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Abstract— Robot haptics ultimately consists of a set of models
which interpret and predict a robot’s physical interaction with
the world. In this paper, we describe one approach to mod-
eling support friction within a two-dimensional environment
consisting of a single robot finger pushing objects on a table.
Instead of explicitly modeling the friction distribution between
the object and the table, we learn the mapping between pushes
and the motion of the object using an online, memory-based
model using local regression. The resulting manipulation map
implicitly describes the support friction without a complex
model. We also describe methods of acquiring object shape
and localizing the object using a proximity sensor. Results are
presented for objects with different friction distributions.

I. INTRODUCTION

While human hands are amazing results of evolutionary
engineering with a yet unmatched power to weight ratio and
sensor density, they are surprisingly imprecise from a control
standpoint. Most robot fingers can position themselves within
a fraction of a millimeter in free space, while humans,
even highly trained surgeons, are unable to position a finger
within a millimeter of a desired location without visual
feedback and some method to brace the hand. Yet, even
a school-child is able to write a letter, pick up a bucket,
and spin an apple within her fingertips within the space
of a few minutes, a medley of tasks no robot hand can
accomplish. The underlying kernel of our current research
is the assumption that flexible and robust control algorithms
are more important than precision robot hardware.

A major obstacle for hand control research is the sheer
complexity of controlling the twelve or more degrees of
freedom of the typical human-modeled robot hand [1] [2] [3].
Beyond just controlling all those motors and utilizing infor-
mation from all those sensors, there is also the difficulty
of maintaining a grasp in three dimensions. Our solution
is to drastically reduce the number of degrees of freedom
by focusing on pushing with a single 2-dof finger. While
the 2-D problem is significantly less complicated, even a
single finger pushing an object in the plane exhibits many
of the difficulties of the full 3-D problem: modeling contact
and friction, dealing with inaccuracies, and processing an
avalanche of sensory information in time to act on that
knowledge.

Our system, the Probabilistic Manipulation Experiment
Table (PMET) consists of a single robot finger pushing

Fig. 1. The PMET pushing robot in action.

objects within a plane (see Figure 1). The robot’s struc-
ture is a modified version of the last two joints of the
PHANTOM haptic device [4], made out of wood using rapid
prototyping, techniques, and turned on its side for horizontal
manipulation. Like the PHANTOM, it is driven through pre-
tensioned cable reductions. It includes a proximity sensor [5],
accelerometers, force sensing based on motor torques, and
encoders. The full system is controlled with the Probabilistic
Robotics Studio (PRS), our own hard-real time visual pro-
gramming system [6].

This paper represents our first major task using the PMET:
to find, explore, and push an arbitrarily shaped 2-D object
with an unknown support friction distribution to a desired
position and orientation.

A. Previous Work

Manipulation by pushing is instrumental when moving an
object that is too heavy to lift. Due to obvious manufacturing
applications, pushing has been an active area of research for
decades. Mason provides a good overview of pushing and
planning techniques in [7]. Likewise, [8] demonstrates that
object motion as a result of a push is based on the support
friction distribution (the distribution of friction between the
object and floor) and approaches the problem from a learning
perspective. While the range of possible pushes is huge,
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Fig. 2. The block diagram for the manipulation map algorithm.

especially if multiple contact points are allowed [9], we
restrict our research to use only straight line pushes with a
single contact point. Akella demonstrated that planning using
such pushes could achieve any orientation in [10].

When pushing the most important haptic property of the
object is support friction. Other researchers have estimated
support friction using active exploration, such as [11] (which
uses vision measurements to compute friction parameters)
and [12] (which uses a force sensor and human-measured
position and motion). Initially, we attempted to estimate and
model the distribution, but we found that even in our simple
environment, the interaction between the table (a plastic
sheet) and the object ’foot’ (wood) was hard to quantify with
a simple model due to imperfections in the contact surfaces
and bits of dirt between the object and table. Instead, we
found that a memory-based model of previous push actions,
or manipulation map, was more robust and easier to obtain.

We are not the first to use memory of past pushing
operations to predict the result of future pushing operations.
In particular, [13] also describes an unsupervised on-line
method which selects each push direction using a weighted,
stochastic, nearest-neighbor approach. Their approach is
similar to ours, except we use a proximity sensor instead
of optical flow to track the object and we do not restrict
the point of contact to a single, notched location. Other
researchers outside of pushing manipulation have used local
regression of memory-based models, such as [14], which
uses a neural network to provide nearest neighbor lookup.

B. Contributions

Our notable contributions described in this paper, are:

• Novel use of proximity sensor for both shape acquisition
and localization.

• A memory-based technique that learns support friction
by mapping pushes to motion (a manipulation map).

• A heuristic for updating the manipulation map which
explores the object as it manipulates and implicitly
generates a locally weighted regression.

(a) Full object.

(b) Detail of the narrow end, showing the
object outline, a spline of degree 1.

Fig. 3. The proximity cloud for a peanut-shaped object.

Our work is presented in the form of the overall ma-
nipulation algorithm as shown in Figure 2. The algorithm
is structured as a loop: planning a push, implementing the
push, localizing the object, and updating the manipulation
map with the new knowledge.

The rest of the paper describes the implementation of each
of the basic capabilities required for the algorithm. Section II
describes the use of the proximity cloud in acquiring object
shape and localizing the object. Section III describes the
manipulation technique for applying pushes and Section IV
describes the manipulation map update method. Section V
describes how each push is chosen from the set of candidate
pushes. Section VI describes some experimental results and
the final section provides a summary and areas of future
research.

II. USING THE PROXIMITY CLOUD

The object shape and pose are both acquired using a cloud
of proximity measurements from the proximity sensor. In
order to make the cloud, the finger moves around the object
at a distance of approximately 10mm and stores proximity
measurements (corresponding to actual points on the object)
as it goes. The contour following controller is described in
[5]. Objects must be restricted to those with relatively low
curvature (radii more than 10mm) to avoid confusing the
proximity sensor since it cannot detect corners.

The proximity sensor measurements include a decent
amount of noise (up to a 3mm displacement) but they are
centered around the actual outline of the object. The next two
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sections describe how the cloud of proximity measurements
is used to construct a model of the object’s shape and localize
the object as it is moved around the table.

A. Object Shape

After the system initially acquires an object (by scanning
through the workspace from side to side), it generates a
proximity cloud and fits a first-degree spline (polyline) to the
cloud. The initial control points of the spline are generated by
sampling proximity measurements every centimeter. Figure 3
shows the proximity cloud and the fitted object shape.

After acquiring a rough model, a Bayesian optimizer
refines the spline to better fit the cloud of points (based on
[15]). If the object outline is defined by a set of n control
points ~x and there are m proximity measurements ~z, the best
fit of the spline to the proximity cloud is defined as the set
of control points which minimize:

f(~x, ~z) = fm(~x, ~z) + fp(~x) (1)

Where fm(~x, ~z) is a function describing the sum of
squares distance of the cloud to the spline and fp(~x) applies
a second derivative curvature constraint to avoid overfitting.
Specifically:

fm(~x, ~z) =
∑

0≤j<m

‖zj − g(~x, zj)‖2 (2)

fp(~x) = λ
∑

0≤i<n

‖xi−1 − 2xi + xi+1‖2 (3)

g(~x, zj) is a function which evaluates to the point on the
first degree spline defined by ~x which is closest to zj . In our
implementation, we determine the closest point using a O(n)
technique which computes the closest point on each spline
segment and returns the point which minimizes distances
to zj . λ is a constant that controls how ’smooth’ the curve
is. Since the object is a closed curve, we assume that the
points wrap at each end (xn maps to x0 and x−1 maps to
xn−1). To minimize this sum of squares problem, we used
the Levenberg-Marquardt non-linear least squares method.

B. Localization

Once the object shape is known, the object position and
orientation can by found at any time by retracing the object
contour and generating a new cloud of proximity measure-
ments. The result of each push is found by optimizing the
object pose based on this new cloud.

Given ~x and ~z, we can find the best object center position
~p and object orientation θ by minimizing the sum of squared
error:

fL(~p, θ) =
∑

0≤j<m

‖zj − g(R(θ) ∗ (~x + ~p), zj)‖2 (4)

Where R(θ) is the rotation matrix from θ. Again, we used
the Levenberg-Marquardt to minimize fL.

III. PUSHING (MANIPULATION)

The primary goal in defining a manipulation operation
(a push) is repeatability: each push should produce results
similar to previous pushes at that location. While many
properties of the push can not be precisely controlled (the
exact friction between the finger and object, the rotation of
the fingertip as it moves, etc.), we found that straight line
pushes are repeatable enough to give our desired degree of
accuracy. After all, we aren’t concerned with exact manip-
ulation within fractions of a millimeter; most human-scale
tasks require positioning within a few millimeters or even
tens of millimeters.

The first step of the pushing procedure is to determine
where and how far to push. Section V describes how the
location and magnitude of each push is decided in more
detail. It is important to mention that pushing only occurs at
discrete points, specifically a subdivision of the control points
of the shape spline model with approximately 3mm spacing.
By pushing along the surface normal at specific points, we
minimize tangential slip and reduce the number of possible
pushes that need to be considered when planning.

Pushing procedure:
1) Line up 20mm from the object along the push line.

Lining up this far from the object ensures consistency.
2) Move the fingertip toward the object along the push

line until accelerometers detect contact and the prox-
imity sensor says the object is less than 2mm away.

3) Record the starting point of the push.
4) Continue to move along the push line and push the

object.
5) When the difference between the current finger posi-

tion and the starting position is greater than the push
length, stop.

6) Immediately move the finger backwards along the push
line to avoid secondary manipulation of the object.

While pushes are relatively consistent, the inertia of the
finger causes small pushes to produce approximately ten per-
cent more motion than desired. Typically, this only happens
with pushes of less than 3mm, and since the desired accuracy
of the final manipulation is about 2mm, it does not impact
manipulation significantly.

IV. ONLINE LEARNING

A major contribution of this work is a novel method to
update and maintain a manipulation map over time. This
mapping encapsulates the friction distribution between the
object and the table. Ultimately, this method results in a
local regression of past measurements at each of the possible
push points (push points are a 3mm subdivision of the object
spline control points).

The manipulation map is a representation of the expected
change in position and orientation at a finite set of possible
push points ~yk. For each ~yk there is an associated ~qk =
[∆x,∆y, ∆θ] which defines the change in pose normalized
to a 1mm push. Note that this change in pose is in reference
to the center of the object (the centroid of the object shape

3810



Fig. 4. The truncated Gaussian curve for location-based weighting.

Fig. 5. The curve used for weighting based on push distance.

spline control points). There is also an associated scalar
weighting, wk, which represents how many measurements
are contained in that pose change estimation (larger weights
mean more confidence). The combination of all push points
and their associated pose changes and weights makes up the
manipulation map.

In our experiments, we found all pushes can be nor-
malized to the scale of 1mm pushes as long as slip is
minimized by pushing normal to the object surface. On
initialization, assuming a 1mm push vector of ~uk at ~yk,
~qk = [ux, uy, R()∗0.01rad] and wk = 0.3. R() is a function
that generates random numbers in the normal distribution
with a standard deviation of 1. While the translation is a
decent approximation of the true result for most objects, the
random rotation component is often very far from the correct
value. But, the random rotation helps the system to explore
the surface during manipulation. The weights are initialized
to the relatively small value of 0.3 (successful pushes result
in weightings of 1.0) to allow new measurements to quickly
change the initial map.

Each push modifies more than one entry of the manip-
ulation map to allow localized spread of information. This
spreading feature (along with averaging) produces an effec-
tive local regression in the manipulation map. The guiding
feature in the algorithm is a set of adjustments, ai, defined
for each push point. For a given push of length lk at push
point ~yk, the adjustments are computed as:

ai = exp(−‖~yk − ~yi‖2

2 ∗ σ2
) ∗ 1

1 + exp(−(lk − 5mm))
(5)

The first term of ai controls the spread of the push
information to adjacent push points with a standard deviation
σ (typically set to 10mm). Figure 4 shows a plot of this

function. The second term attenuates the weighting for small
pushes to prevent noise from impacting the result. Figure 5
is a plot of this second term. As you can see, the final value
of ai is at most 1.0 (ak = 1.0).

Once the adjustments are computed, the manipulation map
is updated based on the new pose change, ~r, according to:

~q′i =
~qi ∗ wi + ~r ∗ ai

wi + ai
(6)

w′
i = wi + ai (7)

The end result is a sequence of updates as shown in
Figure 6. Each T represents the change in position and
orientation of the center of the object from a 1mm push.
Any rotation of the T from upright means the object rotated
in that direction, and the translation of the T off of the
push point on the object represents how far the center of the
object translated as a result of the push. The size of the T
directly corresponds to wi; a larger T means a high weighting
and more confidence in the mapping. Portions (a) and (b)
show the map before and after the first update. Likewise, (c)
and (d) depict the results of the third push update. As the
number of pushes increase (due to multiple goal points) the
manipulation map becomes a detailed description of how the
object moves.

V. CHOOSING THE NEXT PUSH

The final component of the algorithm is a method of decid-
ing where and how far to push the object at each step in order
to move it to some goal position and orientation. The specific
method is not important for the eventual repositioning of the
object as long as each push moves the object toward the
chosen goal. But, the method used will heavily influence
how many pushes are required to get the object to the goal.
In this paper we will describe one method which does not
require any in-depth planning.

All push choice algorithms require two things: a method of
simulating a push and a metric for measuring how effective
the simulated push is. The manipulation map can be used
directly to simulate the results of the push; just reorient
the object model according to the corresponding mapping
estimate, scaled based on the size of the push. The metric
is defined as the sum of squared differences of the control
points in the object spline for the simulated pose and the
goal pose.

The optimal push location and distance could be comput-
ing by enumerating all possible pushes and distances, and all
sequences of all possible pushes, and choosing the sequence
which results in the shortest number of pushes (or another
metric) to reach the goal. This is essentially planning to an
unlimited horizon, but in practice, such planning would be
too time consuming. Instead, we make some approximations,
namely not planning beyond one step.

The method we currently use is a greedy one: for each
push point, enumerate all possible pushes at 0.5mm resolu-
tion up to the maximum push length. The maximum push
length is controlled by the weighting of that push point in a
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(a) Push 1: Before Update (b) Push 1: After Update (c) Push 3: Before Update (d) Push 3: After Update

(e) Push 10 (f) Push 18 (g) Push 26 (h) Push 33

Fig. 6. A sequence of updates during the manipulation map learning algorithm. Each T represents the results of a push at the corresponding push point.
The position and orientation of the T reflect the translation and rotation of the object respectively, while the size is directly proportional to the weighting.

Fig. 7. Data from a sequence of runs.

linear fashion so the smallest maximum push is 5mm and the
largest is 30mm. For each of the enumerated pushes, simulate
the result and compute a measurement metric. Then, execute
the the push which results in the smallest metric value.

VI. EXPERIMENTAL RESULTS

A. Learning Speed

In order to test the speed and quality of the learned model,
we ran a series of 10 trials with the ’peanut’ object. Each
trial produced an ordered set of 10 or more iterations and
each iteration measured how many pushes it took to get
to a randomly chosen goal position and orientation. Goal
positions varied in x and y directions within a 4cm square
and varied in orientation by 90 degrees. Success was declared
when all control points of the object were within 1mm of the
goal control points. The results are shown in Figure 7. The
line in the figure is a curve fit to the average performance
at each iteration. It clearly shows the decrease in pushes
required to reach the goal as the algorithm learned.

Even after 10 iterations, the required number of pushes to
get the object to the goal ranges from 1 to 6. Since the goal
location is chosen randomly at each iteration, sometimes the
goal is far from the current position, requiring many pushes,

Fig. 8. Final manipulation map for a kidney-shaped object.

and sometimes the robot gets lucky and the goal is very
close.

B. Analyzing Manipulation Maps

The manipulation map incorporates quite a bit of informa-
tion about the shape of the object and the friction distribution.
The restriction of possible pushes to those normal to the
object surface allows us to ignore finger-to-object friction,
but it also restricts the number of possible manipulations.
Certain objects, especially those similar to circles, can be
very difficult to reorient due to this restriction.

As an example, we ran the system on a kidney shaped
object; the resulting manipulation map is in Figure 8. Note
how most push points produce only minor rotation (primarily
due to uneven friction between the base of the object and
the table) except the two lobes near the top. In practice,
manipulation of the kidney object required a lot of lobe
pushes to change orientation and accompanying pushes in
other locations to move the center of the object back toward
the goal center.

We also ran tests to directly compare the result of different
friction distributions on the ’peanut’ object which uses two
circular feet as shown in Figure 1. To change the support
friction distribution, we placed a ’sticky foot’ made from
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high-friction silicone rubber under each lobe in turn and
built the manipulation maps shown in Figure 9. For clarity,
weights of the learned mapping are omitted. The two figures
clearly show different manipulation maps due to different
friction distributions.

VII. CONCLUSIONS AND FUTURE WORK

The memory-based learning technique presented in this
paper allows manipulation of an unknown object with an
unknown support friction distribution. While the specific
algorithm given is far from optimal, we feel it is a good
first step toward more robust manipulation. Truly robust
manipulation needs to interact with unknown objects and
unknown haptic properties.

There are many ways to improve the existing algorithm.
First, the granularity of the manipulation map could be im-
proved by considering more points (possibly in a continuous
representation). Also, allowing pushes that are not normal
to the object surface would greatly increase the ability of
the robot, but also increase the search space. Likewise,
using vision or other sensing mechanisms would allow us
to manipulate objects with sharp edges. Finally, deciding
the next push using a multi-step look ahead would improve
performance greatly.

A fundamental flaw with this approach is that it cannot
generalize to other objects; once a manipulation map is
learned, that same map cannot be applied to any other object,
not even a larger version of the same shape.

In the broader problem, our next area of research will be
other haptic properties outside of object-table friction using
the PMET framework. In each case, we’ll be focusing on
robust techniques that do not require excessively sensitive
sensors. Instead, our goal will be to use qualitative mea-
surements from multiple sensors, as we accomplished with
accelerometers, proximity, and proprioceptive sensors in this
task. We believe that the next big leap ahead in robotics will
be in software, not hardware.
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