closer to the 
central circle in order to eliminate the coverage holes. On 
the contrary, if the angle sum is smaller than 2π, the central 
radius is too large; the petal circles should be driven further 
away from the central circle in order to reduce the coverage 
overlaps. 
 On condition when sensor nodes are not capable of 
adjusting their sensing ranges, or if we always need to fully 
utilize the sensing capability, Algorithm 1 is not applicable 
because we do not resize any interior sensing circles. There 
is no perfect and rigid circle packing obtainable, as for a set 
of fixed radii of the central and the petal circles of a flower, 
the packing condition of πθ 2=  is generally not achieved. 
In such cases, the deployment problem becomes the 
placement of a set of fixed size circles to give a hole-free 
and maximized covered area. In this section, we formulate 
the desired distance between the central node and each of 
the petal nodes in a flower. The idea is to locate the petal 
circles about the central circle such that sensing coverage is 
maximized while no coverage hole exists. We prove that the 
formulation always give a quasi-optimal flower coverage 
subjective to the central node of a flower. Then, we list the 
procedures of Algorithm 2 at the end of this section. 
A. Quasioptimal Flower Coverage 
 Algorithm 2 is based on virtual forces. Sensor nodes 
virtually exert attractive and repulse forces to their neighbor 
nodes. In heterogeneous sensor networks, sensor nodes do 
not have an identical sensing range. The desired distances 
among the sensor nodes are to be calculated locally in every 
sensor node. Since the sensing circles are all in different 
sizes, we desire a scheme to effectively avoid coverage 
holes and, at the same time, to maximize overall sensing 
coverage. This gives rise to a constrained optimization 
problem, the optimal flower coverage problem. It concerns 
the placement of the petal circles of a flower with respect to 
the central circle. The circles are no longer tangent among 
themselves; they are allowed to overlap. The objective is to 
maximize the total area covered by the circles of a flower, 
which is interpreted as the total local sensing coverage of a 
sensor node and its neighbors, under the constraint that no 
coverage hole may exist among any triples. Here the term 
“local” refers that the objective concerns the coverage with 
respect to one sensor node and its neighbors, instead of the 
coverage of the entire network. As it is a distributed 
algorithm, it is reasonable and practical for a sensor node to 
limit the concern in localized coverage. It is conceivable 
that the maximization problem is dual to the minimization 
of overlap area among the circles under the same constraints. 
We look into the expression of overlap area that we attempt 
to minimize. When two circles ci and cj intersect, an 
asymmetric lens composed of two circular segments is 
formed and it corresponds to the coverage overlaps. Denote 
d as the distance between the centers of ci and cj. The area A 
of this asymmetric lens is governed by three independent 
parameters: ri, rj and d. We denote εj as the central angle of 
the segment of ci covered by cj, εj’ as the central angle of 
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vc 
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va 

vc 
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the segment of cj covered by ci, x as the distance between 
center of ci to the common chord of ci and cj and a as the 
length of the common chord. Then A can be formulated as a 
function of ri, rj and εj:  

44344214434421
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 LEMMA 6. Given two intersecting circles ci and cj of 
radii ri and rj respectively. Denote εj as the central angle of 
the segment of ci covered by cj. If radius ri and angle εj are 
fixed, the area of intersection A is strictly decreasing in rj. 

  
 (a)        (b) 

Fig. 3. (a) Asymmetric lens and (b) quasioptimal flower coverage 
 
 The flower coverage maximization problem is 
equivalent to the minimization of the summation of the 
overlaps between the central circle and each of its petals. 
The objective function can be expressed by the summation 
of areas of asymmetric lenses in (3) and the constraints can 
be expressed by the inequalities for qualitative test of 
coverage hole existence in [4]. Note that the overlaps 
among the petal circles are not considered for simplification, 
though they can also be expressed by (3). However, as the 
objective function and the inequality constraints involve 
numerous trigonometric functions, it is unfeasible to tackle 
with the exceedingly nonlinear minimization problem for 
obtaining a global optimal solution. Instead, we are 
interested in working out a configuration of flower that 
gives quasioptimal (near optimal) coverage and is explicitly 
expressible in terms of merely sensing ranges. 
 DEFINITION 7. A quasioptimal flower coverage is a 
configuration of flower such that the coverage holes among 
any triples (the central node and two adjacent petals) just 
vanish.  
 When three circles intersect at a point, the coverage 
hole (interstice) among them just vanishes. It conforms to 
both fundamental criteria of the original optimization 
problem: overlap reduction and coverage inexistence. Now, 
we propose a formulation to define the desired distances 
between a central sensor node and its neighbors such that 
the configuration yields a quasioptimal flower coverage. 
Our idea is to “close” a flower in order to achieve packing 
condition. Consider a flower of central node vi of degree k 
and angle sum θ. When sensing circles ci is intersecting 

with sensing circles cj, k21j ,,, L= , the summation of the 
area of k asymmetric lenses is literally the coverage 
overlaps. We adopt the same notation εj as the central angle 
of the segment of ci covered by cj for k21j ,,, L= . 
According to Lemma 6, the area of intersection is strictly 
decreasing in rj for fixed ri and central angle εj. In order to 
reduce these lens areas, and thus, the total coverage 
overlaps, we define the central angles by 

πε 2
r

r
k

1i
i

j
j ⋅=

∑
=

     (4) 

which means the central angle εj is proportional to the 

neighbor radius ri. Obviously, (4) implies ∑
=

=
k

1j
j 2πε . As 

shown in Fig. 3(b), when all the interstices are just 
vanished, the summation of central angles equals 2π. 
Therefore, (4) suggests a configuration of flower to achieve 
quasioptimal flower coverage. Moreover, the central angles 
εj are assigned in proportion to petal radius rj, the area of 
overlaps is reduced due to Lemma 6. The desired distance 
d̂  is:  
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If vi is a boundary node, the desired distance with its 
neighbor vj are simply defined as  

)(ˆ
jiij rr

2
3d += .     (7) 

B. Procedures of Algorithm 2 
 Similar to the previous algorithm, the sensor nodes are 
initially randomly located. If a bounded field of interest is 
available, the sensor nodes are randomly placed inside the 
field. In any case, we assume the initial network is 
connected. A triangulated mesh describing the 
communication graph is generated upon the initial 
deployment using the localized Delaunay triangulation in 
Section II. This algorithm works in an iterative fashion. It 
increases sensor coverage and avoid collisions by 
considering the virtual attractive and repulsive forces 
exerted on each sensor node by neighbor nodes and/or 
obstacles (if any). In every iteration, each sensor node 
computes the desired distances ijd̂ of its neighbors and 
exerts virtual forces to them. The virtual force exerts by 
node vi on node vj is  

ij
ijij d

dd ij
ij

zz
f

−
−= )ˆ( .    (8) 

Each sensor node also scans for field boundaries and 
obstacles within its sensing range. If any field boundary or 
obstacle is detected, a virtual repulsive force is applied to 
the sensor node to drive it directly away to avoid collisions. 

rj ri
εj’ vivj εj
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We denote OB
if  as the net force arose from obstacles and 

FoI
if  as the net force arose from the field of interest. Then, 

each node calculates the resultant force exerted by all its 
neighbors, obstacles and field of interest, Besides, a 
reasonable step size ξ should be chosen to avoid sensors 
from moving too vigorously. Finally, the sensor node vi 
self-deploys to a new position expressed by 

i
FoI

i
OB

iji
'

i zfffz +⎟
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⎞
⎜
⎜
⎝

⎛
++= ∑

=

k

1j
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V. SIMULATION EXAMPLES 

 We have implemented the proposed algorithm in 
Matlab to verify the approach and demonstrate its 
performance. The simulations performed show that the 
circle packing approach can always give deployments of 
large sensing coverage. Two examples are given below. 
A. Example 1 
 In this example, we deploy 100 sensor nodes using 
Algorithm 1. The sensor nodes are initially placed in 
random positions. A localized triangulated communication 
graph is constructed upon the initial placements (Fig. 5(a)). 
Fig. 5(b) shows an intermediate circle packing result while 
the boundary radii are fixed to certain values. Then, we 
further adjust the boundary condition by setting appropriate 
the angle sums at all boundary nodes ( 2/πθ =  at the four 
corners and πθ =  for the rest). Fig. 5(c) shows a circle 
packing of rectangular coverage under this boundary 
condition, and Fig. 5(d) is the final deployment layout under 
overlap packing with 23 /=η .  
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(c)  Final Circle Packing  (d) Final Deployment by Overlap Packing 

Fig. 5. Example 1: A rectangular coverage of 100 sensor nodes using 
Algorithm 1. 

B. Example 2 
 We demonstrate the effectiveness of Algorithm 2 in this 
example. A randomized placement of 100 sensor nodes is 
show in Fig. 6(a). Each sensor has different sensing ranges. 

Each node computes the amount of virtual forces exerting 
on its neighbors by flower closing approach proposed in 
Section 6. Then, they calculate and move to their new 
positions by referring the resultant force being exerted. Fig. 
6(b) shows the final deployment result, which gives a large 
coverage and sensible utilization of sensing ranges, by this 
virtual force algorithm. However, some coverage holes 
(filled in black) exist in the deployment. 
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 (a) Initial Deployment   (d) Final Deployment 

Fig. 6. Example 2: Deployment of 100 sensor nodes using Algorithm 2. 

VI.  CONCLUDING REMARKS 

We have presented two algorithms to deal with the 
heterogeneous sensor network deployment problem. The 
main contributions of this paper lie in two aspects. First, this 
paper deals with the optimal deterministic coverage problem 
of heterogeneous sensor networks. We prove that the first 
algorithm always gives a unique, maximized and hole-free 
coverage of a given network topology when the sensing 
ranges of boundary nodes are set to their upper limits and 
the sensing ranges of interior nodes are unlimited. In the 
second algorithm, the formulation of the desired distances 
among the sensor nodes of a flower guarantees the 
quasioptimal local coverage. Secondly, Algorithm 1 and 
Algorithm 2 are distributed deployment algorithms for 
mobile sensor network. As both algorithms utilize only the 
local information about a sensor node and its neighbors, 
they provide a distributed, efficient and scalable solution to 
the deployment problem. We have evaluated and 
demonstrated the performance of our methods with 
simulation examples. The proposed approaches can 
effectively deploy the sensors to give a wide coverage, 
eliminate coverage holes, reduce coverage overlaps and 
avoid obstacles. 
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