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Abstract— This study is intended to deal with the interplay
between control and mechanical systems, and to discuss the
“brain-body interaction as it should be” particularly from
the viewpoint of learning. To this end, we have employed a
decentralized control of a two-dimensional serpentine robot
consisting of several identical body segments as a practical
example. The preliminary simulation results derived indicate
that the convergence of decentralized learning of locomotion
control can be significantly improved even with an extremely
simple learning algorithm, i.e., a gradient method, by intro-
ducing biarticular muscles compared to the one only with
monoarticular muscles. This strongly suggests the fact that a
certain amount of computation should be offloaded from the
brain into its body, which allows robots to emerge various
interesting functionalities.

I. INTRODUCTION
In robotics, traditionally, a so-called hardware first, soft-

ware last based design approach has been employed, which
seems to be still dominant. Recently, however, it has been
widely accepted that the emergence of intelligence is strongly
influenced by not only control systems but also their embod-
iments, that is the physical properties of robots’ body [1][2].
This strongly suggests that a certain amount of computation
for generating the behavior should be offloaded from the
control system (i.e. brain-nervous systems) into its body
system (i.e. musculo-skeletal systems). In order to directly
indicate this kind of “embodied” computation, Pfeifer et
al. have recently proposed a concept that they referred to
as morphological computation, which is expected to be a
guiding principle for building intelligent robotic agents [3].
Despite its appealing concept, there still remains much to be
understood about how such “computational offloading” can
be achieved so as to emerge useful functionalities.

In light of these facts, this study is intended to deal
with the interplay between control and mechanical systems,
and to analytically and synthetically discuss the “brain-body
coupling as it should be”. More specifically, the goal of this
study is to clearly answer the following questions:

• To what extent computational offloading from the con-
trol system to the mechanical system should be done?

• What sort of the body’s properties should be focused
on so as to effectively exploit the morphological com-
putation?

Since this research field is still in its infancy, it is of great
worth to accumulate various case studies at present. Based on
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this consideration, here, we investigate the questions above
particularly from the viewpoint of learning.

As a practical example, we demonstrate decentralized
control of a two-dimensional serpentine robot consisting of
several identical body segments. In particular, this study
verifies how the convergence of decentralized learning of
locomotion is influenced by effectively introducing a long-
distant physical interaction between the body segments.
The preliminary simulation results derived indicate that the
convergence of decentralized learning of locomotion control
can be significantly improved by introducing biarticular
muscles. More specifically, we have found that the serpentine
robot driven by biarticular muscles shows considerably rapid
learning even with an extremely simple learning algorithm,
i.e., a gradient method, compared to the one driven only by
monoarticular muscles. This strongly supports the necessity
of exploiting morphological computation in generating the
behavior.

In what follows, we firstly introduce “the insects’ com-
pound eyes and wing design” which are good instantia-
tions of well-balanced couplings between control and body
systems. Then, we illustrate our method by taking a two-
dimensional serpentine robot antagonistically driven by pairs
of muscles as a practical example. We subsequently discuss
how the way of implementing muscles, i.e., monoarticular
and biarticular muscles, significantly influences the perfor-
mance of learning.

II. LESSONS FROM BIOLOGICAL FINDINGS

Before explaining our approach, it is highly worthwhile to
look at some biological findings. Beautiful instantiations of
well-balanced couplings between control and body systems
can be found particularly in insects. In what follows, let us
briefly illustrate some of these instantiations.

Compound eyes of some insects such as houseflies show
special facet, i.e., vision segment, distributions; the facets
are densely spaced toward the front whilst widely on the
side. Franceschini et al. demonstrated with a real physical
robot1 that this non-uniform layout significantly contributes
to detect easily and precisely the movement of an object
without increasing the complexity of neural circuitry [6].

Another elegant instantiation can be observed in insects’
wing design [7][8]. As shown in Fig. 1(a), very roughly
speaking, insects’ wings are composed of hard and soft
materials. It should be noted that the hard material is dis-
tributed asymmetrically along the moving direction. Due to

1Another interesting robot can be found in [4][5].
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this material configuration, insects’ wings show complicated
behavior during each stroke cycle, i.e., twist and oscillation.
This allows them to create useful aerodynamic force, and
thus they can realize agile flying. If they had symmetrical
material configuration as shown in Fig. 1(b), the complexity
of neural circuitry responsible for flapping control would be
significantly increased.

III. THE MODEL

A. A Robotic Case Study with a 2D Serpentine Robot

In order to investigate brain-body interaction as it should
be, we investigate a decentralized learning of locomotion
control of a two-dimensional serpentine robot as a case study.
The reason why we have focused on a serpentine robot is
that the body structure as well as the type of locomotion is
one of the simplest in robots with fixed morphology. This
simplicity allows us to effectively investigate how the brain-
body interaction should be.

B. Body Structure

Fig. 2 schematically illustrates the structure of the serpen-
tine robot. As shown in the figure, this robot consists of sev-
eral identical body segments. Each joint is antagonistically
driven by a pair of muscles, i.e., flexor and extensor, within
a prespecified range of rotation. This serpentine robot moves
forward in a two-dimensional surface by lateral undulation,
in which waves of lateral bending of the body are propagated
along the body from head to tail. For effectively generating
a propulsive force, we assume that the friction between each
body segment and the ground is relatively low along the
longitudinal direction compared to the latitudinal direction.

(a)

(b)

Fig. 1. Material configuration in insects’ wings.

Fig. 2. A schematic of the structure of the two-dimensional serpentine
robot employed in this case study.

C. Control Mechanism

In order to generate the bend in each part of robot for
lateral undulation, a decentralized control mechanism which
independently drives each pair of antagonistic muscles is
employed. Here, for simplicity, we have introduced the
following assumptions: each of these muscles generates a
prespecified “periodic impulsive force”; and each joint is
driven by applying impulsive forces alternatively to the
corresponding flexor and extensor in an anti-phase manner.
In addition, the period and the impulsive force applied to all
the muscles are assumed to be identical. For convenience,
hereafter the phase of the impulsive force applied to the ith
body segment’s flexor is denoted as θi (i = 1, 2, · · · , n)2.
Thus, the control (learning) parameters in this model end up
to be the set of the phases θ1, θ2, · · · , θn (n is the number
of pairs of antagonistic muscles). Note that each pair of
the antagonistic muscles is driven in a fully decentralized
manner. To realize the setup explained the above, a simple
rhythm generator which controls each pair of antagonistic
muscles independently according to the rhythm, sin(ωt+θi),
is implemented. The detail is shown in Fig. 3, where ω and T
are the frequency and the period, τ and ∆t are the amplitude
and the time interval of the prespecified periodic impulsive
force, respectively.

IV. PROPOSED METHOD

Based on the above arrangements, this section analytically
discusses how the control and body systems influence the
learning convergence. The task of this robot is to realize
convergence which leads to a locomotion with minimum
energy cost of transport from arbitrary initial relative-phase
conditions.

2Since the impulsive forces are alternatively applied to the corresponding
flexor and extensor in an anti-phase manner, we can consider only the phase
of the flexor concerned.
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Fig. 3. A schematic of the control mechanism on a pair of antagonistic
muscles.

A. Analysis of the Learning Convergence
Let P be the energy cost of transport of this robot, then

P can be expressed as a function of the phases as:

P = P (θ), (1)
θ = (θ1, θ2, · · · , θn)T . (2)

Here, for the purpose of simplified analysis, a simple learning
scheme based on a gradient method is employed, which is
denoted by

∆θ(k) = −η
∂P (θ)

∂θ

∣∣∣∣
θ(k)

, (3)

where ∆θ(k) is the phase modification at time step k, η is an
n × n matrix which specifies how the learning will exploit
the information about the gradient in its determination of
the phase modification. Based on (3), the set of the phases
at time step k is expressed in the following form:

θ(k+1) = θ(k) + ∆θ(k) = θ(k) − η
∂P (θ)

∂θ

∣∣∣∣
θ(k)

. (4)

Let θ(∞) be a set of converged phases. By performing the
Taylor series expansion for P (θ) with respect to θ around
θ(∞), the following equation is obtained:

P (θ) ≈ P
(
θ(∞)

)
+

(
∂P (θ)

∂θ

∣∣∣∣
θ(∞)

)T (
θ − θ(∞)

)
,

+
1
2

(
θ − θ(∞)

)T
(

∂2P (θ)
∂θ∂θ

∣∣∣∣
θ(∞)

)(
θ − θ(∞)

)
.

(5)

Noting the fact that
∂P (θ)

∂θ

∣∣∣∣
θ(∞)

= 0 and that P
(
θ(∞)

)
is

scalar, the partial derivative of P (θ) with respect to θ is:

∂P (θ)
∂θ

= C
(
θ − θ(∞)

)
, (6)

C ≡ ∂2P (θ)
∂θ∂θ

∣∣∣∣
θ(∞)

, (7)

where C is an n×n Hessian matrix. Hence, the substitution
of (6) into (4) yields:

θ(k+1) = θ(k) − ηC
(
θ(k) − θ(∞)

)
. (8)

For the sake of the following discussion, a residual vector
e(k) is introduced, which is equivalent to θ(k)−θ(∞). Then,
(8) can be rewritten as:

e(k+1) = Ae(k), (9)
A = I − ηC, (10)

where I is an n × n unit matrix. A in (9) is a matrix
which characterizes the property of learning convergence.
This will automatically lead to the following fact: for rapid
convergence, it is necessary that the spectral radius of matrix
A is less than 1.0. What should be stressed here is the fact
that as shown in (10) matrix A is composed of the two
matrices: η and C.

B. Meanings of Matrices η and C

Based on the above consideration, a well-balanced cou-
pling is investigated by tuning the parameters in matrices η
and C. As has been already explained, matrix η specifies the
information pathways (or neuronal/axonal interconnectivity)
between the pairs of antagonistic muscles, which will be used
to calculate the phase modification (a schematic of this is
shown in Fig. 4). This implies that matrix η does relate to the
design of the control system. On the other hand, obviously
from the definition (see (7)), C is a matrix whose off-
diagonal elements will be salient as the long-distant physical
interaction between the body segments through the physical
connections becomes significant. This strongly suggests that
the property of this matrix is remarkably influenced by the
design of the embodiment, i.e. the body system.

The design of the control system can be easily done by
tuning the elements of matrix η, while much attention has
to be paid to the design of the body system. This is simply
because one cannot directly access the elements of matrix
C nor tune them unlike matrix η. Although the design of
the body system can be significant to the convergence of
learning same as the one of the control system, there are
few study about the effect of embodiment for the reason of
difficulty. Consequently, it seems to be highly worthwhile to
investigate about the design of body system.

Fig. 4. A schematic of information pathways between the pairs of
antagonistic muscles specified by matrix ”.
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C. On the Effective Body Design

As explained the above, the long-distant physical interac-
tion between the body segments significantly influences the
convergence of learning, since this is closely related to the
property of the off-diagonal elements of matrix C. In order to
investigate this, here, we have focused on monoarticular and
biarticular muscles which are widely observed in the animal
kingdom, ranging from insects to mammals. As a first step
of the investigation, here, we have employed the following
two types of embodiments: one is a robot antagonistically
driven only by pairs of monoarticular muscles, while the
other antagonistically driven only by pairs of biarticular mus-
cles. Note that biarticular muscles induce more long-distant
physical interaction between the body segments compared to
the case with monoarticular muscles. Fig. 5 illustrates these
two embodiments considered in this study.

V. PRELIMINARY SIMULATION RESULTS

A. Simulator

In order to efficiently investigate the well-balanced cou-
pling, a simulator has been developed. The following simu-
lations have been conducted with the use of a physics-based,
three-dimensional simulation environment [9]. A view of the
simulator is shown in Fig. 6. This system simulates both the
internal and external forces acting on the agent and objects in
its environment, as well as various other physical properties
such as contact between the agent and the ground, and torque
applied by pairs of the antagonistic muscles on the joints.

B. Experimental Design

In order to verify the difference of the learning perfor-
mance between the two robots shown in Fig. 5, we have
carried out simulations. The simulation conditions employed
are as follows: the number of body segments was 10 for
the monoarticular muscle-driven robot, whilst 11 for the
biarticular muscle-driven robot. This is simply because the
number of control parameters, i.e., θ1, θ2, · · · , θn, is set to
be identical. Therefore, the number of control parameters in
each robot was in total 9. Since the number of body segments

(a) In the case of (b) In the case of
monoarticular muscles. biarticular muscles.

Fig. 5. Two embodiments considered in this study. Note that biarticular
muscles can effectively induce “long-distant physical interaction” between
the body segments compared to the one only with monoarticular muscles.

Fig. 6. A view of the developed simulator.

is different between these two robots, we measure the energy
efficiency by a dimensionless specific cost of transport [10]
for the fair comparison, which is given by

P =
Etotal

m × d
, (11)

where Etotal is the total energy consumption of the robot,
m is the robot mass, and d is the distance traveled of the
robot, respectively. The detail how to calculate Etotal is the
following equation:

Etotal =
∑

i

∫
{δ(τi(t)Θ̇i(t)) + γτ2

i (t)}dt, (12)

where δ(x) = 0 for x ≤ 0 and δ(x) = x for x > 0, τi and Θ̇i

are the ith joint torque and the angular velocity respectively,
γ is a constant value [11]. The other parameters, such as the
amplitude and frequency of periodic force (torque) generated
by a muscle, were set such that the robot generates a traveling
wave when the set of phases achieves an appropriate relative-
phase condition. Table I shows the detail of body and control
parameters in each robot (each control parameter is also
shown in Fig. 3). Moreover, the gradient for the phase
modification was calculated by employing the scheme of
central difference as follows:

∂P

∂θi
=

P (· · · , θi + ∆θ, · · · ) − P (· · · , θi − ∆θ, · · · )
2∆θ

, (13)

where ∆θ is tiny amount of the phase variation, set to be
0.02π(rad). In addition, the number of phase modification
is 100.

TABLE I
REPRESENTATIVE BODY AND CONTROL PARAMETERS

monoarticular biarticular
n 9 9

m (kg) 8.60 9.46
ω (rad/s) 2.0 2.0
τ (Nm) 0.5 0.5
∆t (s) 0.25 0.25
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C. Verification of Learning Convergence

Based on the above setup, in what follows, we discuss the
effect for learning convergence induced by control and body
systems. As a first step of the investigation, here, we have
employed three types of experimental configurations: (i) the
robot with diagonal matrix η driven only by monoarticular
muscles; (ii) the robot with tridiagonal matrix η driven
only by monoarticular muscles; (iii) the robot with diagonal
matrix η driven only by biarticular muscles. The robot with
the configuration (i) consists of the simplest control and body
systems since each pair of antagonistic muscles employs
only its own gradient information for phase modification
and each body segment physically interacts only its nearest
neighbors. On the other hand, in the case of tridiagonal
matrix η, each pair of antagonistic muscles exploits not only
its own gradient information but also its nearest neighbors’
one, and each body segment also physically interacts its
second-nearest neighbors in the case of biarticular muscles.
Therefore, the effect of “brain-body interaction” can be
verified by comparing the learning convergence between
(i) and (ii), and between (i) and (iii). In addition, for the
ease of highlighting the effect of the body design, diagonal
and tridiagonal matrix η are set to be the following simple
structure: all of the diagonal elements have same constant
value 0.4905 in both cases; all of the tridiagonal ones have
same constant value 0.1962 in the case of tridiagonal matrix;
the other are set to be zero.

Fig. 7 is representative data which shows the difference
between the three configurations obtained; in each graph,
the vertical axis denotes the dimensionless specific cost of
transport, while the horizontal one is the number of phase
modification (time step k) conducted in the learning process.
Note that each graph was obtained by averaging over 30 data
simulated under different initial relative-phase conditions, in
which each initial phase was independently and randomly
set to be within the range −π < θ

(0)
i ≤ π(rad), and

the error bars indicate the standard deviation (S.D.) of the
learning performance. Very interestingly, the convergence
of learning is significantly different: the robot driven by
biarticular muscles (configuration (iii)) realizes considerably
rapid and consistent learning performance, compared with
the ones driven by monoarticular muscles with both diagonal
and tridiagonal matrix η (configuration (i) and (ii)). Note
that the improvement achieved by increasing the “complexity
of control system”, i.e., changing the structure of matrix η
from diagonal to tridiagonal, is far less than the one by
introducing the biarticular muscles. This strongly suggests
the importance of “computational offloading” from the brain
to its body in generating the behavior.

Fig. 8 also illustrates the snapshots of the locomotion
generated after three characteristic phase modifications: (I)
the initial phase; (II) after 25 phase modifications; and (III)
after 50 phase modifications. As the figures explain, the robot
driven by biarticular muscles exhibits an efficient locomotion
generating a traveling wave from the head to the tail after
the 25th learning step. On the other hand, the robot driven

(i) In the case of the robot with diagonal matrix ” driven only by
monoarticular muscles.

(ii) In the case of the robot with tridiagonal matrix ” driven only
by monoarticular muscles.

(iii) In the case of the robot with diagonal matrix ” driven only
by biarticular muscles.

Fig. 7. Comparison of the learning performance between the robots with
different configurations obtained by averaging over 30 data simulated under
different initial relative-phase conditions.

only by monoarticular muscles shows a wriggling behavior
and does not move forward effectively even around the 50th
learning step.

These derived results strongly support the conclusion that
the body system imposes significant influence on the learning
convergence. In other words, it can be one of the grounds
for our hypothesis, i.e., a certain amount of computation
should be offloaded from control system into its body
system. Despite its simplicity, the results clearly show the
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(a)In the case of monoarticular muscles.

(b)In the case of biarticular muscles.

Fig. 8. Representative data of locomotion generated after three character-
istic phase modifications (see from left to right in each figure).

computational offloading stemming from the exploitation of
biarticular muscles can significantly improve the learning
surface.

VI. CONCLUSIONS AND FUTURE WORKS

This study has intensively investigated “brain-body in-
teraction as it should be” particularly from the viewpoint
of learning. For this purpose, a decentralized learning of
locomotion control of a two-dimensional serpentine robot
antagonistically driven by pairs of muscles was employed
as a case study. The preliminary experiments conducted in
this paper support several conclusions and have clarified
some interesting phenomena for further investigation, which
can be summarized as: first, the convergence of the decen-

tralized learning of locomotion control can be significantly
improved by introducing biarticular muscles; second, “brain-
body interaction as it should be” in this case study can be
analytically discussed in terms of the spectral radius of a
matrix which specifies the property of learning convergence;
third and finally, a certain amount of computation required
for generating the behavior should be offloaded to its body,
i.e., the mechanical system, which is sometimes referred to
as morphological computation.

Another important point to be stressed is closely related
to the concept of emergence. One of the crucial aspects of
intelligence is the adaptability under hostile and dynamically
changing environments. How can such a remarkable ability
be achieved under limited/finite computational resources?
The only solution would be to exploit emergence phenomena
created through the interaction dynamics between control
system, body system, and the environment. This research
is a first step to shed light on this point in terms of
balancing control system with their body system. Finally, in
future studies we plan to numerically analyze the matrix C
which specifies the long-distant physical interaction between
the body segments, and to discuss the design policy of
the physical interaction (body system) and of the neuronal
interconnectivity (control system).
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