
Skill Decomposition by Self-Categorizing Stimulus-Response Units

Hsien-I Lin and C. S. George Lee*
School of Electrical and Computer Engineering

Purdue University
West Lafayette, IN 47907-2035
{sofin, csglee}@purdue.edu

Abstract— Endowing robots with the ability of skill learning
enables them to be versatile and skillful in performing various
tasks. This paper proposes a skill-decomposition framework,
which differs from previous work in its capability of decom-
posing a skill by self-categorizing it into significant stimulus-
response units (SRU). The proposed skill-decomposition frame-
work can be realized by stages with a 5-layer neuro-fuzzy
network with supervised learning, resolution control and re-
inforcement learning, to enable robots to identify a sufficient
number of significant SRUs for accomplishing a given task.
Computer simulations and experiments with a Pioneer DX-3
mobile robot were conducted to validate the self-categorization
capability of the proposed skill-decomposition framework in
learning and identifying significant SRUs from task examples.

Index Terms— Stimulus-response unit, skill decomposition,
neuro-fuzzy network, resolution control, reinforcement learn-
ing.

I. INTRODUCTION

Current humanoid robots have become more human-like
in appearance and mechanism, however they are still not as
skillful as humans because they lack the ability to categorize
and memorize skills and utilize them to learn new skills.
Skill learning is referred to as a process of acquiring skills
to achieve a given task, and early robotics research on skill
learning focused on manufacturing tasks such as assembly
[1], cutting [2], and deburring [3], etc. A variety of skill
representations and learning algorithms were proposed to
acquire skills. Among these skill representations, they are
dichotomized into non-primitive-based and primitive-based
representations.

For non-primitive-based representations, they are further
divided into local-approximation and global-approximation
methods. For local-approximation methods, Albus [4] et
al. proposed the Cerebellar Model Arithmetic Computer
(CMAC) to acquire robot skills. CMAC is a table-look-up
method that reproduces the relation between sensor inputs
and system-command outputs. Since CMAC had achieved
some success in acquiring skills, researchers turned their
interests to local-approximation methods for acquiring skills.
Radial-basis-function network (RBFN) is another approach
that exhibits locality. Baroglio et al. [5] integrated a symbolic

This work was supported in part by the National Science Foundation
under Grant IIS-0427260. Any opinion, findings, and conclusions or rec-
ommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation.

∗This material is based upon work supported by (while serving at) the
National Science Foundation.

interpretation and RBFN to demonstrate that robots exhibited
satisfactory performance in a “peg-in-a-hole” task. Although
local-approximation methods have shown their success in
skill representation, locality impedes the output performance
in high-dimensional tasks.

To improve local-approximation methods in skill rep-
resentation, three prevalent global-approximation methods
– multi-layer neural networks, fuzzy logics, and Hidden
Markov models – were engaged to acquire robot skills.
Neural networks are usually trained by a backpropagation al-
gorithm without specific skill models; for example, Nechyba
and Xu [6] proposed a neural-network-based method to
extract strategies of skills from an expert and provide them
to an apprentice. For fuzzy logic, skill-learning methods are
implemented with domain knowledge. Wasik and Safiotti [7]
proposed a fuzzy-rule-based control system to learn robot
manipulation. They demonstrated that pick-and-place tasks
could be realized by a set of behaviors arbitrated by fuzzy
rules. Hovland [1] considered that human actions might
possess inherent stochastic property and employed Hidden
Markov models to acquire human skills.

For primitive-based skill representations, many robot skill-
learning systems adopted motion primitives [8], [9] or
behavior-based systems [10]–[12] to perform various tasks.
For motion primitives, they serve as basic units to perform
specific tasks. For example, Speeter [8] defined a set of
motion primitives of a Utah/MIT Dextrous Hand such as
open, pinch, rotate, swing, etc. to perform manipulation
tasks. For behavior-based systems, skills can be acquired by
constructing a network of behaviors. Behaviors are usually
encoded by reactive rules [10] or mathematical formalism
[11]. Although motion-primitive-based or behavior-based
approaches achieved some success in skill learning, they
required much storage and lacked generality of primitives. In
addition, these approaches cannot autonomously adjust the
behaviors of primitives in a dynamic environment. They are
often employed as a means of implementing a skill-learning
system. Unfortunately, they are manually-designed, which
is time-consuming by examining the domain knowledge of
tasks in a robot system.

Although it is easy to dynamically adjust parameters of
non-primitive-based methods, it is unclear and not easy to
change the behavior of learned skills by these parameter
adjustments. Modularity and reusability of learned skills
are also poor for learning new skills by non-primitive-

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3820

based methods. On the other hand, primitive-based meth-
ods have good modularity and reusability in learning new
skills, but their primitives are usually manually-designed
and may not be adjustable to various situations of a task.
To provide a platform for integrating non-primitive-based
and primitive-based methods, this paper proposes a self-
categorizing, skill-decomposition framework, which acquires
and self-categorizes a skill into a sufficient number of
stimulus-response units for accomplishing a given task. A
stimulus-response unit (SRU) is defined as a mapping from
the domain of perceptual stimuli to the domain of action
responses. The proposed skill-decomposition framework can
be realized by stages with a 5-layer neuro-fuzzy network
with supervised learning, resolution control, and reinforce-
ment learning, and is discussed in more detail in the next
section.

II. PROPOSED SKILL-DECOMPOSITION FRAMEWORK

Figure 1 shows the proposed skill-decomposition frame-
work, which can be conveniently realized in three stages. In
the first stage, a five-layer, neuro-fuzzy network acquires
a skill and categorizes it into initial SRUs that capture
the behavioral patterns of the skill as demonstrated by
a human. Supervised learning is performed to tune the
parameters of the neuro-fuzzy network. Since some of these
initial SRUs may be unnecessary due to extraneous actions
demonstrated by a human, resolution control is proposed to
prune unnecessary SRUs and generate a sufficient number
of significant SRUs in the second stage. In the third stage,
reinforcement learning is utilized to validate the sufficiency
of the significant SRUs for accomplishing the given task.
If not, their behaviors are autonomously adjusted in the
reinforcement-learning stage until the task is accomplished
within an acceptable number of trials.

A. Neuro-fuzzy-based Skill Representation with Supervised
Learning

Since a skill is considered as a stimulus-response mapping
from the domain of stimuli to the domain of responses,
a skill can be represented by a set of SRUs. Thus we
propose to represent a skill as a fuzzy-rule-based system
and realize it by a five-layer, neuro-fuzzy network (see Fig.
2) [13]. Each SRU is regarded as a fuzzy rule in the neuro-
fuzzy network. After a neuro-fuzzy network is trained by
task examples via supervised learning, the structure and
parameters of the neuro-fuzzy network are learned, and the
SRUs represented by fuzzy rules are self-categorized from
the neuro-fuzzy network. There are merits of representing

Demonstration of task
examples from

humans or
autonomous robots

Self-categorization of
SRUs by a

neuro-fuzzy network

Validation of the small
number of significant

SRUs

First Stage:
Supervised Learning

Third Stage:
Reinforcement Learning

Resolution
control

 Second Stage

Fig. 1. The proposed skill-decomposition framework.

Layer 2
(fuzzy sets of

perceptual stimuli)

Layer 1
(perceptual

stimuli)

Layer 3
(stimulus-response

units)

Layer 4
(fuzzy sets of

action
responses)

Layer 5
(action

responses)

S1 S2 Sp

R1 Rq

SRU1 SRU2 SRU3 SRU4 SRU5 SRUn

Fig. 2. Skill representation is realized by a neuro-fuzzy network (S:
perceptual stimulus; R: action response; SRU: stimulus-response unit).

a skill by a neuro-fuzzy network. First, a neuro-fuzzy-
based skill representation provides low-level, connectionist-
learning capability and high-level, fuzzy IF-THEN rule
thinking. Thus, skills as represented by SRUs can be easily
learned and adjusted by using a neuro-fuzzy-based super-
vised learning from task examples. Second, the connectionist
structure of a neuro-fuzzy-based skill representation provides
a mechanism for different types of learning (e.g., supervised
and reinforcement learning) because connections in a neuro-
fuzzy network can propagate and memorize signals. Thus,
the benefits of supervised and reinforcement learning can be
appropriately combined and realized in a neuro-fuzzy-based
skill representation. Third, after a skill has been learned, its
fuzzy rules can be extracted and expressed explicitly from
SRUs of a neuro-fuzzy network.

B. Resolution Control

After initial SRUs have been categorized by supervised
learning, resolution control is employed to prune unneces-
sary SRUs, resulting in a small number of significant SRUs.
The idea of resolution control is illustrated in Figs. 3(a),
(b), (c), and (d). Figures 3(a) and (b) show four SRUs A,
B, C, and D, and each of them has two perceptual stimuli,
S1 and S2, and two corresponding action responses, R1 and
R2. In Fig. 3(a), SRUs A and B are close by measuring the
distance in the perceptual space, and so are SRUs C and
D in Fig. 3(b). By resolution control, SRUs A and B, and
C and D are combined into SRUs A’ and C’ by merging
their respective fuzzy sets in terms of statistically averaging
their membership functions. From Fig. 3(c), A’ (in dash
line) covers a larger domain in the perceptual space, but
A’ loses some detailed perceptual information that has been
described by A and B; so does C’. Thus, the resolution of
perceptual stimuli of A’ is lower than the original resolution
provided by A and B, and so is the resolution of SRU C’.
Meanwhile, extraneous actions generated from unnecessary
SRUs are averaged out with other significant SRUs by the
process of resolution control.

In our proposed framework, we construct a resolution
binary tree (RBT) in order to generate a small number
of significant SRUs. The concept of RBT is to establish

3821

2S

Membership grade

1R

2R

Membership grade

A A

BB

C C

DD

1S

Close,
Merging

Merging

Close,
Merging

Merging

Perceptual Space Action-Response Space

(c) (d)

(a)

A’

C’

SRU A

R1

S1 S2

R2

SRU B

R1

S1 S2

R2

SRU A’

R1

S1 S2

R2

SRU C

R1

S1 S2

R2

SRU D

R1

S1 S2

R2

(b)

SRU C’

R1

S1 S2

R2

Fig. 3. Concept of resolution reduction of SRUs. (a) and (b) Six SRUs
A, B, C, D, A’, and C’, each of which has two perceptual stimuli, S1

and S2 and two action responses, R1 and R2. (c) Merging membership
functions of perceptual stimuli of SRUs A and B, and C and D. (d) Merging
membership functions of action responses of SRUs A and B, and C and D.

a lookup table that describes the means and variances of
the membership functions of the fuzzy sets belonging to
perceptual stimuli and action responses for each SRU in the
small number of significant SRUs. The advantage of this
RBT is that the number of SRUs quickly decreases by half.
The procedure of building a RBT is described by the RBT
algorithm described below.

RBT Algorithm: Given the number of initial SRUs from
a learned neuro-fuzzy network, the RBT algorithm clusters
them into two clusters with an equal number of SRUs by
their locations in the perceptual-stimuli space. If the number
of initial SRUs is odd, then one cluster has one more SRU
than the other. Then, the algorithm recursively classifies each
cluster into two sub-clusters until the number of SRUs in a
sub-cluster is one. The clustering algorithm is implemented
by a K-means method by measuring the Euclidean distance
(distance between the means of the fuzzy sets belonging to
the same perceptual stimulus of two SRUs), and it ends up
with generating a binary tree where each leaf node represents
a SRU. To generate a new SRU for each node (except for
leaf nodes) in the binary tree, the algorithm merges the SRUs
from its child nodes. The merging procedure is repeated from
the bottom to the top layer of the binary tree.

T1. [Determination of two initial centers.] Randomly
choose SRUi and SRUj from SRU1 to SRUn as
cluster(1)center and cluster(2)center, respectively.
Also, |cluster(1)| ← 0 and |cluster(2)| ← 0, where
| · | is the count of number of SRUs in the cluster.

T2. [Cluster indication for SRUs.]
cSRUk

← argminw={1,2}‖SRUk − cluster(w)center‖
and |cluster(cSRUk

)| ← |cluster(cSRUk
)| + 1 for

1 ≤ k ≤ n, where cSRUk
is the cluster of SRUk and

‖ · ‖ is the Euclidean distance from SRUi to SRUj

and is defined as√∑
∀stimulus(MeanSRUi

Stimulus −Mean
SRUj

Stimulus)2.
T3. [Center update.] Calculate cluster(1)center and

cluster(2)center by averaging the means of stimuli of
the SRUs in cluster(1) and cluster(2).

T4. [Error calculation of cluster.]
E ←

∑
w={1,2}

∑
‖SRUk − cluster(w)center‖

∀SRUk ∈ cluster(w).
T5. [Check error convergence.] IF |Ecurrent −

Eprevious| ≤ τ , where τ is a design threshold,
THEN continues, ELSE go to Step T2.

T6. [Size difference of cluster.] ∆N ← |cluster(1)| −
|cluster(2)|.

T7. [Cluster re-indication for SRUs.] IF ∆N ≥ 0, THEN
assign ∆N number of SRU from cluster(1) to
cluster(2), which is closest (the shortest Euclidean
distance) to any SRU ∈ cluster(2), ELSE assign ∆N
number of SRU from cluster(2) to cluster(1), which
is closest to any SRU ∈ cluster(1).

T8. [Repeat clustering.] Designate cluster(1) and
cluster(2) as parent nodes in the binary tree. Repeat
Steps T1 to T7 for each parent node, resulting in
two child nodes until leave nodes are created where
|cluster(w)| = 1 or 0 for w = 1, 2.

T9. [Initialization of generating a small number of signifi-
cant SRUs.] Start at the bottom layer of the tree.

T10. [Merging of child nodes.] IF either of the two child
nodes belonging to the same parent node is dummy
(|cluster(w)| = 0), THEN assign the SRU in the non-
dummy node as the new SRU in the parent node ELSE
merge the two SRUs from the child nodes into the new
SRU in the parent node.

T11. [Repeat of merging.] Repeat Step T10 until the top
layer of the tree is reached.

END RBT Algorithm.

C. Reinforcement Learning

After the supervised learning, the structure and parameters
of the neuro-fuzzy network (see Fig. 2) have been learned,
and the resolution control generates a small number of
significant SRUs. In the third stage, reinforcement learning
is introduced to test and validate whether these significant
SRUs are sufficient for accomplishing the task. Thus, the
reinforcement-learning stage has two main functions: provid-
ing a process for validating the suitability of small number
of significant SRUs, and providing a learning mechanism for
adjusting the behavioral patterns of these SRUs to accom-
plish the task. In the reinforcement-learning stage, a skill is
represented by significant SRUs, and an adaptive-heuristic-
critic algorithm is adopted to adjust the behaviors of SRUs
to achieve the goal of given task. Figure 4 shows a neuro-
fuzzy network with reinforcement learning. The neuro-fuzzy
network organizes SRUs by using two major subnets, critic
and action subnets.

The purpose of the critic and action subnets is to obtain
appropriate behaviors of SRUs for accomplishing a given
task. SRUs in the action subnet provide well-structured,

3822

COA

Critic Prediction Critic
{0,1}

Stochastic exploration
(Gaussian distribution)

Actual output Evaluation

Critic Prediction Error

Goal

SRU SRU

)1(−tp

)1()(−−⋅+ tptpr γ

)(
ˆ

)(ˆ
1

tM
yy

trm ij
r

t

jj
m
r

ij
r

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
⋅⋅=∆

σ
α

thj

COA

SRU1SRU1 ni

thq

COA

st1

thjthj

),(ij
r

ij
rm σ

st1 thm st1 thj thm thmst1 st1 thj thm

Adjust mean and variance

r
iu

ru1 r
nu

s1s1 s2s2 sksk spsp

ru2

isp
ku

ku

1u pu

),(ik
s

ik
sm σ

SRU2

Fig. 4. A neuro-fuzzy network in the reinforcement-learning stage.

multi-step actions rather than single-step actions in a con-
ventional reinforcement approach since a fuzzy rule can be
used to generate actions for many states in the task space.
On the other hand, the critic subnet provides the parameter
learning for tuning behaviors of SRUs because a critic is
an indication showing the goal achievement for the task,
and it strongly drives and shapes the learning process and
the results of reinforcement learning. With well-structured
actions and parameter learning, the skill-learning time in
the reinforcement-learning stage is dramatically reduced. For
the critic subnet, it consists of critic, critic prediction, and
critic-prediction error. The critic is a binary signal providing
success or failure for the outcome of the performance.
The critic prediction, p(t), is to predict the critic signal in
order to choose a better action from the action subnet at
time step (t − 1). In other words, the predicted critic can
help the action subnet to perform a more efficient random
search since reinforcement learning is an exploitation-and-
exploration process. The critic-prediction error is used to
calculate the error between the predicted and actual critics,
and update the parameters of critic prediction in the critic
subnet and SRUs in the action subnet.

For the action subnet, it consists of SRUs, stochastic
exploration, and mean-and-variance adjustments of fuzzy
sets. SRUs function as initial action templates and are
identified from task examples in the supervised-learning
stage. The outputs of SRUs are wired together to produce
the network’s outputs. Thus, the network’s outputs are
generated based on exploiting SRUs. In addition, stochastic
exploration is added at the network’s output to assist the
reinforcement-learning stage in exploring a near optimal
solution. Meanwhile, a critic-prediction error is fed back to
adjust the behaviors of SRUs to generate a more correct
predicted critic through changing the means and variances
of the membership functions of fuzzy sets. These changes in
membership functions are performed by backpropagation of
the critic signal until the task is achieved. In our mobile-

robot experimental examples, we set a hundred trials as
the upper limit of the number of trials to judge whether
a robot achieves the given task or not. This upper limit can
be adjusted – depending on how quickly we expect a robot
to accomplish a task. Although a small upper limit can be
used to quickly judge whether a robot succeeds or fails a
task, it may cause the robot to easily fail the task. Thus,
an adequate upper limit of the number of trials is necessary.
The updating rules and detailed calculations of the adaptive-
heuristic-critic algorithm are referred to [14], [15].

III. COMPUTER SIMULATIONS AND EXPERIMENTAL
WORK

Computer simulations using the player/stage mobile robot
control software and two experiments on an ActivMedia
Pioneer P3-DX mobile robot were conducted to validate
the performance of the proposed skill-decomposition frame-
work.

A. Experiment 1: Hallway-Passing Skill

In this example, we implemented a simple rule for the
robot to pass a hallway – when the robot approaches a wall,
it will turn toward the other side to avoid bumping into the
wall. If a neuro-fuzzy network with supervised learning is
utilized to learn the action patterns of the autonomous robot,
it will result in a zigzag fashion of passing the hallway
because the neuro-fuzzy network will learn the trajectory
faithfully. However, passing a hallway in a zigzag fashion
is not the skill that we would like the robot to learn. We
would like the proposed three-stage skill decomposition to
learn the hallway-passing skill utilizing SRUs and discover
a sufficient number of SRUs to pass the hallway without
moving in a zigzag fashion.

The first stage, a 5-layer, neuro-fuzzy network with su-
pervised learning, will capture the action patterns from task
examples and categorize them into initial SRUs. Figure
5(a) shows a task example of passing the hallway with the
stated simple rule. The training data were collected by a
SICK LMS-200 laser ranger equipped on the Pioneer P3-DX
mobile robot. The hallway in our simulation is a hallway of
the ground floor of EE building at Purdue University. The
training data for the neuro-fuzzy network comprise of four
sensory inputs: minimum distance from the right-hand wall,
minimum distance from the left-hand wall, the centermost
distance from obstacles, and its current orientation, and two
actuator outputs: turning angle and speed. The sampling rate
was 10Hz. We set the number of membership functions to 5
for each perceptual stimulus and 10 for each action response
to generate 124 initial SRUs. Figures 5(b) and (c) show the
training results from the neuro-fuzzy network.

With the initial 124 SRUs, resolution control constructed
a resolution binary tree. At the bottom layer of the tree,
there are 128 nodes (SRUs) because 26 < 124 < 27 and 4
nodes are “dummy nodes.” After resolution control, Figures
6(a)-(e) show the simulation results of different resolutions
of SRUs when the angle of initial robot orientation was 30
degrees. In Fig. 6(a), when the resolution is 128 (highest),

3823

(a) (b) (c)

Fig. 5. Skill of passing a hallway. (a) Task example. (b) and (c) Training
results from the neuro-fuzzy network with an initial robot orientation of 30
degrees and 60 degrees, respectively, with respect to the upright.

the result was similar to Fig. 5(b). Other resolutions of SRUs
are shown in Figs. 6(b), (c), (d), and (e). When the number
of SRUs was reduced to less than 128, the mobile robot
could pass the hallway with fewer zigzag actions. It came
out with a more straight-line hallway passing skill to achieve
the goal. However, Fig. 6(e) shows that when the number of
SRUs was 8, the robot could not pass the hallway in the first
trial. Also, Figs. 6(g)-(j) show that when the number of SRUs
was less than 128 and the initial angle of robot orientation
was 60 degrees, the robot still could not pass the hallway in
the first trial. With these failures, the reinforcement learning
was used to adjust the behaviors from these small numbers
of SRUs.

The adjustment process tuned the behaviors of the
hallway-passing skill based on SRUs. Figure 4 shows how
the critic r adjusts the means and variances of the fuzzy
sets belonging to perceptual stimuli and action responses.
The critic is given 0 at each time step when the robot does
not fail the task, or −1 when it fails the task. Figures 7(a)-
(b) and (e)-(f) show the reinforcement learning that took 2
trials to complete the task when the number of SRUs was
8, and the initial angle of robot orientation was 30 degrees.
When the initial angle of robot orientation was 60 degrees,
Figs. 7(c)-(d) and (g)-(h) show the reinforcement learning
that took 3 trials to complete the task. In one hundred of
continuous tests with αr

m = 0.3, αr
σ = 0.3, αs

m = 0.3,
αs

σ = 0.3, ω = 0.1, γ = 0.95, β = 0.1, and λ = 0.8, it took
8.21 and 12.12 trials on the average for 8 SRUs in a test
to finish the task when the initial angle of robot orientation
was 30 and 60 degrees, respectively. Other testing results for
-30, -45, -60 and 45 degrees of robot orientation are shown
in Fig. 8.

In this example, we set the upper limit of 100 trials in

(d) (e)(b) (c)(a) (i) (j)(g) (h)(f)

Fig. 6. Skill of passing a hallway with different numbers of SRUs when
the initial angle of robot orientation is 30 degrees: (a) 128 SRUs; (b) 64;
(c) 32; (d) 16; (e) 8. Similarly, when the initial angle of robot orientation
is 60 degrees: (f) 128 SRUs; (g) 64; (h) 32; (i) 16; (j) 8.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 7. The adjustment of the behaviors of 8 SRUs. When the initial angle
of robot orientation is 30 degrees, simulation results: (a) Trial 1 before
the reinforcement learning, (b) Trial 2 after the reinforcement learning;
experimental results: (e) Trial 1, (f) Trail 2. Similarly, when the initial
angle of robot orientation is 60 degrees, simulation results: (c) Trial 1, (d)
Trial 3; experimental results: (g) Trial 1, (h) Trial 3.

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 8. (a)-(d) and (e)-(h) are simulation and experimental results,
respectively, with 8 SRUs when the initial angle of robot orientation is:
-30 degrees ((a)&(e)), -45 degrees ((b)&(f)), -60 degrees ((c)&(g)), and 45
degrees ((d)&(h)).

the reinforcement learning for distinguishing whether the
resolution of SRUs is successful or not in completing the
task. If the number of trials is under 100 and the task is
completed, then the resolution of SRUs succeeds the task,
otherwise, it fails the task. As for using 4 or 2 SRUs, both
could not pass the hallway within the limit of a hundred of
trials. Thus, 4 or 2 SRUs are not sufficient for accomplishing
the task. From the results of this example, having 8 SRUs is
sufficient and appropriate for the robot to learn the skill of
passing the hallway. Figure 9 shows the mobile robot was
passing a hallway in EE building.

Fig. 9. A P3-DX mobile robot is passing a hallway in EE building at
Purdue University.

Figure 10 shows the number of SRUs activated at a
specific position with a 10-degree increment between -90
and 90 degrees, where the x-axis represents the normalized
position (from -1 to 1: from right to left) of the robot in the
hallway. In Fig. 10, when the number of SRUs is 128, there
are more SRUs activated near the walls than the middle of
the hallway. Although the high resolution of SRUs occurs
near the walls, it induces unnecessary actions of the hallway-
passing skill in a zigzag fashion. After resolution control,

3824

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

Normalized X position (-1: rightmost; 1: leftmost of a hallway)

N
um

be
r o

f a
ct

iv
at

ed
 S

R
U

s

128 SRUs
32 SRUs

8 SRUs

Fig. 10. Number of activated SRUs by summing up forward orientations
(dashed line: 128; dotted line: 32; solid line: 8 SRUs).

128 SRUs are reduced to 32 and 8 SRUs. Figure 10 also
shows the number of activated SRUs with 32 and 8 SRUs.
Apparently, the activated number of SRUs near the wall
drops dramatically when 128 SRUs are reduced to 32 or
8 SRUs. This result indicates that resolution control prunes
unnecessary SRUs that induce extraneous actions moving
near the walls. When the number of SRUs is pruned to
8, Fig. 10 shows its uniform-like distribution of activated
number of SRUs for accomplishing the task.

B. Experiment 2: Skills of Traveling around an Ellipse and
a Circle

In the second experiment, we asked the robot to learn two
different skills, traveling around an ellipse and a circle. We
manually commanded the robot to perform these two skills,
and then the robot was asked to self-categorize sufficient
numbers of SRUs for traveling both of them. The training
data shown in Figs. 11(a) and (b) were obtained by recording
the sensor inputs and actuator outputs of the robot when
the robot was manually controlled. After the neuro-fuzzy-
based supervised learning, the initial numbers of SRUs were
192 and 137 for traveling around the ellipse and the cir-
cle, respectively. Then, resolution control and reinforcement
learning identified 16 and 8 as the numbers of significant
SRUs for traveling around the ellipse and the circle, respec-
tively. These two skills were demonstrated in Figs. 11(c) and
(d) using their respective numbers of significant SRUs. In
addition, these two numbers of significant SRUs were tested
for different sizes of ellipse and circle. Figures 11 (e)-(f)
and (g)-(h) show their simulation and experimental results
of traveling around a smaller ellipse and circle, respectively.

IV. CONCLUSIONS

In this paper, we have presented a self-categorizing,
skill-decomposition framework, where a 5-layer neuro-fuzzy
network with supervised learning, resolution control and
reinforcement learning were used in stages to acquire and
decompose a skill into a sufficient number of SRUs for
accomplishing a given task. The salient feature of the
proposed skill-decomposition framework is its capability of

(a) (b) (e) (f)

(c) (d) (g) (h)

Fig. 11. (a) and (b): Training data of traveling around an ellipse and a
circle, respectively. (c) Traveling around an ellipse by utilizing 16 sufficient
SRUs. (d) Traveling around a circle by utilizing 8 sufficient SRUs. (e)-
(f) and (g)-(h): Simulation and experimental results of traveling around
an ellipse and a circle, respectively. (e) and (g): Another small ellipse by
utilizing 16 sufficient SRUs. (f) and (h): Another small circle by utilizing
8 sufficient SRUs.

learning a skill by self-categorizing it into significant SRUs
without human intervention. The synthesis of learned skills
into new skills is currently being studied and will be reported
in a future paper. Computer simulations and experiments
on a Pioneer P3-DX mobile robot have validated the self-
categorization capability of the proposed skill-decomposition
framework.

REFERENCES

[1] G. Hovland, P. Sikka, and B. McCarragher, “Skill acquisition from
human demonstration using a hidden Markov model,” in Proc. IEEE
Int. Conf. Robot. Autom., vol. 3, Apr 1996, pp. 2706–2711.

[2] T. Shibata, T. Abe, K. Tanie, and M. Nose, “Motion planning of a
redundant manipulator based on criteria of skilled operators,” in Proc.
IEEE Int. Conf. Syst., Man, Cybern., vol. 4, Oct 1995, pp. 3730–3735.

[3] H. Asada and S. Liu, “Transfer of human skills to neural net robot
controllers,” in Proc. IEEE Int. Conf. Robot. Autom., vol. 3, Apr 1991,
pp. 2442–2448.

[4] J. Albus, “A new approach to manipulator control: The cerebellar
model articulation controller (CMAC),” Trans. of ASME J. Dynamic
Syst. Meas., and Contr., vol. 63, no. 3, pp. 220–227, Sep 1975.

[5] C. Baroglio, G. Attilio, M. Kaiser, M. Nuttin, and R. Piola, “Learning
controllers for industrial robots,” Mach. Learning, vol. 23, pp. 221–
249, 1996.

[6] M. Nechyba and Y. Xu, “Human skill transfer: neural networks as
learners and teachers,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot.
Syst., vol. 3, Aug 1995, pp. 314–319.

[7] Z. Wasik and A. Safiotti, “A fuzzy behavior-based control system for
manipulation,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., vol. 2,
Sep 2002, pp. 1596–1601.

[8] T. Speeter, “Primitive based control of the Utah/MIT dextrous hand,”
in Proc. IEEE Int. Conf. Robot. Autom., vol. 1, Apr 1991, pp. 866–
877.

[9] U. Thomas, B. Finkemeyer, T. Kroger, and F. Wahl, “Error-tolerant
execution of complex robot tasks based on skill primitives,” in Proc.
IEEE Int. Conf. Robot. Autom., vol. 3, Sep 2003, pp. 3069–3075.

[10] R. Brooks, “A robust layered control system for a mobile robot,” IEEE
J. Robot. Autom., vol. 2, no. 1, pp. 14–23, Mar 1986.

[11] R. Arkin, “Motor schema based navigation for a mobile robot: An
approach to programming by behavior,” in Proc. IEEE Int. Conf.
Robot. Autom., vol. 4, Mar 1987, pp. 264–271.

[12] M. Matarić, “Behavior-based control: Main properties and impli-
cations,” in Proc. IEEE Int. Conf. Robot. Autom., Workshop on
Architectures for Intelligent Control Systems, May 1992, pp. 46–54.

[13] C. T. Lin and C. S. G. Lee, “Neural-network-based fuzzy logic control
and decision system,” IEEE Trans. Comput., vol. 40, no. 12, pp. 1320–
1336, Dec 1991.

[14] A. Barto, R. Sutton, and C. Anderson, “Neuronlike adaptive elements
that can solve difficult learning control problems,” IEEE Trans. Syst.,
Man, Cybern., vol. 13, no. 5, pp. 834–846, Oct 1983.

[15] C. T. Lin and C. S. G. Lee, Neural fuzzy systems: a neuro-fuzzy
synergism to intelligent systems. Upper Saddle River, NJ: Prentice-
Hall, 1996.

3825

