
Intrinsically Motivated Hierarchical Manipulation
Stephen Hart, Shiraj Sen, and Rod Grupen

Laboratory for Perceptual Robotics
Computer Science Department

University of Massachusetts Amherst
{shart,shiraj,grupen}@cs.umass.edu

Abstract— We present a framework for the programming of
manipulation behavior by means of an intrinsic reward function
that encourages the building of deep control knowledge. We show
how this framework can be used to teach new manipulation skills
in a hierarchical and incremental fashion. We demonstrate the
contributions of this paper on a humanoid robot through three
incremental learning stages.

I. INTRODUCTION

In this paper, we propose a new approach to program-
ming robotic manipulation tasks. The approach builds upon
the control basis framework for structuring learning tasks
in robotics. We introduce a novel intrinsic reward function
expressed in this framework. Our goal is to provide the
learning agent with an intrinsic motivation to discover and
organize control knowledge hierarchically. The “multi-modal
imperative” (MMI) rewards the discovery of new affordances
for control. It remains fixed over the lifetime of the learning
agent and is the sole source of reward in our experiments.

After a discussion of related work, Section III provides an
introduction to the control basis framework for constructing
closed-loop controllers with embedded state information. The
new intrinsic reward function is then introduced that rewards
the discovery of catalogs, a cumulative memory structure that
records affordances for predictable robot behavior. Section V
shows how reinforcement learning techniques are used to
build new control programs in training situations that severely
restrict the range of states and actions that can be explored.
These new programs can be used as abstract, temporally
extended actions in subsequent programs. Section VI provides
demonstrations of the staged learning process in which three
hierarchically organized control programs are constructed.

II. RELATED WORK

The work in this paper extends upon the “control basis”
framework originally developed in the contributions of Hu-
ber [10], and Coelho [5], to provide new formalisms for
hierarchy, abstraction, and development. We extend the control
basis framework to allow a robot to acquire new skills through
intrinsic drives and incremental learning stages.

Providing intrinsic drives for behavior acquisition and
knowledge discovery have been well studied in the psychology
literature beginning with Berlyne [4] who introduced key
factors such as novelty and curiosity. Intrinsically rewarding

mechanisms to motivate skill acquisition has also been applied
in robot and reinforcement learning systems [3], [9].

Computational methods for incremental learning in robotic
systems was proposed by Asada et al. [1] and have recently
enjoyed much attention in the developmental robotics lit-
erature [15]. Staged learning has also provided means for
grounded knowledge transfer as an agent learns increasingly
complex skills [2], [13], [6]. Much of this work considers low-
level sensorimotor mappings, whereas we focus on finding
grounded behavioral affordances.

III. THE CONTROL BASIS

The control basis provides a means of computing reference
inputs to lower-level motor units. In our implementations, mo-
tor units are second order (PD) position and force controllers.
The control basis is a combinatoric framework for construct-
ing closed-loop controllers with a means of estimating state
information that supports optimal control decisions.

A. Control Actions

The control basis is defined by three sets: potential functions
Ωφ, feedback signals Ωσ , and motor parameters Ωτ . While Ωσ
and Ωτ are grounded in the robot’s sensors and actuators. Ωφ,
in contrast, describes a set of potential functions that serve as
primitive subtasks for integrated behaviorial programs.

Primitive actions in the control basis framework are closed-
loop feedback controllers constructed by combining a potential
function φ ∈ Ωφ, with a feedback signal σ ∈ Ωσ , and motor
variables τ ∈ Ωτ . In any such configuration, φ(σ) is a scalar
potential function (i.e., a navigation function [14]) defined to
satisfy properties that guarantee asymptotic stability.

Examples of potential functions include fields that describe
kinematic conditioning [8], harmonic functions for collision-
free motion [7], and force closure functions [17]. In this paper,
we will make extensive use of a simple quadratic function,

φεT ε(σ) = σTσ, (1)

where σ denotes an error signal determined from features
in the feedback signals. Potential function φεT ε can be
used to compute quadratic error functions in generic spaces
(workspace, configuration space, force space, and/or torque
spaces).

The sensitivity of the potential to changes in the value
of motor variables is captured in the error Jacobian, J =

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3814

∂φ(σ)/∂τ . Reference inputs to lower-level motor units are
computed by controllers c(φ, σ, τ), such that

∆τ = J#φ(σ),

where J# is the pseudoinverse of J [16].
Multi-objective control actions are constructed by combin-

ing control primitives. Concurrency is managed by projecting
subordinate/inferior actions into the nullspace of superior
actions.

∆τ = J#
supφsup +

[
I − J#

supJsup
]
J#
infφinf . (2)

This prioritized mapping assures that inferior control inputs
do not destructively interfere with superior objectives. This
approach can be extended to n-fold concurrency relations.
In the following, we will use a shorthand for the nullspace
projection that uses the “subject-to” operator “/.” The con-
trol expression cinf / csup—read, “cinf subject-to csup”—is
shorthand for Equation 2.

The combinatorics of potentials Ωφ, and resources Ωσ and
Ωτ defines all primitive closed-loop actions A that the robot
can employ. Previous work by Huber [12], [11] and Platt [17]
addresses how to direct exploration using constraints on A and
how such programs generalize to new contexts.

B. Controller State

The error dynamics (φ, φ̇) created when a controller
interacts with the task domain supports a natural discrete
abstraction of the underlying continuous state space [5]. In
this paper, we will use a simple discrete state definition based
on convergence events. In the following, we define a predicate
p(φ, φ̇) associated with a controller

p(φ, φ̇) =

X : φ state is unknown
− : φ has undefined reference
0 : φ̇ < ετ
1 : φ̇ ≥ ετ ,

where ετ is a small negative constant that depends on effector
resources τ . For asymptotically stable controllers, φ is positive
definite and φ̇ is negative definite. The “−” condition means
that no target stimuli is present in the feedback signal. Thus,
a collection of n distinct primitive control actions forms a
discrete state space S ≡ (p1, · · · , pn).

IV. INTRINSIC REWARD

In this section, we introduce a novel intrinsic reward
function that is used to create an inherent motivation in
the learning agent to discover new control knowledge. This
function rewards only control actions that rely on direct
feedback from the external world.A reward occurs for a
control action if that action causes a new transition from
p(φ, φ̇) = 0 to p(φ, φ̇) = 1 for some resource configuration,
(σ, τ). The goal is to discover as many of such interactions
per task. For example, a mobility controller that achieves
the goal state will reward the perceptual and motor behavior
that leads to it, recognizing environments it can traverse
in terms of previous observations. Likewise, a successful

(converged) grasp controller, cg(φ, σ, τ), rewards actions that
preceed pg(φ, φ̇) = 1, specifying the environmental conditions
supporting “graspable” objects.

The simple reward function presented in Equation 3 has the
properties we require in an intrinsic reward function.

r(t) = ‖C‖ [(mi ∧ (ci(φ, σ, τ) /∈ C)] , (3)

A control transition event at time t, mi is defined to be a
binary assertion that controller, ci, causes the transition from
p(φ, φ̇) 6= 1 to p(φ, φ̇) = 1. We also define a memory structure
called a catalog, C, that records affordances in terms of control
configurations, ci(φ, σ, τ). It is a structure in memory that logs
controllers that succeed in asserting mi. When a new mi is
associated with other events comprising a particular catalog,
but has not yet been recorded, the controller that precipitated
the new event is added to the catalog and the motor policy is
rewarded for making a new discovery. If it already exists in the
catalog, the controller produces no reward. Moreover, a new
control transition event, mi, is rewarded by an amount that is
proportional to the number of other controllable events in the
catalog. Thus, the robot receives 1 unit of reward for seeing a
novel stimulus, and 2 units of reward if it touches it, 3 if it can
form a stable grasp, etc. We refer to this reward function as
the “multi-modal imperative,” or MMI. This intrinsic reward
function encourages creating new behavior and deep catalogs
around aspects of an environment that already exhibit some
degree of coherence and simultaneous controllability.

In addition to creating commonsense knowledge about inter-
actions with the environment, the reward function Equation 3
also motivates the construction of new temporally extended
control programs that can assert new properties of value in the
catalog. As we stated in the introduction, the demonstrations in
this paper are designed to show that even very simple, highly
constrained learning problems subject to this intrinsic reward
function lead to hierarchies of control programs.

V. HIERARCHICAL PROGRAMS

In this section, we show how sequential programs can be
assembled out of control primitives expressed in the control
basis framework. We construct a Markov Decision Process
(MDP) consisting of states, S, actions, A, transition dynamics,
T , and reward, R. A learning agent can estimate the value,
Φ(s, a), of taking an action a in a state s in terms of the
expected future reward using reinforcement learning (RL)
techniques such as Q-learning [18]. Q-learning estimates the
value function through trial-and-error experience using the
update-rule:

Φ(s, a)← Φ(s, a) + α(r + γ maxa′Φ(s′, a′)− Φ(s, a))

where γ ∈ [0, 1] is the discount rate and α ∈ [0, 1] is
the learning rate. With sufficient experience, this estimate is
guaranteed to converge to the optimal value Φ∗. The optimal
policy, π, is a greedy ascent of the optimal value function.
It maps states to actions by maximizing the expected sum of
discounted future reward, such that π(s) = argmaxai

Φ(s, ai).

3815

Fig. 1. This figure shows an iconic representation of a state transition when
a sensorimotor program is invoked hierarchically.

Q-learning and the intrinsic reward described in Section IV
discovers controllable interactions with the world. This policy
can be re-used when the environment affords similar features
and control events. Value functions provide a natural hierarchi-
cal generalization of potential functions—greedy ascent of the
value function is an optimal strategy for discovering reward
and absorbing states correspond to convergence events with
Φ̇=0.

The basis for hierarchy in the control basis framework
depends on the abstraction of sensorimotor programs, with
all the internal state they require, in terms of a single discrete
state variable as shown in Figure 1. Although a program can
have a significant amount of internal structure, the hierarchical
learning agent views this program as a single, temporally
extended control action with three probabilistic outcomes.

VI. STAGED LEARNING EXPERIMENTS

We demonstrate three learning stages with Dexter (Fig-
ure 2), a research platform at the Laboratory for Perceptual
Robotics at UMass Amherst. Feedback signals available in the

Fig. 2. The experimental Dexter platform for studying learning algorithms
and control frameworks in bimanual dexterous manipulation.

Dexter platform consists of joint angle positions and velocities
for 23 DOF, stereo visual feedback (hue, saturation, intensity),
real-valued force feedback from fingertip contact sensors, and
motor currents in arm actuators. All of these values are con-
tinuous in time with overlapping receptive fields. Contiguous
homogeneous regions on the image plane are described in
terms of the first and second moments of these distributions. In
addition, derivative of Gaussian (dog) operators extract texture
in spatial and temporal signals.

In this paper, we focus on demonstrating how a simple
learning process and an intrinsic reward function give rise

to hierarchical programs. We demonstrate a three stage, hi-
erarchical learning process in which a new program can be
“taught” to Dexter in each stage and used as a temporally
extended action in subsequent stages. The robot is subject to
a single, fixed reward function (Section IV) that rewards the
discovery of affordances for controllable interactions with the
world. Guided by resource constraints and training regimens,
it learns an array of 3 interdependent behaviors that allow it to
localize, reach to, hold, and inspect objects in its workspace.
Each stage consists of 25 learning episodes in which Dexter
uses Q-learning with ε-greedy exploration (α = 0.1, γ = 0.8
and ε = 0.2). Each episode ends when the current level of the
hierarchy receives a new reward not in the catalog.

A. Stage 1: SACCADETRACK

Stage 1 is designed to program a simple skill for finding
and tracking visual stimuli with Dexter. We do so under
the simplest conceivable context; the robot looks in places
where motions are expected and tracks motion cues if they
are detected.

The program called SACCADETRACK is constructed
by searching sequential and concurrent combinations of
two actions asaccade and atrack. Allowing for nullspace
compositions of these actions, the possible actions in stage 1
areA1 = {asaccade, atrack, asaccade/atrack, atrack/asaccade}.

Saccade constructs a feedback error from two signals, the
value of the joint angles in the stereo head, ~θhead,act and a
reference posture for the head, ~θhead,ref . Dexter’s introduction
to SACCADETRACK considers motion—non-zero velocity of
a homogeneous region on the image plane—exclusively as a
sensory cue. Moreover, saccade makes guesses about head
postures where the image coordinates motion cues ~umotion ∈
U are likely to be detected on the center of the image plane ~u0.
These postures are sampled from the distribution, ~θhead,ref ∼
Pr(~θhead|~u = ~u0). The error in the feedback signal is thus,
εp(motion) = (~θhead,ref−~θhead,act), and the potential function
is φεT ε. The effector variables, in this case, are positions in the
configuration space of the head, ~θhead, therefore, the saccade
controller can be written

asaccade , c(φεT ε, εp(motion), ~θhead).

Saccade orients the head to postures where the target motion
is likely to be found—it increases the probability that motion
cues will be found on both image planes of the stereo head.

Track is a closed-loop controller that pursues a motion
cue by changing the reference head posture, ~θhead. Dexter
has a pan-tilt head with left and right cameras fixed along
parallel gazes. The goal is to keep the coordinate of the motion
cue ~umotion = (ul, vl, ur, vr) at the origin (image center) ~u0

on both images (left and right) simultaneously, the error is
εmotion = (~u0−~umotion), and the potential function is defined
by φεT ε. Therefore, the track controller is written:

atrack , c(φεT ε, εmotion, ~θhead).

3816

During training, the experimenter presents objects held in
their hand roughly 30% of the time. The SACCADETRACK
program (Figure 3), is acquired by learning to achieve the
intrinsic reward when a1 transitions from ptrack = 0 to
ptrack = 1. Controller asaccade is an unrewarding control
transition since it depends soley on empirical models of
Pr(~θhead|~u = ~umotion) and not on direct feedback from the
environment. The state space is S1 ≡ (psaccade, ptrack). The

Fig. 3. A SACCADETRACK policy learned on Dexter in stage 1, characterized
by the state space S = {psaccade, ptrack}. The policy employs atrack first,
and asaccade is chosen only when no stimuli is immediately present.

program begins in state s = (XX) where policy SACCADE-
TRACK chooses action atrack. If the target motion stimulus
is absent, the state transitions to (X−) and SACCADETRACK
enters a loop that invokes asaccade until a stimulus is detected.
If however, the motion cue is detected, the resulting state is
(X0) and if atrack completes the transition to state (X1), the
learning agent is rewarded. Whenever the motion cue is present
in both images, a stereo triangulation mapping produces the
Cartesian location of the stimuli on the pair of image planes.
This Cartesian data stream is an abstract sensor signal that can
be used by other control processes.

After 25 trials, the posterior estimate for Pr(~θhead|~u =
~umotion) (Figure 4(b)) has evolved from a uniform distribution
to a unimodal peak describing how the experimenter presented
movement stimuli to the learning robot (Figure 4(a)).

(a) (b)

Fig. 4. Panel (a) shows Dexter’s left camera view while tracking motion dur-
ing a typical programming trial, and (b) shows the non-parametric distribution
of pan/tilt configurations learned for motion cues after 25 training episodes.
The single peak corresponds to the place where the experimenter presented
motion cues to the robot during the acquisition of SACCADETRACK.

The robot can reapply SACCADETRACK behavior using
features other than motion, like the discrete hues, saturations,
intensities, textures, available on the Dexter platform. It can
do so without re-learning the SACCADETRACK strategy, and
instead, focus exclusively on the feature-dependent part of
the task. Figure 5 shows the presentation of stimuli and

the corresponding probabilistic distribution of this range of
saturated pixels in Dexter’s environment.

(a) (b)

Fig. 5. Panel (a) shows the image from Dexter’s left camera while executing
SACCADETRACK on a discrete range of highly saturated pixels. Panel (b)
shows the non-parametric distributions after 25 training episodes summarizing
the pan/tilt configurations where Dexter expects to observe this range of
saturation in the visual feedback.

The robot learns the SACCADETRACK strategy to achieve
intrinsic rewards associated with 0-1 transitions on ptrack in
the motion training context. Dexter is likewise rewarded when
it discovers that the transition dynamics for SACCADETRACK
apply to other features as well and adds them to a catalog
describing the environment and the experimenter’s behavior.
Over time, the robot optimizes SACCADETRACK across many
features.

B. Stage 2: REACHGRAB

In the second stage, a REACHGRAB program is con-
structed that reaches to a Cartesian location and attempts to
grasp an object at that location. The target locations for the
reach action could be based on probability distributions like
Pr(~ftactile|~xhand) (the likelihood of making tactile contact
given the Cartesian position of the robot’s hand) in a manner
analogous to the saccade action. In this case, Dexter would
have better than random guidance to achieve tactile responses
in the absence of other sensory information. However, the
learning problem posed in this paper always has access to
the Cartesian location generated by SACCADETRACK, which
proves to be a potent cue for placing the robot’s hands
on objects in the environment. Therefore, REACHGRAB can
explore actions that re-use prior knowledge in the form of
SACCADETRACK. In addition, several more primitives are
allowed in the set of available actions.

Reach constructs a feedback error between the Cartesian
location of left hand and the location determined by SAC-
CADETRACK, εx = (~xobject − ~xhand), where ~xhand ∈ R3 is
determined by the forward kinematic relationship for the left
arm derived from direct sensor measurements of ~θarm. The
reach controller submits a stream of position references to the
underlying motor units. Therefore, the reach controller can be
written

areach , c(φεT ε, εx, ~θarm).

areach provides a control input based on an indirect (kine-
matic) transformation, and is thus unrewarding by the intrinsic
motivator.

3817

Fig. 6. This diagram shows the policy learned for REACHGRAB after
25 episodes. The state space is s = (pSaccadeTrack, preach, pgrab). The
hierarchical use of SACCADETRACK is indicated by the abstract transition
icon introduced in Figure 1.

Grab is a very simple control task to generate grasps. More
sophisticated grasp controllers have been assembled using the
control basis [17]. However, in this paper, our focus is on
intrinsic motivation for hierarchical behavior, not on grasping
control. In our “grab” controller, the hand is held in a fixed
posture with fingers extended. Action grab is a closed-loop
force controller that produces reward by controlling finger
flexion in direct response to pre-defined reference forces on
the 3 fingertip load cells of the left hand. The error signal is
written εf = (~fref − ~fhand) and the controller is defined:

agrab , c(φεT ε, εf , ~θhand)

The set of possible actions for stage 2, including
nullspace compositions of the primitive controllers, is de-
fined by A2 = {areach, agrab, areach / agrab, agrab /
areach, SACCADETRACK}. The state space is S2 ≡
(pSaccadeTrack, preach, pgrab).

The learned REACHGRAB policy is shown in Figure 6. Dur-
ing 25% of these learning episodes, the experimenter presented
graspable objects with highly saturated colors to Dexter. The
presentation was either handing the object to Dexter or placing
it on the table in front of the robot. Consequently, Dexter
learned to reach out and grasp the objects handed to it, as
seen in Figures 7(a) and 7(b), or to employ SACCADETRACK
to find and grasp the object. Sometimes, Dexter was observed
reaching to competing visual stimuli in the room (i.e., the
window) and was unable to complete a successful grasp.

C. Stage 3: VISUALINSPECT

In stage 3, one additional primitive controller is added
to the control resources available to the robot. We define a
localizability controller to help control Dexter’s stereo per-
spective on objects. The addition of this primitive allows
for deeper behavioral catalogs because it can increase visual
acuity and provide high-frequency features to visual tracking
controllers [8].

Localizability is a quality of the geometry of a stereo
pair. The geometry of the cameras and a viewed subject

(a) (b)

Fig. 7. Panel (a) shows Dexter reaching to a highly saturated object and
panel (b) shows Dexter holding that object with the force controllers in the
hand.

determines how precisely the Cartesian location of that subject
can be estimated. The triangulation equations are linearized by
differentiation to create a stereo imaging Jacobian J that can
be used to analyze the sensitivity of triangulation results with
respect to uncertainty in the location of features on the image
plane [19].

A potential field in Cartesian space is defined by computing
the scalar conditioning metric of the stereo triangulation
Jacobian, φcond(J) =

√
det(JJT). When used as a control

objective with a manipulator, the gradient of this potential field
can be used to adjust the geometry and improve the visual
acuity of grasped objects.

In this stage, we define a control action acond that is
unrewarding, but that improves localizability according to this
metric for highly-saturated objects that are held by the robot.

acond , c(φcond, J, ~θarm).

This potential function operates in Cartesian space—its input
and output are in workspace coordinates. Therefore, the posi-
tion references to the underlying motor units are derived from
∆~θarm ≈ J#

mφcond, where Jm is the manipulator Jacobian
that transforms displacements in workspace into displacments
in configuration space.

Track is invoked once again, as in stage 1, but this time
with a different visual feature—homogeneous regions of blue
hue ~ublue. This features will be the target for a new tracking
action,

atrack(blue) , c(φεT ε, εblue, ~θhead),

where εblue = (~u0 − ~ublue).
Allowing for nullspace compositions of primitive

controllers, the possible actions for this stage are
A3 = {atrack(blue), acond, atrack(blue) / acond, acond /
atrack(blue), ReachGrab}. The state space is S3 ≡
(pReachGrab, pcond, ptrack(blue)).

Dexter uses the fixed intrinsic reward function in the context
of A3 to reward a 0-1 transition in the second (blue) feature
associated with this object, but not previously in the catalog
C. Figure 9 shows the policy learned for this program. 25%
of the time the blue feature could be tracked immediately,
when the object was held close to the robot’s cameras, and
leading to the state (XX1). The rest of the time, however,
the small blue feature patch was not sufficiently visible by

3818

(a) (b)

(c)

Fig. 8. (a) and (b) show Dexter’s left camera image before and after the
execution of the control law acond /atrack(blue). (c) shows Dexter after the
execution of that law.

Fig. 9. This diagram shows the policy learned for VISUALINSPECT after 50
episodes. The state space is S = (pReachGrab, pcond, ptrack(blue)).

the robot’s cameras at the initial object location, as seen in
Dexter’s field of view in Figure 8(a). During the course of
the learning episodes, however, Dexter learns to reach out
and grasp the ball using the REACHGRAB program learned
in stage 2—and then to visually condition the saturated ROI
of the ball by executing the acond action, bringing the ball
towards the location seen in Figure 8(c). Note, however, that
the learned policy has the conditioning action run subject to
atrack(blue), such that when the blue feature becomes visible in
state (X00), it can be tracked and more reward can be attained.
This often happens in state (X01), before the conditioning
controller completes.

VII. DISCUSSION

In this paper, we demonstrate a framework in which a fixed
intrinsic reward function and a sequence of learning contexts
gives rise to hierarchical control programs that represent
general purpose skills for use by a robot. The intrinsic reward
function motivates the discovery of behavior and affordances
for that behavior. Learning contexts are defined by the range of
robot resources available for autonomous exploration during
each stage of programming. We developed programs called
SACCADETRACK, REACHGRAB and VISUALINSPECT to pro-
vide knowledge that can be re-used in other manipulation
tasks.

In future work, we plan on generalizing this method to
many more channels of sensory feedback available in Dexter
and to extend the hierarchy of behavior to new skills such
as PICKANDPLACE and SORT, as well as skills that require
knowledge and behavior for multi-body relationships such as
STACK, INSERT, and ASSEMBLE.

VIII. ACKNOWLEDGMENTS

This material is based upon work supported under Grants
ARO W911NF-05-1-0396, and NASA NNX07AD60A. The
work is also supported by the NASA Graduate Student Re-
search Program fellowship NNJ05JG73H, We would like to
thank Shichao Ou and Emily Horrell for their help and support.

REFERENCES

[1] M. Asada, K. MacDorman, H. Ishiguro, and Y. Kuniyoshi. Cognitive
developmental robotics as a new paradigm for the design of humanoid
robots. Robotics and Autonomous Systems, 37(2):185–193, 2001.

[2] M. Asadi, V. N. Papudesi, and M. Huber. Learning skill and representa-
tion hierarchies for effective control knowledge transfer. In ICML 2005
Workshop on Structural Knowledge Transfer for Machine Learning,
Pittsburgh, PA, 2006.

[3] A. Barto, S. Singh, and N. Chentanez. Intrinsically motivated learning
of hierarchical collections of skills. In Proceedings of the International
Conference on Development and Learning (ICDL), LaJolla, CA, 2004.

[4] D. E. Berlyne. Conflict, Arousal, and Curiosity. McGraw-Hill, 1960.
[5] J. A. Coelho. Multifingered Grasping: Grasp Reflexes and Control

Context. PhD thesis, Department of Computer Science, University of
Massachusetts Amherst, 2001.

[6] P. R. Cohen, Y. Chang, and C. T. Morrison. Learning and transferring
action schemas. In Proceedings of the 2007 International Joint Confer-
ence on Artificial Intelligence, Hyderabad, India, 2007.

[7] C.I. Connolly and R.A. Grupen. Nonholonomic path planning using har-
monic functions. Technical Report 94-50, University of Massachusetts,
Amherst, 1994.

[8] S. Hart and R. Grupen. Natural task decomposition with intrinsic
potential fields. In Proceedings of the 2007 International Conference
on Intelligent Robots and Systems (IROS), San Diego, California, 2007.

[9] X. Huang and J. Weng. Novelty and reinforcement learning in the value
system of developmental robots. In Proceedings of the 2nd International
Workshop on Epigenetic Robotics: Modeling Cognitive Development in
Robotic Systems, 2002.

[10] M. Huber. A Hybrid Architecture for Adaptive Robot Control. PhD
thesis, Department of Computer Science, University of Massachusetts
Amherst, 2000.

[11] M. Huber and R. Grupen. Learning to coordinate controllers - reinforce-
ment learning on a control basis. In Proceedings of the Fifteenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI), Nagoya,
JP, August 1997. IJCAI.

[12] M. Huber, W. MacDonald, and R. Grupen. A control basis for
multilegged walking. In Proceedings of the Conference on Robotics
and Automation, Minneapolis, MN, April 1996. IEEE.

[13] F. Kaplan and V. V. Hafner. Mapping the space of skills: An approach
for comparing embodied sensorimotor organization. In Proceedings of
the 4th IEEE International Conference on Development and Learning,
2005.

[14] D.E. Koditschek and E. Rimon. Robot navigation functions on manifolds
with boundary. Advances in Applied Mathematics, 11(4):412–442, 1990.

[15] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini. Developmental
robotics: A survey. Connection Science, 15(4):151–190, 2003.

[16] Y. Nakamura. Advanced Robotics: Redundancy and Optimization.
Addison-Wesley, 1991.

[17] R. Platt, A. H. Fagg, and R Grupen. Nullspace composition of control
laws for grasping. In International Conference on Intelligent Robots and
Systems (IROS), Laussane, Switzerland, 2002. IEEE/RSJ.

[18] R. Sutton and A. Barto. Reinforcement Learning. MIT Press, Cambridge,
Massachusetts, 1998.

[19] S. Uppala, D. Karuppiah, M. Brewer, S. Ravela, and R. Grupen. On
viewpoint control. In IEEE Conference on Robotics and Automation,
Washington, DC, May 2002. IEEE.

3819

