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Abstract— In this paper, a powerful robust stability anal-
ysis technique is introduced and developed for teleoperation
systems. The methodology is based on wave parameters and
discusses absolute stability and potential instability using scat-
tering and is originally used in microwave systems [1]. The
proposed method provides suitable mathematical and visual
aids to determine bounds or regions of passive environment
impedances for which a potentially unstable system connected
to any passive operator is stable, and vice-versa. Furthermore, a
novel stability parameter is proposed to maximize the derivation
of the above bounds or regions. This results in less conservative
guaranteed stability conditions compared to the Llewellyn’s
criterion; thus, achieving a better compromise between stability
and performance. The proposed methodology allows for the
design of bilateral control systems when such bounds are known
or even when the operator or environment dynamics are active.
The new robust stability analysis and Llewellyn’s criterion are
numerically evaluated and compared with each other on two
common teleoperation control architectures.

I. INTRODUCTION

Master-slave teleoperation systems can be modeled as two-

port networks coupled to operator and environment one-port

networks. The dynamics of operator and environment are

usually subject to uncertainty, which results in a compromise

between stability and performance, especially in the presence

of delay in communication channel [2], [3]. Environments

are often unknown and go through drastic changes from free

motion to hard contact [4] or from soft tissue to hard bone

[5]. Human arm dynamics may not have the wide dynamic

range of some environments; however, it is highly variable

depending on arm posture, arm muscles activation levels, and

fatigue [6], [7]. Therefore, the primary goal of teleoperation

control systems design is to guarantee the stability of the

interaction between the teleoperation system and the operator

and environment, or so-called coupled stability [8].

To ensure coupled stability in telerobotic systems,

passivity-based robust control methods have been utilized.

Passivity of master-slave network (MSN), which is a suffi-

cient condition for coupled-stability, has been widely used

[9], [10], [11]. This passivity property implies stability

regardless of how uncertain the environment and operator

impedances are, as long as they are passive; thus, robust

stability of MSN. However, passivity of MSN renders a

rather conservative robust stability condition. Therefore, the
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MSN can be active, while the one-port network resulting

from the MSN termination with a passive environment be

passive. As a result, Llewellyn’s absolute stability criterion

from circuit theory has been utilized in order to analyze the

stability of teleoperation systems and haptic devices coupled

with any passive operator and environment [12], [13], [14].

Although, Llewellyn’s criterion results in less conserva-

tive robust stability condition, the stability analysis still

suffers from assumed unrealistic infinite range of opera-

tor (human arm) and environment impedances. Thus, re-

searchers have studied the effect of operator and environ-

ment impedance on absolute stability. Hashtrudi-Zaad and

Salcudean [13] extracted the maximum passive impedances

as shunt impedances with the operator and environment

one-port networks with infinite range of impedances. They

concluded that a more relaxed set of conditions may be

found by examining the absolute stability of the new two-

port network created by absorbing shunt impedances. Adams

and Hannaford [12] utilized the minimum and maximum of

the operator arm impedance, whereas Cho and Park [14]

used the same approach for both environment and operator

impedances. However, this indirect approach in including the

effect of bounded environment and operator impedances is

the only flexibility of Llewellyn’s criterion. If a coupled

teleoperation system is shown to be potentially unstable,

the Llewellyn’s criterion does not provide any clear and

direct means of showing for what values of operator and

environment impedances the system is stable or for what

lower and upper bounds on the environment or operator

passive impedances the system is absolutely stable.

Edwards and Sinsky reported a novel robust stability

analysis technique for microwave systems [1]. The method-

ology is based on scattering theory and wave parameters.

In this paper, we introduce and develop the robust stability

technique in [1] for teleoperation and tailor the methodology

for such applications. We further use the technique to derive

bounds on the operator and/or environment impedances for

stability analysis of potentially unstable systems. Finally, we

introduce a new measure of robust stability to obtain the

least conservative stability condition. The new methodology

provides mathematical and visual aids i) to analyze the

stability of a teleoperator when connected to any unknown

environment or operator with known bounds, ii) to determine

the bounds on environment and/or operator impedance that

guarantee coupled stability, iii) to design stable teleoperation

systems when such bounds on environment/operator are

known, and iv) to analyze the stability of teleoperation

systems, even when the environment or operator impedance
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Fig. 1. A typical two-port system.

is active. The strength of the new analysis and design tool

is shown through two benchmark examples.

II. SCATTERING OPERATOR

Linear two-port networks are characterized by a number

of equivalent parameters, such as impedance , admittance

hybrid, or scattering matrices [15]. The interaction between

different parts of the physical system is fundamentally bilat-

eral and can be shown by efforts (Fi) and flows (Vi), where

i can be h or e denoting the operator hand or environment

for teleoperation systems, as shown in Figure 1. The set of

scattering variables used in the scattering matrix are inwave

or incident wave −→w = [a1 a2]
T and outwave or reflected

wave ←−w = [b1 b2]
T , with the traveling waves a1, a2, b1 and

b2 defined as:

a1 =
Fh + bVh

2
√

b
, a2 =

Fe − bVe

2
√

b
(1)

b1 =
Fh − bVh

2
√

b
, b2 =

Fe + bVe

2
√

b
(2)

where b > 0 is called the characteristic wave impedance.

The relation between incident wave and reflected wave is

governed by the scattering relation:

←−w =

(
b1

b2

)
=

(
S11 S12

S21 S22

)(
a1

a2

)
= S−→w (3)

where S is the scattering matrix and its elements are called

scattering parameters or S-parameters [15].

III. STABILITY CRITERION

A very common method for the stability analysis of

circuits and systems uses the equivalent impedance from a

driving point of a network in a complicated circuit or system

[15]. Consider the block diagram of a teleoperation system

as shown in Figure 2, where F ∗

h is the exogenous input, Zh

and Ze are the linear-time-invariant (LTI) impedance models

of the operator and environment dynamics, and Zin := Fh

Vh

and Zout := Fe

Ve
|F∗

h
=0 are the transmitted impedances to the

operator and environment, respectively.

Figure 3 shows the MSN with its Thevenin equivalent net-

work representation, where the network variables Zin, Zout

and F ∗

h,th are expressed in terms of the network impedance

matrix parameters as [15]:

F ∗

h,th =
Z21

Z11 + Zh

F ∗

h (4)

Zout = Z22 − Z12Z21

Z11 + Zh

(5)

Zin = Z11 − Z12Z21

Z22 + Ze

(6)
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Fig. 2. General block diagram of a teleoperation system.
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Fig. 3. Impedance representation of the MSN.

A. Absolute Stability in Scattering Domain

The LTI MSN is absolutely or unconditionally stable if

any passive operator (Zh) or environment (Ze) impedances

lead to passive input (Zin) or output (Zout) impedances;

thus, resulting in a stable coupled teleoperation system. This

implies that an MSN is absolutely stable if any operator and

environment with impedances that lie within the right-half-

plane (RHP) of the complex plane will result in input and

output impedances that lie in the RHP. However, equations

(4)-(6) do not provide an easy way of deriving bounds on the

operator and environment impedances for less conservative

stability conditions.

As a remedy, scattering parameters, suggested in [1] for

communication and microwave systems, are used in this

paper. In essence, using the equivalent relations between

S-parameters of the teleoperation system, distinct conditions

on environment/operator dynamic bounds and teleoperator

scattering parameters are achieved. Similar to Zin and Ze in

impedance representation, Γin and Γe in scattering domain

can be defined according to Γin := b1
a1

and Γe := a2

b2
. The

parameters Γin and Γe are reflection coefficients as seen

from the operator and environment, respectively, and they

can be written in terms of Ze and Zin as

Γin =
Zin − b

Zin + b
, Γe =

Ze − b

Ze + b
(7)

Using (6) and the relations between impedance and scattering

parameters [15], we obtain:

Γin = S11 +
S12S21Γe

1 − S22Γe

. (8)

Writing similar equations using the reflection coefficient of

the operator Γh := a1

b1
|F∗

h
=0 and environment as seen from

the environment side Γout := b2
a2

|F∗

h
=0, yields:

Γout = S22 +
S12S21Γh

1 − S11Γh

(9)
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The advantage of defining reflection coefficients is that the

passivity condition from the entire RHP in the Cartesian

complex plane reduces to a unit circle, meaning that |Γp| < 1
is equivalent to Re(Zp) > 0 for any p ≡ e, h, in, out:

Proof: Suppose Γp =
Zp−b

Zp+b
:= α+βj. Therefore, Re(Zp) =

− b(α2+β2
−1)

(α−1)2+β2 . Since b > 0, if we require Re(Zp) > 0, then

condition α2 + β2 < 1 must hold; thus, |Γp| < 1.

Using the above passivity condition for reflection co-

efficients, absolute stability can be expressed in terms of

scattering parameters as: A two-port network is absolutely or

unconditionally stable if for any environment and operator

dynamics satisfying the passivity conditions |Γe| < 1 and

|Γh| < 1, the input and output reflection coefficients satisfy

|Γin| < 1 and |Γout| < 1 [1]; otherwise, the system is called

potentially or conditionally unstable.

The question that arises is what happens if the teleoper-

ation system is not absolutely stable, meaning that Zin is

not passive for all passive environment impedances? Can we

determine stabilizing bounds on Ze or Zh within which the

stability of the teleoperation system is guaranteed? To this

end, in this paper, we define the new concept of bounded

impedance absolute stability (BIAS), which refers to guar-

anteed system stability as long as environment or operator

impedance is limited within the bounds. When the impedance

violates these bounds, the system is potentially unstable,

meaning that the stability of the teleoperation system in that

region is not guaranteed.

We define environment stability region as the set of all

Γe that result in passive Γe, i.e. |Γin| < 1, and operator

stability region as the set of all Γh that result in passive

Γout, i.e. |Γout| < 1. Therefore, the environment/operator

stability region may contain both active and passive en-

vironment/operator impedances. In the case of absolutely

stable MSN, the environment or operator stability regions

contain the passivity unit circles |Γe| < 1 or |Γh| < 1.

However, in potentially unstable networks, only portions of

the environment or operator passivity unit circles lie within

the stability regions in the Γh or Γe plane. This overlap

between the two regions determines bounds on environment

or operator passive impedance within which the entire system

is stable.

To graphically visualize the absolute stability, potential

stability and BIAS, the environment and operator stability

regions should be expressed in terms of Γe and Γh and drawn

in Γe and Γh planes. To this end, the following notions from

Edwards and Sinsky [1] are utilized

rh =
|S12S21|
|D1| , ch =

C∗

1

D1

re =
|S12S21|
|D2| , ce =

C∗

2

D2

C1 = S11 − ΔS∗

22 , D1 = |S11|2 − |Δ|2 (10)

C2 = S22 − ΔS∗

11 , D2 = |S22|2 − |Δ|2
Δ = det(S) = S11S22 − S12S21

where the asterisk superscript denotes the complex conjugate

operator. After some mathematical operations [1], the envi-

ronment and operator stability regions can be expressed in

terms of Γe and Γh and the above parameters as

1 − |Γout|2 > 0 ⇔ (|Γh − ch|2 − r2
h)D1 > 0 (11)

1 − |Γin|2 > 0 ⇔ (|Γe − ce|2 − r2
e)D2 > 0 (12)

The parameter pairs (ch , rh) and (ce , re) determine the

centers and radii of the operator and environment stability

region circles, respectively. Depending on the sign of D1 and

D2, operator and environment stability regions fall outside

(for positive Di) or inside (for negative Di) of the stability

circles, that is

Operator Stability Region in Γh plane:

|Γh − ch| > rh, if D1 > 0 (13)

|Γh − ch| < rh, if D1 < 0 (14)

Environment Stability Region in Γe plane:

|Γe − ce| > re, if D2 > 0 (15)

|Γe − ce| < re, if D2 < 0 (16)

Next, absolute stability and potential instability are described

in the environment plane Γe [1]. In Section IV, we will

extend these arguments for BIAS to determine bounds on

environment impedance for guaranteed stability. The same

argument can be made in the operator plane Γh.

As shown in Figure 4, in order to have absolute sta-

bility, the environment stability region must contain the

environment passivity unit circle |Γe| = 1 in the Γe plane

in its entirety, or alternatively the operator stability region

must contain the operator passivity unit circle |Γh| = 1 in

the Γh plane in its entirety. If D2 > 0, the environment

stability region is outside the environment stability circle

|Γe − ce| = re with center ce and radius re. Therefore

for absolute stability, the environment stability circle and

environment unit circle must not overlap. Geometrically, the

distance between the plane center O and point A in the figure

is (OA) = |ce| − re. The non-overlapping condition of the

circles requires that (OA) > 1, or, |ce| − re > 1. In a dual

manner, if D2 < 0, the environment stability region is inside

of the environment stability circle; therefore, the environment

passivity unit-circle must lie within the environment stability

circle. This requires that (OA) = re − |ce| > 1, as shown

in Figure 4. The same analysis can be performed for the

operator side (e → h). The above two stability conditions for

environment can be combined into sign(D2)(|ce|− re) > 1.

Geometrically, μ2 = sign(D2)(|ce| − re) represents the

distance (OA) and was first introduced by Edwards and

Sinsky [1]. Thus, the condition for the absolute stability

of the input is equivalent to μ2 > 1 or alternatively μ1 =
sign(D1)(|ch| − rh) > 1.

If the absolute stability condition is not satisfied, that

is μ2 < 1, then only the portion of the environment unit

circle that lies within the environment stability region will

guarantee stability. Figure 5 illustrates such a potentially un-

stable case, in which the environment unit circle is partially
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overlapping with the environment stability circle. The portion

of the unit circle that does not lie within the stability region

corresponds to that region of Ze which makes the system

potentially unstable. Therefore, this method demonstrates

significant flexibility compared to Llwellyn’s method, as we

still can achieve stability for some range of impedances

(i.e. BIAS) if the system is potentially unstable. Similar

analysis can be performed for the operator side, while the

environment is considered to be passive and some bounds on

the operator impedance are known. In fact, this method has

the advantages of the methods that consider environment and

operator impedances in stability analysis, such as Nyquist,

small gain, etc. and the advantages of the methods that

consider only the MSN and not the dynamics of environment

and operator, such as MSN passivity or Llewellyn’s.

It is important to note that if the environment/operator

impedance bounds are known, these bounds can be mapped

into the scattering domain using Γe = Ze−b
Ze+b

or Γh = Zh−b
Zh+b

.

The mapped bounds instead of the unit circles will be utilized

in the stability analysis, resulting in less conservative stability

conditions. Thus, in potentially unstable cases, in order to

analyze the stability of teleoperation systems with bounds

on environment/operator impedances, it is required to map

Ze(Zh) to Γe(Γh) plane. Section IV will provide a complete

analysis of mapping a group of impedances with LTI mass-

damper-spring models.

Remark: In addition to robust stability analysis, another

important application of the above approach, i.e. (10), (13)-

(16), is in the design of teleoperation control systems for

guaranteed stability. As the stability circle parameter pairs

(ch , rh) and (ce , re) depend on the MSN dynamics, the

MSN bilateral control architecture and its control parameters

can be chosen to move the stability circle in a way to avoid

the unit circles for Di > 0 or to contain the unit circles for

Di < 0.
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Fig. 5. Environment stability region in the potentially unstable case.
The portion of the environment unit-circle that does not lie within the
environment stability region corresponds to that region of Zin which makes
the system potentially unstable.

IV. MAPPING Ze (Zh) BOUNDS ON Γe (Γh) PLANE

As discussed before, in the case of potential instability we

need to map the environment(operator) impedance into the

Γe(Γh) plane in order to analyze the stability of the coupled

system. In this section, rectangular regions of Ze(jω) will be

transformed into circular regions of Γe(jω) in the complex

plane. Furthermore, for the first time, the concept of Smith

Chart from microwave analysis and antenna design [16] will

be introduced into teleoperation to map any arbitrary region

of complex plane that Ze(jω) might lie within, into the Γe

plane. The same approach can be utilized for operator hand

impedance. Therefore, this helps us prove the stability of

potentially unstable systems, while a priori knowledge of

the environment/operator impedance is available.

A. Impedance Circles

In this section, we plan to map the impedance of an

LTI environment, that is Ze(jω) = Be + jXe(jω) to its

corresponding reflection parameter Γe = Γer + jΓei in the

scattering domain. Assuming b = 1 1 and using (7), the Ze

can be expressed in terms of Γe as

Ze = Be + jXe =
1 + Γe

1 − Γe

=
1 + Γer + jΓei

1 − Γer − jΓei

(17)

Extracting the real and imaginary parts, yields

Be =
1 − Γ2

er − Γ2
ei

(1 − Γer)2 + Γ2
ei

(18)

Xe =
2Γei

(1 − Γer)2 + Γ2
ei

(19)

After rewriting (18) to the following equation as shown in

[16]

(Γer − Be

Be + 1
)2 + Γ2

ei = (
1

Be + 1
)2 (20)

one notices that any vertical line in Ze representing envi-

ronment equivalent damping is mapped to an “impedance

1If b �= 1, we have to divide both numerator and denominator by b.
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circle” in the Γe plane. As shown in Figure 6, the radii and

the location of the centers of impedance circles only depend

on damping Be. By increasing Be from zero to ∞ (large

values), the impedance circles centers move horizontally

from the point (0, 0) to the point (1, 0), whereas the radius

decreases from 1 to 0, respectively. Therefore, the larger

the minimum environment damping, the smaller the envi-

ronment stability region is required to include the stability

circles. This intuitive result that will further be explored

through some examples in the next section, also points at

an important notion that only bounds on damping is enough

to determine whether the environment impedances within

the bounds (ensemble of circles) are inside the environment

stability region or not. If they are, then they do not intersect

with the environment stability region; thus, robust stability

is guaranteed while the system is potentially unstable. If

these circles intersect with the environment stability circle,

no conclusion on stability can be drawn since the intersection

might happen at two different frequencies for impedance and

stability circles. In such case, a new frequency-dependent sta-

bility parameter (γe(jω)) is needed, which will be proposed

in the next section. The above argument can be made for

operator arm damping, as well as the geometrical relation

between operator impedance circles and operator stability

region. It is very interesting to note that since the damping

parameter of the human arm impedance normally changes

over a smaller range compared to the arm stiffness [6], a

less conservative controller, designed for the variations of

the arm impedance, is expected to maintain the stability of

the system.

As mentioned above, an LTI impedance Ze(jω) = Be +
jXe(jω) with constant damping which is a line in impedance

domain maps into a circle in scattering domain. As opera-

tional frequency changes, Xe(jω) changes and impedance

moves up and down on the line. Two questions that rises

are i) how the reflection coefficient Γe moves on impedance

circles for various frequencies, and ii) how this motion is

affected by the environment equivalent mass Me and stiffness

Ke components in Xe = Meω − Ke/ω. To answer these
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Fig. 7. Smith circles employed to map impedance bounds from impedance
domain to scattering domain.

questions, equation (19) is reformatted as

(Γer − 1)2 + (Γei − 1

Xe

)2 = (
1

Xe

)2. (21)

The loci of Xe in the Γe plane are circles with center

(1, 1/Xe) and radius 1/Xe, as shown in Figure 7. The

intersection of these circles with impedance circles show

the actual reflection coefficient at every single frequency.

Therefore, changing frequency, mass or stiffness will change

the loci of the centers of these vertical circles as well as

their radii. If Me = 0 (also known as capacitive impedance)

vertical circles exist only in the bottom half of the plane and

thus only bottom half of impedance circles are considered

for environment impedance bound. In a dual manner, if

environment is dominated by mass and damping properties,

only the upper half circles will exist. Figure 7 shows the two

sets of circles together. These circles, when drawn in the unit

circle, are known as smith circles, and can be found in Smith

Charts [16]. Smith Charts were developed before the advent

of the modern computers for the analysis of stability of

transmission lines and matching circuits, and it has primarily

been used in microwave and RF systems. This is the first

time that the Smith Chart concept is utilized for mapping

the environment/operator impedance into impedance circles

to analyze the stability of potentially unstable teleoperation

systems.

V. GEOMETRIC IMPLICATIONS OF THE NEW METHOD

VERSUS LLEWELLYN’S CRITERION

In this section, the robustness stability of two teleoperation

control architectures are numerically analyzed using the

new method and Llewellyn’s absolute stability criterion.

The stability conditions obtained using the two methods are

compared.

A. Four-channel Bilateral Control Architecture

Consider the general block diagram of a four-channel

bilateral teleoperation control system as shown in Figure 8,

where Zm = 0.7s and Zs = 0.5s are master and slave mass

models, Cm = 29.4 + 630/s and Cs = 1300 + 25000/s
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represent master and slave position controllers, C1, ..., C4,

are remote compensators, and C5 and C6 are master and

slave local force feedback controllers.

Transparency Optimized Control (TOC): We consider that

C1, ..., C6 are chosen according to the transparency-

optimized control (TOC) law C1 = Zs +Cs, C2 = 1+C6 =
1, C3 = 1 + C5 = 1 and C4 = −(Zm + Cm) for perfect

transparency in the case of negligible delays [2], [13]. As

shown in [13] and illustrated in Figure 9(b), the TOC system

is marginally absolutely stable as the stability parameter

of Llewellyn’s criterion is unity for all frequencies, that is

η = 1, ∀ω > 0.

In order to visualize the analysis results of the new

method, we have to calculate re(ω) and ce(ω) or alter-

natively rh(ω) and ch(ω). This means that the loci and

radii of the stability circles at every frequency should be

calculated and plotted. We note from [9] that for b =
1, S = diag(1,−1)[H − I][H + I]−1 and also that for

perfect transparency, Sideal =

(
0 1
1 0

)
must hold for all

frequencies, where I is a 2× 2 identity matrix. Substituting

the components of the ideal S-matrix in (10), we obtain ce =
ch = 0 and re = rh = 1 for all frequencies. This means that

both operator and environment stability circles are tangent to

the operator and environment unit circles at all frequencies.

Since D1 = D2 = −1 < 0 the environment and operator

impedances must lie inside the stability circles implying

absolute stability. Figure 9 compares Llewellyn’s absolute

stability parameter with the new geometrical approach for

the transparency-optimized four-channel control architecture.
TOC without acceleration: Since acceleration is mostly

found from double differentiation of the measured position,

it is mostly noisy and unreliable. As a result Lawrence in [2]

suggested the use of remote position and velocity feedback,

i.e. C1 = Cs and C4 = −Cm, for transparency in low-mid

range of frequencies. In such case, as shown in Figure 10(b),

for 0.001 < ω < 1000 rad/s, η < 1 . In fact η < 1 for all
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Fig. 9. Stability analysis of the transparency optimized four-channel
teleoperation system.
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Fig. 10. Stability analysis of the transparency optimized four-channel
teleoperation system (without acceleration feedback).

frequencies; thus, the system is no longer absolutely stable.

The Llewellyn’s criterion does not provide any clear indica-

tion as for what range of environment/operator impedances

in a specific range of frequencies the system stability is

guaranteed, or whether or not there exist such range of

environment/operator impedances. However, the new method

is capable of addressing the above questions.

Figure 10(a) shows the environment stability circle for

various frequencies, with the outer unit circle for ω =
0.001 rad/s and the inner circle for ω = 1000 rad/s. For

ω > 1000, the blank circular area is filled. In this case,

−1 < D2 < 0 and since the stability circles for all frequen-

cies are inside the environment unit circle, there are some

passive environment impedances that cause instability in the

system. This instability region is the dark area inside the

environment unit circle. If we decrease the frequency range,

the inner stability region grows, and hence the instability

region shrinks, and vice-versa.

Stability Analysis with Environment Impedance Bounds:

As discussed in this section, the main advantage of the

new robust stability analysis tool is that it incorporates

the effect of environment in the stability analysis, which

makes it very powerful for in depth analysis of potentially

unstable cases such as TOC without acceleration. Figure 11

shows the environment unit circle, the stability circle for the

maximum operational frequency ω = 1000 rad/s and the

mapped environment impedance Ze = Be + Ke/s on the

Γe plane for Be > 1.45 Nm/s. Since the mapped Ze for

the above range of damping lies within the stability circle,

the above damper-spring environment guarantees system

stability with any passive operator for frequency range

0 < ω < 1000 rad/s, which is larger than the maximum
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Fig. 11. Environment impedance mapped into the Γe plane, plus the
stability circle for ω = 1000 rad/s in TOC without acceleration feedback.

bandwidth required from any teleoperation system. In fact,

comparing Figure 11 with impedance circles in Figure

6 reveals that this system is stable for a large group

of mass-damper-spring environments with any mass and

spring as long as the environment damping is confined

to B > 1.45 Nm/s. Remark: It is important to note that

by increasing the system required bandwidth or maximum

operational frequency ω, the smallest stability circle shrinks,

and as a result the minimum Be required for guaranteed

stability increases, and vice-versa.

B. Force-Position Bilateral Control Architecture

In the second example, consider a force-position (FP)

control architecture obtained by setting C3 = C4 = 0 in the

four-channel TOC law. Figure 12(b) shows the Llewellyn’s

absolute stability parameter, which only tells that the system

is potentially unstable (η(ω) < 1), for ω > 935 rad/s. Figure

12(a) shows the environment unit circle, the stability circles

for various frequencies, and the mapping of Ze = 10+0.7/s
into the Γe plane (impedance circle). For frequency range

ω < 935 rad/s the stability circles are to the right of the

environment unit circle, as a result the MSN is absolutely

stable. For ω > 935 rad/s the stability circles cross the unit

circle and the MSN is potentially unstable, as predicted by

Llewellyn’s criterion. As one can see, the half-circle mapped

environment Ze = 10 + 0.7/s intersects with the stability

circles for ω > 935 rad/s. However, no conclusion with

regard to the stability or instability of the entire system for

all passive operators can be drawn, unless we examine the

frequencies of intersections. In order to see if the intersection

happens at the same frequency, a new stability measure is

proposed in this paper.

The new stability parameter should include frequency ω
and D2 to make the analysis independent of the frequency

and the sign of D2. Therefore, considering (11) and (12), we

propose

γe(ω) = (|Γe(ω) − ce(ω)|2 − r2
e(ω))D2. (22)

Therefore, if γe > 0, the stability of the system is guaranteed

as long as the operator impedance is passive. Figure 13

shows γe for the FP bilateral control system for our specific
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impedance. The figure reveals that the entire system is stable

with Ze = 10 + 0.7/s for any passive operator impedance

for the whole considered frequency range.

Remark: It is important to note that the intersection of

stability circles and mapped impedances in the four-channel

architecture happens at the same frequency (ω = 1000 for

B = 1.45). This is due to the fact that Γe(ω) is moving

from point (1, 0) to (0, 0) on the impedance circle as the

frequency increases. Thus, the reflection coefficient on the

mapped impedances approach the stability circles as shown

in Figure 11. However, in the FP architecture, as shown in

Figure 12(a), as frequency grows the stability circles and

Γe(ω) on the mapped impedance half-circle move in the

same direction.

If the bounds on the environment impedance are known

(instead of actual values), then the stability parameter has to
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consider these bounds. Thus, at every frequency there is a

region of possible environments. Figure 14 shows this region

which is mapped into the Γe plane in black color. At every

frequency the closest point of this region to the instability

region is shown by N in Figure 14. The distance (d) between

N and the stability circle, can be determined by the following

equation:

d =

{
Min(|Γe(ω) − ce(ω)|) − |re| D2 > 0

−[Max(|Γe(ω) − ce(ω)|) − |re|] D2 < 0

where the negative sign for the second equation is to prevent

negative sign for the distance, when the environment unit

circle is inside the stability circle. If one of the above

distances becomes negative, a portion of the environment

bounds, lies inside the potentially unstable region. In this

case, the absolute values in the above equation can equiv-

alently be replaced by power 2. Therefore, the following

stability parameter is defined

γe(ω) =

{
Min(|Γe(ω) − ce(ω)|)2 − r

2

e(ω))D2(ω) D2(ω) > 0

Max(|Γe(ω) − ce(ω)|)2 − r
2

e(ω))D2(ω) D2(ω) < 0

The above analysis is performed without considering any

bounds on the operator impedance. Similar stability parame-

ter can be defined and used for the operator impedance with

known bounds, while the environment is passive.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, a powerful robust stability analysis and

design tool from microwave and communication systems has

been introduced and developed for teleoperation systems.

The new technique incorporates bounds on environment or

operator impedance for potentially unstable systems so as

to reach a less conservative coupled stability condition and

thus a better trade off between stability and performance.

The analysis is performed using visual approach or a newly

proposed stability parameter, which tends to maximize the

derivation of the bounds. Using the new method, we can

determine the environment/operator impedance regions in

which the teleoperation system is stable. Equivalently, if

bounds on environment impedance are known, the coupled

stability can be analyzed. Moreover, the new technique can

be used when the environment or operator system is active.

In case of environments with LTI mass-damper-spring

models, a quick analysis of stability can be performed when

only the bounds on the environment damping are known,

regardless of the environment mass and spring. The proposed

technique and Llewellyn’s criterion are both numerically

evaluated on a four-channel and a force-position two channel

teleopertaion systems. The new method has been utilized to

obtain bounds on environment damping for coupled stability

for reasonably large range of operational frequencies. The

proposed stability metric, provided a wider range of stable

environment impedance for the F-P architecture. The design

of control systems with the aim of controlling stability circles

or equivalently stability parameter is considered for future

work. The application of this method in the stability analysis

of potentially unstable systems when communication channel

time delay is significant is also considered for future work.
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