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Abstract—“Developmental robotics” proposes that, instead
of trying to build a robot that shows intelligence once and for
all, what one must do is to build robots that can develop. These
robots should be equipped with behaviors that are simple but
enough to bootstrap the system. Then, as the robot interacts
with its environment, it should display increasingly complex
behaviors. In this paper, we propose such a development scheme
for a mobile robot. J.J. Gibson’s concept of “affordances”
and a formalization of this concept provides the basis of this
development scheme. We show that an autonomous robot can
start with pre-coded primitive behaviors, and as it executes
its behaviors randomly in an environment, it can learn the
affordance relations between the environment and its behaviors.
We then present two ways of using these learned structures,
in achieving more complex, intentional behaviors. In the first
case, the sequencing of these primitive behaviors are such that
new more complex behaviors emerge. In the second case, the
robot makes a “blending” of its pre-coded primitive behaviors
to create new behaviors.

I. INTRODUCTION

The objective of this work is to propose a robotic develop-

ment scheme which is based on the concept of affordances.

Starting from a set of simple pre-coded behaviors/actions,

through interaction and experience, we aim to realize a

transition from these unintentional behaviors to intentional

behaviors for the robot. This development should also re-

sult in demonstration of novel/enriched behaviors that are

different from the pre-coded existing behaviors. On a more

conceptual level, our objective is to contribute to the view

which suggests that robots, just like human beings and other

animals, should go through a developmental process, where

they shape their “intelligence” through their own experience.

In proposing the behavioral development of a robot, we

placed the affordance concept, which provides us with a tool

to deal with robotic problems in terms of agent-environment

interactions, and a recent formalization of the concept [1],

at the core of our study.

II. BEHAVIOR DEVELOPMENT AND AFFORDANCES

How behavior develops in humans and other animals have

been the subject of many scientific studies. Theories of de-

velopment have been proposed in the area of psychology. At

the level of the nervous system, neuroscience has investigated

behavior control and motor development. In robotics also,

there have been efforts to make robots learn and develop

behaviors. Some of these studies also refer to affordances,

in the context of development.

A. Behavior development in psychology

According to Piaget’s theory of cognitive development,

existing structures called schemata are transformed by the

processes of assimilation and accommodation through inter-

action with the external world. For Piaget, the development

of behavior also occurs in this framework [2]. The newborn

baby has existing structures in the form of innate reflexes.

It executes and tries these reflexes and primitive behaviors,

trying to accommodate them to the environment. As the

baby experiments with these behaviors, they differentiate into

more complex behavioral structures [3].

E.J. Gibson was the first one to investigate affordances in

the context of development. She studied the mechanisms of

the learning of affordances and used the ecological approach

to study child development. E.J. Gibson believed that babies

have innate exploratory activities, such as mouthing, reaching

and shaking, and they use these to gain perceptual data. She

suggested that these activities bring about “information about

changes in the world that the action produces” [4]. As devel-

opment proceeds, exploratory activities become performatory

and controlled, executed with a goal.

B. Motor control in neuroscience

In executing a motor behavior, the central nervous system

commands the muscles through the motor neurons. This is

a difficult problem, since it constitutes a mapping from a

small number of variables (motor goals) to a large number

of variables (neuron signals) that drive multiple muscles [5].

An approach that tries to explain how complex patterns

of motor behavior emerge says that, these complex patterns

are actually the result of combining more simple primitive

actions [5]. For example, in [6] Mussa-Ivaldi et al. found

that when separate modules in the spinal cord of a frog

are stimulated one-by-one, they correspond to a limited

number of force patterns and motor actions. But when two

modules are stimulated simultaneously, the resulting force

pattern corresponds to the vector summation of the individual

force patterns of each individual module. Mussa-Ivaldi et al.

viewed this as a support to the view that “central nervous

system may generate a wide repertoire of motor behaviors

2008 IEEE International Conference on
Robotics and Automation
Pasadena, CA, USA, May 19-23, 2008

978-1-4244-1647-9/08/$25.00 ©2008 IEEE. 3802



through the vectorial superposition of a few motor primitives

stored within the neural circuits” [6].

Another study that supports this position is the work of

“population coding” by Georgopoulos et al. [7]. Through

experiments they conducted on rhesus monkeys Georgopou-

los et al. found that the arm movements of the monkey can

be predicted using the activation values of a population of

neurons in the monkey brain. In this population of neurons,

it was observed that each individual neuron has a preferred

direction, and when it fires it makes the monkey arm move

towards that direction. But when multiple of these neurons

fire together, it was seen that the resulting direction of the

monkey arm was a weighted sum of each individual neuron’s

preferred direction. Moreover, these weights were given by

the activation values of each neuron.

C. Behavior learning and development in robotics

In robotics, there have been increasing interest in behav-

ioral development and learning in recent years.

In [8] Likhachev et al. use case-based reasoning in learn-

ing parameters for their goal-directed navigation behaviors.

The robot starts with cases which output random behavior

parameters. Then, the performance of each case is computed,

and a gradient-ascent search is made over the output behavior

parameters of these cases to find the best parameters. In an-

other study [9] reinforcement learning is used for “purposive

behavior acquisition”. In this study, the robot has a fixed set

of behaviors, and using these navigational behaviors it aims

to shoot a ball into a goal. At the beginning the robot does

not know when to execute which behavior to score goals.

But through a reinforcement learning process the robot learns

using its behaviors purposively.

In [10], Oudeyer et al. made a robot show different phases

of cognitive development. They placed a robot-dog in a

playground that included various simple toys. In this envi-

ronment, by executing some primitive behaviors randomly,

the robot learned the relation between its behaviors and

the events in the environment. When also provided with an

external motivation the robot autonomously went through

a developmental sequence, during which its complexity of

activities increased at each stage.

D. Affordances as a framework for developmental robotics

J.J. Gibson [11] introduced the concept of affordances

to refer to the action possibilities offered to the organism

by its environment. For instance, a horizontal and rigid

surface affords walk-ability, a small object below a certain

weight affords throw-ability, for a human. The concept of

affordances, with its implicit but central emphasis to the

interactions between the organism and the environment,

is highly relevant to developmental/epigenetic robotics as

has already been noted [12]. Developmental robotics treats

affordances as a higher level concept, which a developing

cognitive agent learns by interacting with its environment.

In [1] we proposed a formalization for affordances such

that it can provide a view of affordances from the perspective

of the robot and lay a framework over which affordances can

be utilized at different levels of robot control.

Based on this formalization, we investigated several prob-

lems in robotics. In [13] we presented the integrated view

of our experimental studies, where we made a robot learn

the “traversability” affordance, extend the system with an

on-line learning process, and demonstrated our preliminary

results in planning. In [14] we made the robot learn to use

a set of primitive behaviors goal-directedly. In this current

study, we extend this previous work, by formally defining

two different ways of using learned affordance relations in

developing behaviors, and showing how new behaviors can

be created from the pre-coded primitive behaviors.

III. EXPERIMENTAL FRAMEWORK

The Kurt3D robot platform: Kurt3D is a medium-sized

(45cm × 33cm × 47cm), differential drive mobile robot,
equipped with a 3D laser range finder1. The scanner is

capable of taking full resolution (720× 720) range image in
approximately 45 seconds. Kurt3D is simulated in MACSim,

a physics-based simulator, built using ODE (Open Dynamics

Engine)2, an open-source physics engine. The sensor and

actuator models are calibrated against their real counterparts.

Primitive behaviors: We implemented three primitive

behaviors on the robot for our experiments. These are

move-forward, turn-left, and turn-right behaviors. The move-

forward behavior drives the robot straight ahead that places

it approximately 40cm away from its initial position, if

the move is not obstructed by any obstacles. The turn-

left, and turn-right behaviors turns the robot in place for

approximately 55◦. The wheel speeds are set to either −0.25
m/s or +0.25 m/s for each behavior.

Interaction environment: In the learning phase each

trial is performed with a single object in the environment.

Objects with simple geometries such as rectangular boxes,

spheres and cylinders are placed in random orientations and

random locations within a proximity of 70cm to the robot, in
the frontal area spanning 180◦. After learning is completed,
developed behaviors are tested in an environment cluttered

with randomly distributed objects.

Perception and representation of entities and effects:

The robot perceives its environment mainly through its 3D

scanner. It uses the range images from the scanner to extract

a set of shape and distance related features which consists

the robot’s perception of the environment.

The feature set is obtained in three steps as shown in

Fig. 1. The robot makes a full resolution scan of 720× 720.
First, the image is down-scaled to 360 × 360 pixels. Then,
it is split into grids of size 12 × 12 pixels. There are 900
such grids (since (360/12)2 = 900), in total. Then, for each
grid, distance and shape related features are extracted. The

distance related features are the distance of the closest point,

distance of the furthest point, and the mean distance of all the

points within a grid. The shape related features are computed

1URL: http://www.ais.fraunhofer.de/ARC/kurt3D/
2URL: http://ode.org/

3803



Fig. 1. Phases of perception. Distance and shape features are extracted
from the scanner range image. Also three displacement values are extracted
from the encoders.

from the normal vectors in the grid. A normal vector for each

point in a grid is computed using the range values. Then the

direction of each normal vector is recorded in two base-

dimensions, ϕ and θ, in latitude and longitude. Two angular
histograms are computed for each of these dimensions. The

histograms are sliced into 18 intervals of 20◦ each, and the
frequency values in each of these slices of the histograms

are used as the shape related features. Since there are two

channels of 18 values each, there are 36 shape related feature
for each grid. Adding the three distance related features of

a grid, there are 39 features to represent a single grid. We
mentioned that there are 900 such grids. So the total number
of features to describe the scene becomes 900×39 = 35100.
In addition to the scanner features, values from the wheel-

encoders are also recorded.

IV. LEARNING AFFORDANCE RELATIONS

In this section, how affordance relations are learned from

a number of affordance relation instances obtained during

robot’s interactions with the environment will be described.

A more detailed explanation is provided in [14].

In our formalization, entities are defined as the perceived

state of the environment before robot’s behavior execution,

and effects are described as the change in the perceived state.

Suppose that B is the set of primitive behaviors and b ∈
B is a behavior in this set. Let g

i
s be the scanner features

of grid i in situation s, and ps / p
′

s,b corresponds to the

entities (feature vectors) obtained before / after execution of

the behavior, respectively. Then g
i
s and ps are defined as:

g
i
s = [di

min, di
mean, di

max, ϕi
1, ϕ

i
2, ...ϕ

i
18, θ

i
1, θ

i
2, ...θ

i
18]

ps = [g1
s, g

2
s, ...g

900
s ]T

where 1 ≤ i ≤ 900 is the grid index, and s denotes which
sample situation is dealt with. Effects are represented as

changes in robot’s perception of the world including changes

in proprioceptive sensors:

es,b = [(p′

s,b − ps)
T ,△x,△y,△a]T

where es,b is the effect obtained during execution of b. △x,
△y, and △a corresponds to forward and side displacements,
and change in orientation of the robot, respectively.

In order to learn affordances and develop generic af-

fordance relations, a number of (effect, (entity, behavior))

relation instances are acquired through interactions with the

environment. In data collection step, for each behavior b,
the robot makes 3000 interactions with the environment, and

stores the entities (ps) and effects (es,b) in a training set. For

simplicity, from now on, the method will be described over

one behavior and es,b will be replaced by e
b
s. The training

set (Strain) stores affordance relation instances, which are

represented as nested triples of entities, effects and behaviors:

Strain = {(eb
s, (ps, b))}

where e
b
s is the effect observed when behavior b is executed

over entity ps in situation s.
Using effect instances in the training data ({eb

s}), effects
that are similar to each other are grouped together to get

a more general description of different kinds of effects that

behavior can create. This is achieved by clustering the effect

instances in an unsupervised way. K-means algorithm is used

for this purpose where k is experimentally set to 10.

The prototype effect-id (effect-ids) to which any effect e
b
s

belongs to can then be found by:

effect-ids = argmin
1≤i≤10

(eb
s − c

b
i )

where 1 ≤ i ≤ 10 is the cluster index, and c
b
i is the mean

of ith cluster and corresponds to the effect prototype of that
cluster. An interpretation of the effect classes obtained for

primitive behavior move-forward has been provided in [14].

After identifying a number of different effect prototypes,

the robot learns the mapping from the entities to these

prototypes (or effect-ids), for the execution of a behavior.

This is achieved by training classifiers with the collected

affordance relation instances. A separate Support Vector

Machine (SVM) is trained for each behavior, using the

set {(ps, effect-ids)}(1≤s≤3000), where ps (which includes

only the relevant features3) is given as the input, and the

corresponding effect-id of each instance (s) as the target
category. These SVMs are then used in the execution phase,

to predict what kind of effect a behavior will generate, given

a perceptual representation (ps′ ) of the current environment:

effect-id
predicted
s′ = svmPredict(ps′ , b)

where s′ denotes the current situation.
The effect predicted when robot encounters with a situa-

tion s′ would be the prototype (mean) of the corresponding
cluster that was generated for behavior b:

e
b,predicted
s′ = c

b

effect-id
predicted

s′

(1)

V. USING LEARNED AFFORDANCES FOR BEHAVIOR

DEVELOPMENT

In creating new more intelligent behavior from the prim-

itive behaviors, the primitive behaviors (that the robot has

learned about, and has done its training with) can be used in

3Original size of entity vector (p
s
) is 35100 and most of the features

in this vector are irrelevant for affordance of any behavior. Thus, a feature
selection method, ReliefF is applied in order to select the 2000 features in
the entity vector that are most relevant to the effects created.

3804



Fig. 2. Representation of the entity and the effect. Distance and shape
features extracted from the scanner image, taken before the execution of a
primitive behavior, constitute the entity. The difference between the features
extracted after the execution of the behavior and features extracted before
the execution of the behavior constitute the representation of effect, together
with the displacement values extracted from the encoders (see Fig. 1).

two ways as the result of development. In the first case, the

primitive behaviors can be used as they are, therefore there

will be one single primitive behavior active at an instant.

But the cumulative effect of the execution of these will

form a goal-directed behavior on a wider time-scale. In the

second way of using the primitive behaviors in behavior

development, the primitive behaviors can be blended, such

that, at an instant it is not any of the primitive behaviors in

action, but a new behavior that was not seen or demonstrated

by the robot before, yet is used by it intelligently to create

effects in the environment that are more in accordance with

its goals than any of the primitive behaviors.

A. Developing behaviors through the sequential usage of

primitive behaviors

In this first approach, the robot will use its primitive

behaviors in a sequential manner to achieve goal-directed

behavior. The robot uses the learned affordance relations

to select the primitive behavior in achieving goal-directed

behaviors. Given the perceptual representation of the current

environment as an entity, the trained classifiers will predict

an effect-id which indicates the effect class that the behavior,

for which the classifier was trained, will produce in this

environment. Then the robot can select the behavior which

predicts the effect prototype that is most similar to the desired

effect determined by its current goal. Therefore the selected

behavior will produce the most useful effect in achieving its

goal. Formally the behavior selection can be described as:

bselected = argmin
b∈B

(

e
b,predicted
s′ − edesired

)

where e
b,predicted
s′ is the predicted effect of applying behavior

b in situation s′ (Eqn. 1) and edesired is the desired effect.

In [14] we showed that using this strategy, our robot was

able to develop different higher-level behaviors using its

three primitive behaviors and the learned affordance rela-

tions. First our robot demonstrated the “traverse” behavior,

using which it was able to wander around perceiving the

“traversability” of the environment. Our robot was able to

move over objects like spheres, or cylinders in an appro-

priate orientation that can be rolled away; but avoid non-

rollable objects like boxes. As a second example, the robot

demonstrated a classical obstacle-avoidance behavior. Here,

it avoids contact with any object while wandering around.

The third behavior was the “approach” behavior, where the

robot approaches and drives towards the objects.

The robot demonstrated these three different behaviors

(“traverse”, “approach”, “avoid”) using the same learned af-

fordance structures. We were able to make the robot demon-

strate different behaviors through the specification of the

desired effect for each behavior. For the traverse behavior, we

set the “desired effect” so that the “forward displacement”

features in the effect-prototypes has values greater than a

certain threshold. This means the robot should not select the

effect-categories corresponding to the cases where the robot

got stuck to an obstacle, but executes move forward when

there is an empty space or a rollable object in front. For

the avoid behavior we specified the desired effect as having

a high increase in the mean distance features of the grids

in the middle portion of the range image. This results in a

behavior where the robot avoids contact with any object by

turning away whenever something appears on its front. When

the desired effect is changed to a high decrease in the mean

distance, an approach behavior emerges. The robot moves

forward towards an object on its front, and turns towards an

object on its side, to obtain the desired decrease.

Note that, rather than aiming to make the robot learn a

specific behavior, our work proposes a generic development

scheme. This becomes obvious when one notices that the

training our robot goes through is independent from the

behaviors it is able to display at the end.

B. Behavior generalization through the blending of the prim-

itive behaviors

In the previous section the robot was able to use a set

of primitive behaviors such that when viewed on a wider

time-scale the robot’s behavior corresponded to goal-directed

intelligent behaviors. But at any given moment the robot

executed a single primitive behavior, and these were the same

behaviors that it also used during the training interactions,

and they were programmed into the robot.

In this section we will try to achieve behavioral general-

ization (or more correctly, a generalization over the motor

control parameters of the behaviors), so that, after training,

the robot will not be constrained with the fixed set of

pre-programmed behaviors but will be able to demonstrate

novel behaviors. While the robot will still have a limited set

of behaviors during training, after training it will react to

situations with new behaviors, that are more effective than

the primitive behaviors in creating the desired effect in the

environment. To be able to do that, the robot needs to make a

generalization over the motor parameters that it uses for the

behaviors, and relate these to the effects it can create with

these parameters. Then, when it needs to create a specific

effect in the environment, the robot can choose the correct

set of parameters to create the effect.

The robot will use its primitive behaviors simultane-

ously to achieve goal-directed behavior. We achieved this
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generalization using a weighted sum of the motor control

parameters of the primitive behaviors, where the weights

are determined according to the similarity of their effects

to the desired effect. Practically, this will again correspond

to feeding in the current entity representation to the trained

classifiers, of which there is one for each action. Then the

predictions of each classifier, which are effect-prototypes, are

compared with the goal representation to see how similar

each behavior’s effect prediction is to the desired effect.

The similarity values will then be used as weights for the

behavioral parameters, in blending the primitive behaviors so

that a new behavior emerges. The inspiration for this comes

from the work on population coding (See Section II-B).

Method: Suppose that there are n primitive behaviors
B1, B2, ..., Bn, and each behavior Bi has a set of motor

parameter values vi1, vi2, ..., vim for each of the m motors
M1,M2, ...,Mm. Further suppose that D is the desired effect
prototype, and p1, p2, ..., pn are the predicted effect-category

prototypes in the current environment for each of the n
behaviors. Also, let’s say that there is a similarity function S
that takes two effect prototypes as arguments and returns a

value indicating the similarity between these two prototypes.

Then, in an arbitrary environment, we can find the new value

v′
j to be passed to motor Mj as:

v′
j =

n
∑

i=1

S(D, pi)
∑n

k=1 S(D, pk)
∗ vij (2)

That is, the resulting motor parameter value is the sum

of each behavior’s contribution for that parameter, and this

contribution is proportional to the similarity of the predicted

effect for that behavior to the desired effect. Note that,

other than the learned affordance relations, we also need to

define a similarity function that would indicate how similar

a predicted effect is to the desired effect.

VI. EXPERIMENTAL RESULTS

In this section we will present the results of applying

the two strategies of using the learned affordance rela-

tions for the “approach” behavior. These two strategies

were analyzed in systematic experiments, where the ob-

ject to be approached was placed in different positions

in front of the robot. The object was placed at angles

{−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦} in front of
the robot, and the distances of the objects changed between

20cm and 70cm. The robot executed the behavior (or the
blending of the behaviors) it selected for each object in front

of it. After the execution of the behavior, the relative angle

of the object with respect to the robot’s heading direction

was recorded as the error for that case. The results of the

experiments conducted at 50 different distances for each

angle can be seen in Fig. 3. Each boxplot in the figure

shows the distribution of the errors (in radians) the robot

made at that angle for different distances of the object. The

two boxplots at each angle corresponds to the two different

methods: behavior generalization (on the left) and using only

primitive behaviors (on the right).

−60 −45 −30 −15 0 15 30 45 60
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n
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Fig. 3. Comparison of the two methods of behavioral generalization and
using only the primitive behaviors for the “approach” behavior. Each boxplot
in the figure shows the distribution of the errors (in radians) the robot made
at that angle for different distances of the object. The red line refers to the
median. The box is bounded by lower and upper quartile values, and the
whiskers show the extends of the data. At each angle, the boxplot on the
left and the boxplot on the right refers to the errors made by behavioral
generalization, and using only primitive behaviors, respectively.

When the object is placed 60 degrees to the left/right

(−60◦/60◦), or directly ahead (0◦) of the robot, and when
the robot approaches to the object using only its primitive

behaviors, the error is very close to zero. This is an expected

result, since these three angles are exactly the ones that

the three primitive behaviors turns/drives the robot to. The

fact that the errors are very close to zero at that angles

also proves that the robot is really able to choose the

correct behaviors for the approach behavior: turn left when

the object is on the left, turn right when the object is on

the right, and move forward when the object is ahead. The

behavioral generalization method gave relatively high error

rates at these angles, because using this strategy the correct

behavior’s purity is tempered by some contribution from the

other behaviors. When using the behavioral generalization

method, the average errors made at the angles in between

the extremes (−45◦,−30◦,−15◦, 15◦, 30◦, 45◦) are smaller
than the cases where the only the primitive behaviors are

used. This shows that, using the behavioral generalization

method, the robot is able to turn to the angles in between,

that it can not approach using only the primitive behaviors.

This can be seen more clearly in Fig. 4. Here, it can

be seen that, when compared with using only the primitive

behaviors, the behavioral generalization approach spans the

same angular range in turning towards the object, but it

does so in a more finer manner, spanning whole of the

angular range. The trade-off is some lose of precision in

the directions of the original primitive behaviors.

The behavior development scheme and the trained clas-

sifiers were also transferred to the real robot and tested.

We placed real world objects in front of the robot and

tested to see if it was able to approach to the objects. We

also compared the results for the behavioral generalization

method, with using only primitive behaviors. In Fig. 5 a

box shaped object is placed slightly to the left of the
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(a) (b)

Fig. 4. Robot’s reaction to different situations using the two different strate-
gies of using only primitive behaviors, and using behavioral generalization.
The arrows show the robot’s position and heading direction after executing
the behavior. The circles denote the object’s position in each different case.
If a circle and an arrow are of the same color, this means that when the
object is in the location indicated by the circle, the robot’s heading direction
and position after executing the chosen behavior is indicated by the arrow
of the same color. In (a) the robot uses only the primitive behaviors in
approaching the object. Therefore, in the figure, there are only three arrows,
representing the robot’s position and heading direction after executing each
of these three behaviors. It can be seen that the robot is able to approach the
object and select the correct primitive behavior. But one can also notice that
these primitive behaviors are very crude in turning towards the object. In (b)
the robot uses the behavioral generalization strategy in turning towards the
objects. Here again the robot is successful in turning towards the object, but
this time it makes more detailed movements towards the objects showing
an improvement over the case of using only the primitive behaviors.

Fig. 5. Real robot’s reaction to a situation where the object is placed
slightly to the left of the robot.

robot, and the final situations after the execution of the

behaviors are shown. It can be seen that the behavioral

generalization approach is more successful than the case of

using only primitive behaviors in which the robot executes

the MOVE FORWARD behavior.

VII. CONCLUSION

In this paper we proposed a behavior development scheme

for a robot. The concept of “affordances” [11] provided

the basis of our proposed development scheme. We used

a formalization of affordances [1] to make the robot learn

the dynamics of its interactions with its environment. Using

this framework, in [14] we made the robot learn to use a set

of primitive behaviors goal-directedly. In this current study,

we extend this previous work, first, by formally defining

two different ways of using learned affordance relations in

developing behaviors. Second, we show how new behaviors

can be created from the pre-coded primitive behaviors.

We have seen that both in the studies of developmental

psychology and in the studies of motor control and learning

in neuroscience, the idea of starting from pre-coded primitive

behaviors, and through development, achieving more com-

plex behaviors is accepted as a possibility. If we combine the

approach of developmental psychologists (which says that a

baby starts from innate primitive reflexes and enriches them

through experience until they become voluntary action) with

the approach of neuroscience (which says that complex pat-

terns of motor behavior can be explained using combination

of simple pre-coded behaviors), then we believe that this

presents a very good research potential for robotic behavior

development. In this kind of research, one should investigate

how robots equipped with simple pre-coded(innate) behav-

iors can develop to achieve more complex behaviors through

the usage of these simple behaviors. This actually constitutes

the grounds where this work aims to make its contribution.
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